imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

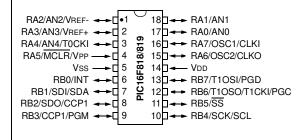
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

18/20-Pin Enhanced Flash Microcontrollers with nanoWatt Technology

Low-Power Features:

- Power-Managed modes:
 - Primary Run: XT, RC oscillator, 87 μA, 1 MHz, 2V
 - INTRC: 7 μA, 31.25 kHz, 2V
 - Sleep: 0.2 μA, 2V
- Timer1 oscillator: 1.8 μA, 32 kHz, 2V
- Watchdog Timer: 0.7 μA, 2V
- Wide operating voltage range:
- Industrial: 2.0V to 5.5V

Oscillators:

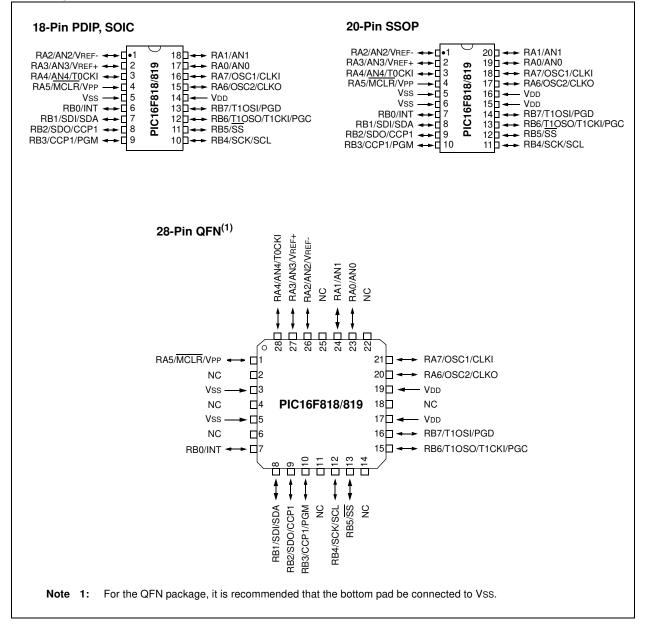

- Three Crystal modes:
 - LP, XT, HS: up to 20 MHz
- Two External RC modes
- One External Clock mode:
- ECIO: up to 20 MHz
- · Internal oscillator block:
- 8 user selectable frequencies: 31 kHz, 125 kHz, 250 kHz, 500 kHz, 1 MHz, 2 MHz, 4 MHz, 8 MHz

Peripheral Features:

- 16 I/O pins with individual direction control
- High sink/source current: 25 mA
- Timer0: 8-bit timer/counter with 8-bit prescaler
- Timer1: 16-bit timer/counter with prescaler, can be incremented during Sleep via external crystal/clock
- Timer2: 8-bit timer/counter with 8-bit period register, prescaler and postscaler
- Capture, Compare, PWM (CCP) module:
 - Capture is 16-bit, max. resolution is 12.5 ns
 - Compare is 16-bit, max. resolution is 200 ns
 - PWM max. resolution is 10-bit
- 10-bit, 5-channel Analog-to-Digital converter
- Synchronous Serial Port (SSP) with SPI (Master/Slave) and I²C[™] (Slave)

Pin Diagram

18-Pin PDIP, SOIC



Special Microcontroller Features:

- 100,000 erase/write cycles Enhanced Flash
 program memory typical
- 1,000,000 typical erase/write cycles EEPROM data memory typical
- EEPROM Data Retention: > 40 years
- In-Circuit Serial Programming[™] (ICSP[™]) via two pins
- · Processor read/write access to program memory
- · Low-Voltage Programming
- · In-Circuit Debugging via two pins

	Progran	n Memory	Data Memory			10-bit	ССР	SSP		Timers	
Device	Flash (Bytes)	#Single-Word Instructions	SRAM (Bytes)	EEPROM (Bytes)	I/O Pins	A/D (ch)	(PWM)	SPI	Slave I ² C™	8/16-bit	
PIC16F818	1792	1024	128	128	16	5	1	Y	Y	2/1	
PIC16F819	3584	2048	256	256	16	5	1	Y	Y	2/1	

Pin Diagrams

Table of Contents

1.0	Device Overview	5
2.0	Memory Organization	9
3.0	Data EEPROM and Flash Program Memory	. 25
4.0	Oscillator Configurations	. 33
5.0	I/O Ports	. 39
6.0	Timer0 Module	. 53
7.0	Timer1 Module	. 57
8.0	Timer2 Module	. 63
9.0	Capture/Compare/PWM (CCP) Module	. 65
10.0	Synchronous Serial Port (SSP) Module	. 71
11.0	Analog-to-Digital Converter (A/D) Module	. 81
12.0	Special Features of the CPU	
13.0	Instruction Set Summary	103
14.0	Development Support	111
15.0	Electrical Characteristics	115
16.0	DC and AC Characteristics Graphs and Tables	141
17.0	Packaging Information	155
Appe	ndix A: Revision History	165
Appe	ndix B: Device Differences	165
INDE	X	167
The N	/icrochip Web Site	173
Custo	mer Change Notification Service	173
Custo	mer Support	173
Read	er Response	174
PIC1	SF818/819 Product Identification System	175

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

· Microchip's Worldwide Web site; http://www.microchip.com

• Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

NOTES:

1.0 DEVICE OVERVIEW

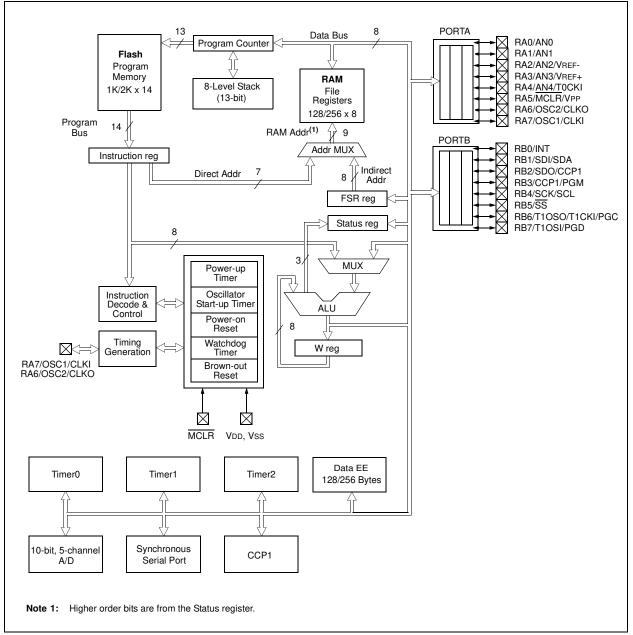
This document contains device specific information for the operation of the PIC16F818/819 devices. Additional information may be found in the "PIC[®] Mid-Range MCU Family Reference Manual" (DS33023) which may be downloaded from the Microchip web site. The Reference Manual should be considered a complementary document to this data sheet and is highly recommended reading for a better understanding of the device architecture and operation of the peripheral modules.

