imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

PIC16F872 Data Sheet

28-Pin, 8-Bit CMOS Flash Microcontroller with 10-Bit A/D

© 2006 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Linear Active Thermistor, Mindi, MiWi, MPASM, MPLIB, MPLINK, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, rfPICDEM, Select Mode, Smart Serial, SmartTel, Total Endurance, UNI/O, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2006, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

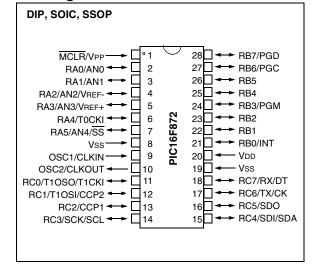
Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona, Gresham, Oregon and Mountain View, California. The Company's quality system processes and procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

PIC16F872

28-Pin, 8-Bit CMOS FLASH Microcontroller with 10-bit A/D

High Performance RISC CPU:

- · Only 35 single word instructions to learn
- All single cycle instructions except for program branches, which are two-cycle
- Operating speed: DC 20 MHz clock input DC - 200 ns instruction cycle
- 2K x 14 words of FLASH Program Memory
- 128 bytes of Data Memory (RAM)
- 64 bytes of EEPROM Data Memory
- Pinout compatible to the PIC16C72A
- · Interrupt capability (up to 10 sources)
- Eight level deep hardware stack
- Direct, Indirect and Relative Addressing modes


Peripheral Features:

- High Sink/Source Current: 25 mA
- Timer0: 8-bit timer/counter with 8-bit prescaler
- Timer1: 16-bit timer/counter with prescaler, can be incremented during SLEEP via external crystal/clock
- Timer2: 8-bit timer/counter with 8-bit period register, prescaler and postscaler
- One Capture, Compare, PWM module
 - Capture is 16-bit, max. resolution is 12.5 ns
 - Compare is 16-bit, max. resolution is 200 ns
 - PWM max. resolution is 10-bit
- 10-bit, 5-channel Analog-to-Digital converter (A/D)
- Synchronous Serial Port (SSP) with SPI[™] (Master mode) and I²C[™] (Master/Slave)
- Brown-out detection circuitry for Brown-out Reset (BOR)

CMOS Technology:

- Low power, high speed CMOS FLASH/EEPROM technology
- Wide operating voltage range: 2.0V to 5.5V
- Fully static design
- Commercial, Industrial and Extended temperature ranges
- Low power consumption:
 - < 2 mA typical @ 5V, 4 MHz
 - 20 μA typical @ 3V, 32 kHz
 - < 1 µA typical standby current

Pin Diagram

Special Microcontroller Features:

- Power-on Reset (POR), Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Watchdog Timer (WDT) with its own on-chip RC oscillator for reliable operation
- Programmable code protection
- Power saving SLEEP mode
- · Selectable oscillator options
- In-Circuit Serial Programming[™] (ICSP[™]) via two pins
- Single 5V In-Circuit Serial Programming capability
- · In-Circuit Debugging via two pins
- Processor read/write access to program memory

Table of Contents

10		~
1.0	Device Overview	3
2.0	Memory Organization	
3.0	Data EEPROM and FLASH Program Memory	23
4.0	I/O Ports	
5.0	Timer0 Module	35
6.0	Timer1 Module	39
7.0	Timer2 Module	
8.0	Capture/Compare/PWM Module	45
9.0	Master Synchronous Serial Port (MSSP) Module	
10.0	Analog-to-Digital Converter (A/D) Module	79
11.0	Special Features of the CPU	87
12.0	Instruction Set Summary	
13.0	Development Support	111
14.0	Electrical Characteristics	
15.0	DC and AC Characteristics Graphs and Tables	139
16.0	Packaging Information	151
Apper	ndix A: Revision History	155
Apper	ndix B: Conversion Considerations	155
Index		157
On-Li	ne Support	163
	er Response	
PIC16	F872 Product Identification System	165

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@mail.microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)
- The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.

1.0 DEVICE OVERVIEW

This document contains device specific information about the PIC16F872 microcontroller. Additional information may be found in the PICmicro[™] Mid-Range Reference Manual (DS33023), which may be obtained from your local Microchip Sales Representative or downloaded from the Microchip website. The Reference Manual should be considered a complementary document to this data sheet, and is highly recommended reading for a better understanding of the device architecture and operation of the peripheral modules.