The PIC16F818/819 belongs to the Mid-Range family of the PIC[®] devices. The devices differ from each other in the amount of Flash program memory, data memory and data EEPROM (see Table 1-1). A block diagram of the devices is shown in Figure 1-1. These devices contain features that are new to the PIC16 product line:

- Internal RC oscillator with eight selectable frequencies, including 31.25 kHz, 125 kHz, 250 kHz, 500 kHz, 1 MHz, 2 MHz, 4 MHz and 8 MHz. The INTRC can be configured as the system clock via the configuration bits. Refer to Section 4.5 "Internal Oscillator Block" and Section 12.1 "Configuration Bits" for further details.
- The Timer1 module current consumption has been greatly reduced from 20 μA (previous PIC16 devices) to 1.8 μA typical (32 kHz at 2V), which is ideal for real-time clock applications. Refer to Section 6.0 "Timer0 Module" for further details.
- The amount of oscillator selections has increased. The RC and INTRC modes can be selected with an I/O pin configured as an I/O or a clock output (Fosc/4). An external clock can be configured with an I/O pin. Refer to **Section 4.0 "Oscillator Configurations"** for further details.

TABLE 1-1:AVAILABLE MEMORY INPIC16F818/819 DEVICES

Device	Program	Data	Data
	Flash	Memory	EEPROM
PIC16F818	1K x 14	128 x 8	128 x 8


Device	Program	Data	Data
	Flash	Memory	EEPROM
PIC16F819	2K x14	256 x 8	256 x 8

There are 16 I/O pins that are user configurable on a pin-to-pin basis. Some pins are multiplexed with other device functions. These functions include:

- External Interrupt
- Change on PORTB Interrupt
- Timer0 Clock Input
- Low-Power Timer1 Clock/Oscillator
- Capture/Compare/PWM
- 10-bit, 5-channel Analog-to-Digital Converter
- SPI/I²C
- MCLR (RA5) can be configured as an Input

Table 1-2 details the pinout of the devices with descriptions and details for each pin.

Pin Name	PDIP/ SOIC Pin#	SSOP Pin#	QFN Pin#	I/O/P Type	Buffer Type	Description
						PORTA is a bidirectional I/O port.
RA0/AN0	17	19	23			
RA0				I/O	TTL	Bidirectional I/O pin.
AN0				I	Analog	Analog input channel 0.
RA1/AN1	18	20	24			
RA1				I/O	TTL	Bidirectional I/O pin.
AN1				I	Analog	Analog input channel 1.
RA2/AN2/VREF-	1	1	26		_	
RA2				I/O	TTL	Bidirectional I/O pin.
AN2				I	Analog	Analog input channel 2.
VREF-				I	Analog	A/D reference voltage (low) input.
RA3/AN3/VREF+	2	2	27		_	
RA3	_	_		I/O	TTL	Bidirectional I/O pin.
AN3				I	Analog	Analog input channel 3.
VREF+				I	Analog	A/D reference voltage (high) input.
RA4/AN4/T0CKI	3	3	28		5	
RA4	Ū	Ũ	20	I/O	ST	Bidirectional I/O pin.
AN4				I	Analog	Analog input channel 4.
TOCKI				I	ST	Clock input to the TMR0 timer/counter.
RA5/MCLR/Vpp	4	4	1			
RA5			-	1	ST	Input pin.
MCLR				I	ST	Master Clear (Reset). Input/programming
						voltage input. This pin is an active-low Reset
						to the device.
Vpp				Р	-	Programming threshold voltage.
RA6/OSC2/CLKO	15	17	20			
RA6				I/O	ST	Bidirectional I/O pin.
OSC2				0	-	Oscillator crystal output. Connects to crystal c
						resonator in Crystal Oscillator mode.
CLKO				0	-	In RC mode, this pin outputs CLKO signal
						which has 1/4 the frequency of OSC1 and
						denotes the instruction cycle rate.
RA7/OSC1/CLKI	16	18	21			
RA7				I/O	ST	Bidirectional I/O pin.
OSC1				I	ST/CMOS ⁽³⁾	Oscillator crystal input.
CLKI				I	-	External clock source input.
Legend: I = Input		0 :	= Outp	but	I/O =	Input/Output P = Power

TABLE 1-2:PIC16F818/819 PINOUT DESCRIPTIONS

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

3: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.

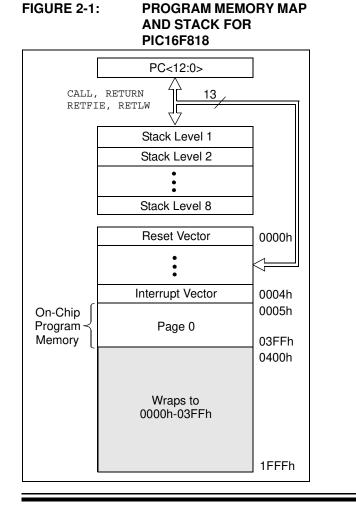
Pin Name	PDIP/ SOIC Pin#	SSOP Pin#	QFN Pin#	I/O/P Type	Buffer Type	Description
						PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-up or all inputs.
RB0/INT RB0 INT	6	7	7	I/O I	TTL ST ⁽¹⁾	Bidirectional I/O pin. External interrupt pin.
RB1/SDI/SDA RB1 SDI SDA	7	8	8	I/O I I/O	TTL ST ST	Bidirectional I/O pin. SPI data in. I ² C™ data.
RB2/SDO/CCP1 RB2 SDO CCP1	8	9	9	I/O O I/O	TTL ST ST	Bidirectional I/O pin. SPI data out. Capture input, Compare output, PWM output.
RB3/CCP1/PGM RB3 CCP1 PGM	9	10	10	I/O I/O I	TTL ST ST	Bidirectional I/O pin. Capture input, Compare output, PWM output. Low-Voltage ICSP™ Programming enable pir
RB4/SCK/SCL RB4 SCK SCL	10	11	12	I/O I/O I	TTL ST ST	Bidirectional I/O pin. Interrupt-on-change pin. Synchronous serial clock input/output for SPI. Synchronous serial clock input for I ² C.
RB5/SS RB5 SS	11	12	13	I/O I	TTL TTL	Bidirectional I/O pin. Interrupt-on-change pin. Slave select for SPI in Slave mode.
RB6/T1OSO/T1CKI/PGC RB6 T1OSO T1CKI PGC	12	13	15	I/O O I I	TTL ST ST ST ⁽²⁾	Interrupt-on-change pin. Timer1 Oscillator output. Timer1 clock input. In-circuit debugger and ICSP programming clock pin.
RB7/T1OSI/PGD RB7 T1OSI PGD	13	14	16	I/O I I	TTL ST ST ⁽²⁾	Interrupt-on-change pin. Timer1 oscillator input. In-circuit debugger and ICSP programming data pin.
Vss	5	5, 6	3, 5	Р	_	Ground reference for logic and I/O pins.
Vdd	14	15, 16	17, 19	Р	_	Positive supply for logic and I/O pins.
Legend: I = Input - = Not used	d		= Outp = TTL			Input/Output P = Power Schmitt Trigger Input

TABLE 1-2: PIC16F818/819 PINOUT DESCRIPTIONS (CONTINUED)

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

3: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.

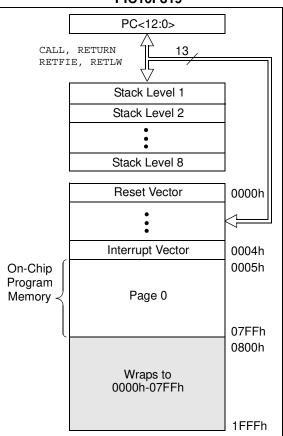

2.0 MEMORY ORGANIZATION

There are two memory blocks in the PIC16F818/819. These are the program memory and the data memory. Each block has its own bus, so access to each block can occur during the same oscillator cycle.

The data memory can be further broken down into the general purpose RAM and the Special Function Registers (SFRs). The operation of the SFRs that control the "core" are described here. The SFRs used to control the peripheral modules are described in the section discussing each individual peripheral module.

The data memory area also contains the data EEPROM memory. This memory is not directly mapped into the data memory but is indirectly mapped. That is, an indirect address pointer specifies the address of the data EEPROM memory to read/write. The PIC16F818 device's 128 bytes of data EEPROM memory have the address range of 00h-7Fh and the PIC16F819 device's 256 bytes of data EEPROM memory have the address range of 00h-FFh. More details on the EEPROM memory can be found in Section 3.0 "Data EEPROM and Flash Program Memory".

Additional information on device memory may be found in the *"PIC[®] Mid-Range Reference Manual"* (DS33023).



2.1 **Program Memory Organization**

The PIC16F818/819 devices have a 13-bit program counter capable of addressing an 8K x 14 program memory space. For the PIC16F818, the first 1K x 14 (0000h-03FFh) is physically implemented (see Figure 2-1). For the PIC16F819, the first 2K x 14 is located at 0000h-07FFh (see Figure 2-2). Accessing a location above the physically implemented address will cause a wraparound. For example, the same instruction will be accessed at locations 020h, 420h, 820h, C20h, 1020h, 1420h, 1820h and 1C20h.

The Reset vector is at 0000h and the interrupt vector is at 0004h.

FIGURE 2-2: PROGRAM MEMORY MAP AND STACK FOR PIC16F819

2.2 Data Memory Organization

The data memory is partitioned into multiple banks that contain the General Purpose Registers and the Special Function Registers. Bits RP1 (Status<6>) and RP0 (Status<5>) are the bank select bits.

RP1:RP0	Bank
00	0
01	1
10	2
11	3

Each bank extends up to 7Fh (128 bytes). The lower locations of each bank are reserved for the Special Function Registers. Above the Special Function Registers are the General Purpose Registers, implemented as static RAM. All implemented banks contain SFRs. Some "high use" SFRs from one bank may be mirrored in another bank for code reduction and quicker access (e.g., the Status register is in Banks 0-3).

Note:	EEPROM data memory description can be found in Section 3.0 "Data EEPROM and
	Flash Program Memory" of this data sheet.

2.2.1 GENERAL PURPOSE REGISTER FILE

The register file can be accessed either directly or indirectly through the File Select Register, FSR.

```
FIGURE 2-3:
```

PIC16F818 REGISTER FILE MAP

	ddress		Address		Address		ddre
Indirect addr.(*)	00h	Indirect addr.(*)	80h	Indirect addr.(*)	100h 101h	Indirect addr.(*) OPTION REG	180
TMR0	01h	OPTION_REG	81h	TMR0 PCL	101h 102h		181
PCL	02h	PCL	82h			PCL	182
STATUS	03h	STATUS	83h	STATUS	103h 104b	STATUS	183
FSR	04h	FSR	84h	FSR	104h 105h	FSR	184
PORTA	05h	TRISA	85h	DODTD	105h	TDICD	185
PORTB	06h 07h	TRISB	86h	PORTB	107h	TRISB	186
	0711 08h		87h		107h 108h		187
	09h		88h		109h		188 189
PCLATH	09n 0Ah		89h	PCLATH	103h	PCLATH	18/
INTCON	0Bh	PCLATH	8Ah	INTCON	10Bh	INTCON	18
PIR1	0Ch		8Bh	EEDATA	10Ch	EECON1	180
PIR2	0Dh	PIE1 PIE2	8Ch 8Dh	EEADR	10Dh	EECON1 EECON2	180
TMR1L	0Eh	PCON	8Dh 8Eh		10Eh	Reserved ⁽¹⁾	181
TMR1L TMR1H	0Eh	OSCCON	8En 8Fh	EEDATH EEADRH	10Eh	Reserved ⁽¹⁾	18F
TICON	10h	OSCTUNE	90h		110h	Tieserveu.	190
TMR2	11h	COOTONE	9011 91h				130
T2CON	12h	PR2	92h				
SSPBUF	13h	SSPADD	93h				
SSPCON	14h	SSPSTAT	94h				
CCPR1L	15h		95h				
CCPR1H	16h		96h				
CCP1CON	17h		97h				
	18h		98h				
	19h		99h				
	1Ah		9Ah				
	1Bh		9Bh				
	1Ch		9Ch				
	1Dh		9Dh				
ADRESH	1Eh	ADRESL	9Eh				
ADCON0	1Fh	ADCON1	9Fh		11Fh		19F
	20h	General Purpose Register	A0h		120h		1A)
General		32 Bytes	BFh C0h				
Purpose Register 96 Bytes		Accesses 40h-7Fh	501	Accesses 20h-7Fh		Accesses 20h-7Fh	
	7Fh		FFh		17Fh		1FF
Bank 0		Bank 1		Bank 2		Bank 3	
Unimple * Not a ph		ata memory locati jister.	ons, read	as '0'.			
•		re reserved; maint	ain these	registers clear			

FIGURE 2-4:

PIC16F819 REGISTER FILE MAP

	File Address		File Address		File Address	A	File Address	
Indirect addr.(*)	00h	Indirect addr.(*)	80h	Indirect addr.(*)	100h	Indirect addr.(*)	180h	
TMR0	01h	OPTION_REG	81h	TMR0	101h	OPTION_REG	181h	
PCL	02h	PCL	82h	PCL	102h	PCL	182h	
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183h	
FSR	04h	FSR	84h	FSR	104h	FSR	184h	
PORTA	05h	TRISA	85h		105h		185h	
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186h	
	07h		87h		107h		187h	
	08h		88h		108h		188h	
	09h		89h		109h		189h	
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18Ah	
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18Bh	
PIR1	0Ch	PIE1	8Ch	EEDATA	10Ch	EECON1	18Ch	
PIR2	0Dh	PIE2	8Dh	EEADR	10Dh	EECON2	18Dh	
TMR1L	0Eh	PCON	8Eh	EEDATH	10Eh	Reserved ⁽¹⁾	18Eh	
TMR1H	0Fh	OSCCON	8Fh	EEADRH	10Fh	Reserved ⁽¹⁾	18Fh	
T1CON	10h	OSCTUNE	90h		110h		190h	
TMR2	11h		91h					
T2CON	12h	PR2	92h					
SSPBUF	13h	SSPADD	93h					
SSPCON	14h	SSPSTAT	94h					
CCPR1L	15h		95h					
CCPR1H	16h		96h					
CCP1CON	17h		97h					
	18h		98h					
	19h		99h					
	1Ah		9Ah					
	1Bh		9Bh					
	1Ch		9Ch					
	1Dh	100501	9Dh					
ADRESH	1Eh	ADRESL	9Eh		11 56		1056	
ADCON0	1Fh	ADCON1	9Fh		11Fh		19Fh	
	20h		A0h		120h		1A0h	
General Purpose Register		General Purpose Register 80 Bytes		General Purpose Register		Accesses 20h-7Fh		
96 Bytes		ou bytes	EFh	80 Bytes	16Fh			
		Accesses	F0h	Accesses	170h			
	7Fh	70h-7Fh	FFh	70h-7Fh	17Fh		1FFh	
Bank 0		Bank 1		Bank 2	,,	Bank 3		
	emented da hysical reg	ata memory locati ister.	ons, read	as '0'.				
•		e reserved; maint	ain these	registers clear.				

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral modules for controlling the desired operation of the device. These registers are implemented as static RAM. A list of these registers is given in Table 2-1. The Special Function Registers can be classified into two sets: core (CPU) and peripheral. Those registers associated with the core functions are described in detail in this section. Those related to the operation of the peripheral features are described in detail in the peripheral feature section.

TABLE 2-1:SPECIAL FUNCTION REGISTER SUMMARY

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page:
Bank 0		-	•			•	•	•	•		•
00h ⁽¹⁾	INDF	Addressin	ng this locati	on uses cont	ents of FSR te	o address dat	a memory (n	ot a physical	register)	0000 0000	23
01h	TMR0	Timer0 M	lodule Regis	ter						XXXX XXXX	53, 17
02h ⁽¹⁾	PCL	Program	Counter's (F	C) Least Sig	nificant Byte					0000 0000	23
03h ⁽¹⁾	STATUS	IRP	RP1	RP0	то	PD	Z	DC	С	0001 1xxx	16
04h ⁽¹⁾	FSR	Indirect D	ata Memory	Address Poi	nter					xxxx xxxx	23
05h	PORTA	PORTA D	Data Latch w	hen written; F	PORTA pins w	/hen read				xxx0 0000	39
06h	PORTB	PORTB D	Data Latch w	hen written; I	PORTB pins v	vhen read				xxxx xxxx	43
07h	—	Unimplen	nented							—	_
08h	—	Unimplen	nented							—	_
09h	—	Unimplen	nented							—	_
0Ah ^(1,2)	PCLATH	—	_	—	Write Buffer	for the upper	5 bits of the	Program Cou	unter	0 0000	23
0Bh ⁽¹⁾	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	18
0Ch	PIR1	—	ADIF	_	_	SSPIF	CCP1IF	TMR2IF	TMR1IF	-0 0000	20
0Dh	PIR2	_	_	_	EEIF	_	_	_	_	0	21
0Eh	TMR1L	Holding F	Holding Register for the Least Significant Byte of the 16-bit TMR1 Register								57
0Fh	TMR1H	Holding F	Register for tl	ne Most Sign	ificant Byte of	the 16-bit TM	/IR1 Register	•		xxxx xxxx	57
10h	T1CON	_	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	57
11h	TMR2	Timer2 M	lodule Regis	ter						0000 0000	63
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	64
13h	SSPBUF	Synchron	ious Serial P	ort Receive I	Buffer/Transm	it Register				xxxx xxxx	71, 76
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	73
15h	CCPR1L	Capture/0	Compare/PW	/M Register (LSB)					XXXX XXXX	66, 67, 68
16h	CCPR1H	Capture/0	Compare/PW	/M Register (MSB)					XXXX XXXX	66, 67, 68
17h	CCP1CON	—	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	65
18h	—	Unimplen	nented							_	_
19h	—	Unimplen	nented							_	_
1Ah	—	Unimplen	nented							_	_
1Bh	—	Unimplen	nented							_	_
1Ch	—	Unimplen	nented							_	_
1Dh	_	Unimplen	nented							_	_
1Eh	ADRESH	A/D Resu	It Register H	ligh Byte						XXXX XXXX	81
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON	0000 00-0	81

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from any bank.

2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are transferred to the upper byte of the program counter.

3: Pin 5 is an input only; the state of the TRISA5 bit has no effect and will always read '1'.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page:
Bank 1											
80h ⁽¹⁾	INDF	Addressin	ng this locati	on uses conte	ents of FSR to	o address dat	a memory (n	ot a physical	register)	0000 0000	23
81h	OPTION_REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	17, 54
82h ⁽¹⁾	PCL	Program	Counter's (F	C) Least Sig	nificant Byte					0000 0000	23
83h ⁽¹⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	16
84h ⁽¹⁾	FSR	Indirect D	ata Memory	Address Poi	nter					xxxx xxxx	23
85h	TRISA	TRISA7	TRISA6	TRISA5 ⁽³⁾	PORTA Data	Direction Re	egister (TRIS	A<4:0>		1111 1111	39
86h	TRISB	PORTB D	Data Directio	n Register						1111 1111	43
87h	—	Unimplen	nented							—	_
88h	—	Unimplen	nented							—	_
89h	—	Unimplen	nented							_	_
8Ah ^(1,2)	PCLATH	_	_	_	Write Buffer	for the upper	5 bits of the	PC		0 0000	23
8Bh ⁽¹⁾	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	18
8Ch	PIE1	—	ADIE		—	SSPIE	CCP1IE	TMR2IE	TMR1IE	-0 0000	19
8Dh	PIE2	—			EEIE		_		—	0	21
8Eh	PCON	_	_	_	—	-	—	POR	BOR	dd	22
8Fh	OSCCON	_	IRCF2	IRCF1	IRCF0	_	IOFS	_	_	-000 -0	38
90h ⁽¹⁾	OSCTUNE	_	_	TUN5	TUN4	TUN3	TUN2	TUN1	TUN0	00 0000	36
91h	—	Unimplen	nented							_	_
92h	PR2	Timer2 P	eriod Regist	er						1111 1111	68
93h	SSPADD	Synchron	ous Serial P	ort (I ² C™ mo	de) Address	Register				0000 0000	71, 76
94h	SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	72
95h	—	Unimplen	nented						•	_	
96h	—	Unimplen	nented							—	_
97h	—	Unimplen	nented							—	_
98h	—	Unimplen	nented							—	_
99h	—	Unimplen	nented							—	_
9Ah	—	Unimplen	nented							—	_
9Bh		Unimplen	nented							_	—
9Ch		Unimplen	nented							—	
9Dh		Unimplen	nented							—	
9Eh	ADRESL	A/D Resu	ılt Register L	ow Byte						xxxx xxxx	81
9Fh	ADCON1	ADFM	ADCS2	—	—	PCFG3	PCFG2	PCFG1	PCFG0	00 0000	82

TABLE 2-1: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

 $\label{eq:Legend: Legend: Legend: u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.$

Note 1: These registers can be addressed from any bank.

2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are transferred to the upper byte of the program counter.

3: Pin 5 is an input only; the state of the TRISA5 bit has no effect and will always read '1'.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page:
Bank 2											
100h ⁽¹⁾	INDF	Addressir	ng this locatio	on uses conte	nts of FSR to	address data	memory (not	t a physical re	egister)	0000 0000	23
101h	TMR0	Timer0 M	lodule Regist	er						XXXX XXXX	53
102h ⁽¹	PCL	Program	Counter's (P	C) Least Sign	ificant Byte					0000 0000	23
103h ⁽¹⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	16
104h ⁽¹⁾	FSR	Indirect D	ata Memory	Address Poir	iter					xxxx xxxx	23
105h	—	Unimplen	nented							_	_
106h	PORTB	PORTB D	Data Latch w	hen written; P	ORTB pins w	hen read				xxxx xxxx	43
107h	—	Unimplen	nented							—	_
108h	—	Unimplen	nented							—	_
109h	—	Unimplen	nented							—	_
10Ah ^(1,2)	PCLATH	_	_	—	Write Buffer	for the upper	5 bits of the F	Program Cour	nter	0 0000	23
10Bh ⁽¹⁾	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	18
10Ch	EEDATA	EEPRON	1/Flash Data	Register Low	Byte					xxxx xxxx	25
10Dh	EEADR	EEPRON	1/Flash Addre	ess Register L	ow Byte					xxxx xxxx	25
10Eh	EEDATH	_	_	EEPROM/Fla	ash Data Regi	ister High Byte	9			xx xxxx	25
10Fh	EEADRH	—	—	_	—	—	EEPROM/F High Byte	lash Address	Register	xxx	25
Bank 3							-				
180h ⁽¹⁾	INDF	Addressir	ng this locatio	on uses conte	nts of FSR to	address data	memory (not	t a physical re	egister)	0000 0000	23
181h	OPTION_REG	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	17, 54
182h ⁽¹⁾	PCL	Program	Counter's (P	C) Least Sign	ificant Byte					0000 0000	23
183h ⁽¹⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	16
184h ⁽¹⁾	FSR	Indirect D	ata Memory	Address Poir	iter					xxxx xxxx	23
185h	—	Unimplen	nented							—	_
186h	TRISB	PORTB D	Data Direction	n Register						1111 1111	43
187h	—	Unimplen	nented							—	_
188h	_	Unimplen	nented								—
189h	_	Unimplen	nented								—
18Ah ^(1,2)	PCLATH	_	—	—	Write Buffer	for the upper	5 bits of the F	Program Cour	nter	0 0000	23
18Bh ⁽¹⁾	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	18
18Ch	EECON1	EEPGD	—	—	FREE	WRERR	WREN	WR	RD	xx x000	26
	1	EEDDON									25
18Dh	EECON2	EEFRON									
18Dh 18Eh	EECON2		,		p) e. e. e. e. g. e					0000 0000	—

TABLE 2-1: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Shaded locations are unimplemented, read as '0'. Note 1: These registers can be addressed from any bank.

2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are transferred to the upper byte of the program counter.

3: Pin 5 is an input only; the state of the TRISA5 bit has no effect and will always read '1'.

2.2.2.1 Status Register

The Status register, shown in Register 2-1, contains the arithmetic status of the ALU, the Reset status and the bank select bits for data memory.

The Status register can be the destination for any instruction, as with any other register. If the Status register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the Status register as destination may be different than intended.

For example, CLRF STATUS, will clear the upper three bits and set the Z bit. This leaves the Status register as '000u uluu' (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the Status register because these instructions do not affect the Z, C or DC bits from the Status register. For other instructions not affecting any status bits, see Section 13.0 "Instruction Set Summary".

Note:	The C and DC bits operate as a borrow
	and digit borrow bit, respectively, in
	subtraction. See the SUBLW and SUBWF
	instructions for examples.

REGISTER 2-1: STATUS: STATUS REGISTER (ADDRESS 03h, 83h, 103h, 183h)

	R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x		
	IRP	RP1	RP0	TO	PD	Z	DC	С		
	bit 7							bit 0		
bit 7	1 = Bank 2	ter Bank Sele 2, 3 (100h-1F), 1 (00h-FFh	Fh)	for indirect ac	ddressing)					
bit 6-5	11 = Bank 10 = Bank 01 = Bank 00 = Bank	Register Bank 3 (180h-1FFi 2 (100h-17Ff 1 (80h-FFh) 0 (00h-7Fh) is 128 bytes.	ר) ו)	(used for dire	ect addressi	ng)				
bit 4	1 = After p	 TO: Time-out bit 1 = After power-up, CLRWDT instruction or SLEEP instruction 0 = A WDT time-out occurred 								
bit 3	PD: Power	-down bit		⊤ instruction						
	 After power-up or by the CLRWDT instruction By execution of the SLEEP instruction 									
bit 2	Z: Zero bit									
		sult of an arit sult of an arit								
bit 1	DC: Digit c	arry/borrow b	it (addwf, ai	DDLW, SUBLW	and SUBWE	r instruction	ns) ⁽¹⁾			
		y-out from the rry-out from th				ed				
bit 0	C: Carry/bo	orrow bit (ADI	WF, ADDLW,	SUBLW and S	UBWF instru	(1,2)(ictions)				
		y-out from the rry-out from th								
	Note 1:	For borrow, complement	• •		subtraction	n is execute	ed by addin	g the two's		
	2:	For rotate (R bit of the sou		ructions, this	bit is loade	d with eithe	er the high o	r low-order		
	Legend:									
	R = Reada	able bit	W = W	ritable bit	U = Unim	olemented	bit, read as	'0'		

'1' = Bit is set

-n = Value at POR

x = Bit is unknown

'0' = Bit is cleared

2.2.2.2 OPTION_REG Register

The OPTION_REG register is a readable and writable register that contains various control bits to configure the TMR0 prescaler/WDT postscaler (single assignable register known also as the prescaler), the external INT interrupt, TMR0 and the weak pull-ups on PORTB.

Note: To achieve a 1:1 prescaler assignment for the TMR0 register, assign the prescaler to the Watchdog Timer.

REGISTER 2-2: OPTION_REG: OPTION REGISTER (ADDRESS 81h, 181h)

ER 2-2:	OPTION_	REG: OPTI	ON REGIS	FER (ADDR	ESS 81h,	181h)		
	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0
	bit 7							bit 0
bit 7		RTB Pull-up l						
		B pull-ups are		in altrial ratio				
hit C		B pull-ups are		individual po	rt latch valu	les		
bit 6		nterrupt Edge .pt on rising e		NT nin				
		ipt on falling e						
bit 5		0CS: TMR0 Clock Source Select bit						
	1 = Transi	tion on T0CK	l pin					
	0 = Interna	al instruction of	cycle clock ((CLKO)				
bit 4		R0 Source Ec	•					
		nent on high-t			•			
		nent on low-to	-	on on TOCKI	pin			
bit 3		caler Assignn		-				
		aler is assigne aler is assigne						
bit 2-0		Prescaler Rat						
5112 0	Bit Value	TMR0 Rate						
	000	1:2	1:1					
	001	1:4	1:2					
	010 011	1:8 1:16	1:4 1:8					
	100	1:32	1:16					
	101	1:64	1:32					
	110 1:128 1:64 111 1:256 1:128							
	111	1 1.200	1.120					
	Legend:							
	R = Reada	able hit	$W = W_r$	ritable bit	= Inimr	lemented	bit, read as	ʻ0'
	-n = Value		'1' = Bit		6' = Bit is		x = Bit is ι	
	1							

2.2.2.3 INTCON Register

The INTCON register is a readable and writable register that contains various enable and flag bits for the TMR0 register overflow, RB port change and external RB0/INT pin interrupts.

Note: Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the Global Interrupt Enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-3: INTCON: INTERRUPT CONTROL REGISTER (ADDRESS 0Bh, 8Bh, 10Bh, 18Bh)

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x	
	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	
	bit 7							bit (
7	GIE: Globa	al Interrupt Er	able bit						
		es all unmask es all interrup	•						
6	PEIE: Peri	pheral Interru	pt Enable bit						
		es all unmask es all periphe	• •	•					
5	TMROIE: T	MR0 Overflo	w Interrupt E	nable bit					
		es the TMR0 es the TMR0							
4	INTE: RB0	/INT Externa	I Interrupt En	able bit					
		es the RB0/IN es the RB0/II							
3		Port Change	•						
		es the RB po es the RB po	•	•					
2		MR0 Overflo	•	•					
		register has register did r		must be clea	ared in softw	vare)			
1	INTF: RB0	/INT External	I Interrupt Fla	ıg bit					
		B0/INT extern B0/INT extern				ed in softwa	ıre)		
0	RBIF: RB	Port Change	Interrupt Flag	g bit					
	A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition and allow flag bit RBIF to be cleared.								
		st one of the of the RB7:R	•	•	•	be cleared in	n software)		
	Legend:								
	R = Reada	able bit	W = Wr	itable bit	U = Unim	plemented	bit, read as	ʻ0'	
	n – neaua		$\mathbf{v}\mathbf{v} = \mathbf{v}\mathbf{v}$		0 - 01111	piernenteu	on, reau as	0	

'1' = Bit is set

-n = Value at POR

x = Bit is unknown

'0' = Bit is cleared

2.2.2.4 PIE1 Register

This register contains the individual enable bits for the peripheral interrupts.

Note:	Bit PEIE (INTCON<6>) must be set to
	enable any peripheral interrupt.

REGISTER 2-4: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1 (ADDRESS 8Ch)

CN 2-4.	FICI. FCF	NFRENAL						1)	
	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
		ADIE	—	—	SSPIE	CCP1IE	TMR2IE	TMR1IE	
	bit 7							bit 0	
bit 7	Unimplem	Unimplemented: Read as '0'							
bit 6	ADIE: A/D	Converter Ir	nterrupt Enat	ole bit					
	 1 = Enables the A/D converter interrupt 0 = Disables the A/D converter interrupt 								
bit 5-4	Unimplem	ented: Read	d as '0'						
bit 3	SSPIE: Syr	nchronous S	Serial Port Int	errupt Enable	e bit				
	1 = Enable	es the SSP i	nterrupt						
	0 = Disable	es the SSP i	interrupt						
bit 2	CCP1IE: C	CP1 Interru	pt Enable bit						
		es the CCP1							
	0 = Disable	es the CCP1	interrupt						
bit 1	TMR2IE: ⊤	MR2 to PR2	2 Match Inter	rupt Enable b	oit				
			to PR2 mat						
			2 to PR2 mat						
bit 0			ow Interrupt I						
			overflow int	•					
	0 = Disable	es the TMR	1 overflow in	terrupt					
	Legend:								
	R = Reada	able bit	W = V	Vritable bit	U = Unin	nplemented	bit, read as	'0'	
	-n = Value	at POR	'1' = E	Bit is set	'0' = Bit i	s cleared	x = Bit is ι	unknown	

2.2.2.5 PIR1 Register

This register contains the individual flag bits for the peripheral interrupts.

Note: Interrupt flag bits are set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the Global Interrupt Enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-5: PIR1: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 1 (ADDRESS 0Ch)

U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
_	ADIF	—	_	SSPIF	CCP1IF	TMR2IF	TMR1IF
bit 7							bit 0

bit 7	Unimplemented: Read as '0'
bit 6	ADIF: A/D Converter Interrupt Flag bit 1 = An A/D conversion completed 0 = The A/D conversion is not complete
bit 5-4	Unimplemented: Read as '0'
bit 3	SSPIF: Synchronous Serial Port (SSP) Interrupt Flag bit
	 1 = The SSP interrupt condition has occurred and must be cleared in software before returning from the Interrupt Service Routine. The conditions that will set this bit are a transmission/ reception has taken place. 0 = No SSP interrupt condition has occurred
bit 2	CCP1IF: CCP1 Interrupt Flag bit
	<u>Capture mode:</u> 1 = A TMR1 register capture occurred (must be cleared in software) 0 = No TMR1 register capture occurred <u>Compare mode:</u> 1 = A TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred PWM mode:
	Unused in this mode.
bit 1	TMR2IF: TMR2 to PR2 Match Interrupt Flag bit
	 1 = TMR2 to PR2 match occurred (must be cleared in software) 0 = No TMR2 to PR2 match occurred
bit 0	TMR1IF: TMR1 Overflow Interrupt Flag bit
	1 = TMR1 register overflowed (must be cleared in software)0 = TMR1 register did not overflow

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	l bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

2.2.2.6 PIE2 Register

The PIE2 register contains the individual enable bit for the EEPROM write operation interrupt.

REGISTER 2-6: PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2 (ADDRESS 8Dh)

	U-0	U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	
				EEIE				—	
	bit 7							bit 0	
bit 7-5	Unimplemented: Read as '0'								
bit 4	EEIE: EEPROM Write Operation Interrupt Enable bit								
	1 = Enable EE write interrupt 0 = Disable EE write interrupt								
bit 3-0	Unimplem	ented: Read	d as '0'						
	Legend:								
	R = Reada	ble bit	W = W	ritable bit	U = Unim	plemented	bit, read as '0	,	

2.2.2.7 PIR2 Register

The PIR2 register contains the flag bit for the EEPROM write operation interrupt.

-n = Value at POR

Note:	Interrupt flag bits are set when an interrupt condition occurs regardless of the state of
	its corresponding enable bit or the Global Interrupt Enable bit, GIE (INTCON<7>). User software should ensure the appropri-
	ate interrupt flag bits are clear prior to enabling an interrupt.

x = Bit is unknown

'0' = Bit is cleared

REGISTER 2-7: PIR2: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 2 (ADDRESS 0Dh)

'1' = Bit is set

U-0	U-0	U-0	R/W-0	U-0	U-0	U-0	U-0
	—	—	EEIF	—	—	—	
bit 7							bit 0

bit 7-5 Unimplemented: Read as '0'

bit 4 **EEIF**: EEPROM Write Operation Interrupt Enable bit

- 1 = Enable EE write interrupt
- 0 = Disable EE write interrupt

bit 3-0 Unimplemented: Read as '0'

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

2.2.2.8 PCON Register

bit 7-2 bit 1

bit 0

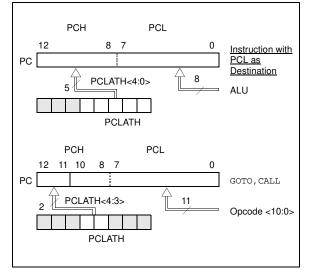
Note:	Interrupt flag bits get set when an interrupt condition occurs regardless of the state of
	its corresponding enable bit or the Global
	Interrupt Enable bit, GIE (INTCON<7>).
	User software should ensure the appropri-
	ate interrupt flag bits are clear prior to
	enabling an interrupt.

The Power Control (PCON) register contains a flag bit to allow differentiation between a Power-on Reset (POR), a Brown-out Reset, an external MCLR Reset and WDT Reset.

Note: BOR is unknown on Power-on Reset. It must then be set by the user and checked on subsequent Resets to see if BOR is clear, indicating a brown-out has occurred. The BOR status bit is a 'don't care' and is not necessarily predictable if the brownout circuit is disabled (by clearing the BOREN bit in the Configuration word).

REGISTER 2-8: PCON: POWER CONTROL REGISTER (ADDRESS 8Eh)

		-	•		- /		
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-x
_	_		—	_	_	POR	BOR
bit 7							bit (
'	nented: Read ver-on Reset						
	ower-on Rese wer-on Reset		nust be set in	software af	ter a Power	-on Reset o	ccurs)
BOR: Bro	wn-out Reset	Status bit					,


- 1 = No Brown-out Reset occurred
 - 0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

2.3 PCL and PCLATH

The Program Counter (PC) is 13 bits wide. The low byte comes from the PCL register, which is a readable and writable register. The upper bits (PC<12:8>) are not readable but are indirectly writable through the PCLATH register. On any Reset, the upper bits of the PC will be cleared. Figure 2-5 shows the two situations for the loading of the PC. The upper example in the figure shows how the PC is loaded on a write to PCL (PCLATH<4:0> \rightarrow PCH). The lower example in the figure shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3> \rightarrow PCH).

FIGURE 2-5: LOADING OF PC IN DIFFERENT SITUATIONS

2.3.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When doing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block). Refer to the application note *AN556, "Implementing a Table Read"* (DS00556).

2.3.2 STACK

The PIC16F818/819 family has an 8-level deep x 13-bit wide hardware stack. The stack space is not part of either program or data space and the Stack Pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

Note 1: There are no status bits to indicate stack overflow or stack underflow conditions.

2: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW and RETFIE instructions or the vectoring to an interrupt address.

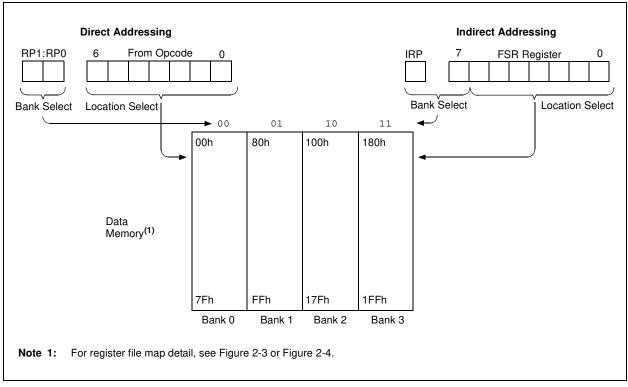
2.4 Indirect Addressing: INDF and FSR Registers

The INDF register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR register (FSR is a *pointer*). This is indirect addressing.

EXAMPLE 2-1: INDIRECT ADDRESSING

- · Register file 05 contains the value 10h
- Register file 06 contains the value 0Ah
- Load the value 05 into the FSR register
- A read of the INDF register will return the value of 10h
- Increment the value of the FSR register by one (FSR = 06)
- A read of the INDF register now will return the value of 0Ah

Reading INDF itself indirectly (FSR = 0) will produce 00h. Writing to the INDF register indirectly results in a no operation (although status bits may be affected).


A simple program to clear RAM locations, 20h-2Fh, using indirect addressing is shown in Example 2-2.

EXAMPLE 2-2: HOW TO CLEAR RAM USING INDIRECT ADDRESSING

	MOVLW	0x20	;initialize pointer
			, 1
	MOVWF	FSR	;to RAM
NEXT	CLRF	INDF	;clear INDF register
	INCF	FSR	;inc pointer
	BTFSS	FSR, 4	;all done?
	GOTO	NEXT	;NO, clear next
CONTINUE			
	:		;YES, continue

An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (Status<7>) as shown in Figure 2-6.

FIGURE 2-6: DIRECT/INDIRECT ADDRESSING

3.0 DATA EEPROM AND FLASH PROGRAM MEMORY

The data EEPROM and Flash program memory are readable and writable during normal operation (over the full VDD range). This memory is not directly mapped in the register file space. Instead, it is indirectly addressed through the Special Function Registers. There are six SFRs used to read and write this memory:

- EECON1
- EECON2
- EEDATA
- EEDATH
- EEADR
- EEADRH

This section focuses on reading and writing data EEPROM and Flash program memory during normal operation. Refer to the appropriate device programming specification document for serial programming information.

When interfacing the data memory block, EEDATA holds the 8-bit data for read/write and EEADR holds the address of the EEPROM location being accessed. These devices have 128 or 256 bytes of data EEPROM, with an address range from 00h to 0FFh. Addresses from 80h to FFh are unimplemented on the PIC16F818 device and will read 00h. When writing to unimplemented locations, the charge pump will be turned off.

When interfacing the program memory block, the EEDATA and EEDATH registers form a two-byte word that holds the 14-bit data for read/write and the EEADR and EEADRH registers form a two-byte word that holds the 13-bit address of the EEPROM location being accessed. These devices have 1K or 2K words of program Flash, with an address range from 0000h to 03FFh for the PIC16F818 and 0000h to 07FFh for the PIC16F819. Addresses above the range of the respective device will wraparound to the beginning of program memory.

The EEPROM data memory allows single byte read and write. The Flash program memory allows singleword reads and four-word block writes. Program memory writes must first start with a 32-word block erase, then write in 4-word blocks. A byte write in data EEPROM memory automatically erases the location and writes the new data (erase before write).

The write time is controlled by an on-chip timer. The write/erase voltages are generated by an on-chip charge pump, rated to operate over the voltage range of the device for byte or word operations.

When the device is code-protected, the CPU may continue to read and write the data EEPROM memory. Depending on the settings of the write-protect bits, the device may or may not be able to write certain blocks of the program memory; however, reads of the program memory are allowed. When code-protected, the device programmer can no longer access data or program memory; this does NOT inhibit internal reads or writes.

3.1 EEADR and EEADRH

The EEADRH:EEADR register pair can address up to a maximum of 256 bytes of data EEPROM or up to a maximum of 8K words of program EEPROM. When selecting a data address value, only the LSB of the address is written to the EEADR register. When selecting a program address value, the MSB of the address is written to the EEADRH register and the LSB is written to the EEADR register.

If the device contains less memory than the full address reach of the address register pair, the Most Significant bits of the registers are not implemented. For example, if the device has 128 bytes of data EEPROM, the Most Significant bit of EEADR is not implemented on access to data EEPROM.

3.2 EECON1 and EECON2 Registers

EECON1 is the control register for memory accesses.

Control bit, EEPGD, determines if the access will be a program or data memory access. When clear, as it is when Reset, any subsequent operations will operate on the data memory. When set, any subsequent operations will operate on the program memory.

Control bits, RD and WR, initiate read and write, respectively. These bits cannot be cleared, only set in software. They are cleared in hardware at completion of the read or write operation. The inability to clear the WR bit in software prevents the accidental, premature termination of a write operation.

The WREN bit, when set, will allow a write or erase operation. On power-up, the WREN bit is clear. The WRERR bit is set when a write (or erase) operation is interrupted by a $\overline{\text{MCLR}}$ or a WDT Time-out Reset during normal operation. In these situations, following Reset, the user can check the WRERR bit and rewrite the location. The data and address will be unchanged in the EEDATA and EEADR registers.

Interrupt flag bit, EEIF in the PIR2 register, is set when the write is complete. It must be cleared in software.

EECON2 is not a physical register. Reading EECON2 will read all '0's. The EECON2 register is used exclusively in the EEPROM write sequence.