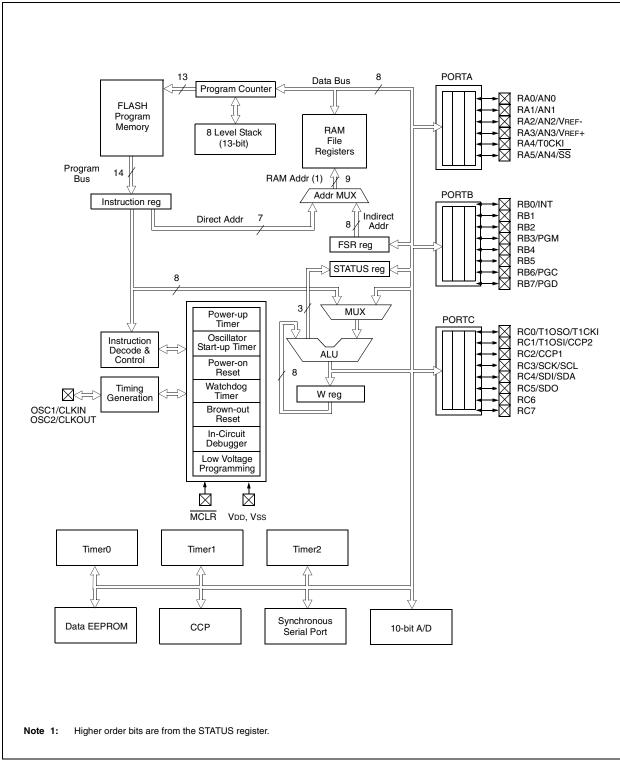

The block diagram of the PIC16F872 architecture is shown in Figure 1-1. A pinout description is provided in Table 1-2.

TABLE 1-1:	KEY FEATURES OF THE PIC16F872

Operating Frequency	DC - 20 MHz
RESETS (and Delays)	POR, BOR (PWRT, OST)
FLASH Program Memory (14-bit words)	2К
Data Memory (bytes)	128
EEPROM Data Memory (bytes)	64
Interrupts	10
I/O Ports	Ports A, B, C
Timers	3
Capture/Compare/PWM module	1
Serial Communications	MSSP
10-bit Analog-to-Digital Module	5 input channels
Instruction Set	35 Instructions
Packaging	28-lead PDIP
	28-lead SOIC
	28-lead SSOP

PIC16F872

TABLE 1-2:	PIC16F872 PINOUT DESCRIPTION
------------	------------------------------

Pin Name	Pin#	I/O/P Type	Buffer Type	Description				
OSC1/CLKI OSC1 CLKI	9	I	ST/CMOS	Oscillator crystal or external clock input. Oscillator crystal input or external clock source input. ST buffer when configured in RC mode. Otherwise CMOS. External clock source input. Always associated with pin function OSC1 (see OSC2/CLKO pin).				
OSC2/CLKO OSC2 CLKO	10	0	_	Oscillator crystal or clock output. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. In RC mode, OSC2 pin outputs CLKO, which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.				
MCLR/Vpp MCLR Vpp	1	I/P	ST	Master Clear (input) or programming voltage (output). Master Clear (Reset) input. This pin is an active low RESET to the device. Programming voltage input.				
RA0/AN0 RA0 AN0	2	I/O	TTL	PORTA is a bi-directional I/O port. Digital I/O. Analog input 0.				
RA1/AN1 RA1 AN1	3	I/O	TTL	Analog input 0. Digital I/O. Analog input 1.				
RA2/AN2/VREF- RA2 AN2 VREF-	4	I/O	TTL	Digital I/O. Analog input 2. Negative analog reference voltage.				
RA3/AN3/VREF+ RA3 AN3 VREF+	5	I/O	TTL	Digital I/O. Analog input 3. Positive analog reference voltage.				
RA4/T0CKI RA4 T0CKI	6	I/O	ST	Digital I/O; open drain when configured as output. Timer0 clock input.				
RA5/SS/AN4 RA5 SS AN4	7	I/O	TTL	Digital I/O. Slave Select for the Synchronous Serial Port. Analog input 4.				
Legend: I = input — = Not	used	O = outpu TTL = TT		I/O = input/output P = power ST = Schmitt Trigger input				

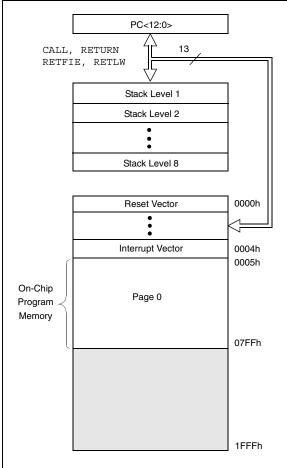
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.
2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

Pin Name	Pin#	I/O/P Type	Buffer Type	Description
				PORTB is a bi-directional I/O port. PORTB can be software
				programmed for internal weak pull-up on all inputs.
RB0/INT	21	I/O	TTL/ST ⁽¹⁾	
RB0				Digital I/O.
INT				External interrupt pin.
RB1	22	I/O	TTL	Digital I/O.
RB2	23	I/O	TTL	Digital I/O.
RB3/PGM	24	I/O	TTL	
RB3				Digital I/O.
PGM				Low voltage ICSP programming enable pin.
RB4	25	I/O	TTL	Digital I/O.
RB5	26	I/O	TTL	Digital I/O.
RB6/PGC	27	I/O	TTL/ST ⁽²⁾	
RB6				Digital I/O.
PGC				In-Circuit Debugger and ICSP programming clock.
RB7/PGD	28	I/O	TTL/ST ⁽²⁾	
RB7				Digital I/O.
PGD				In-Circuit Debugger and ICSP programming data.
				PORTC is a bi-directional I/O port.
RC0/T1OSO/T1CKI	11	I/O	ST	
RC0 T1OSO				Digital I/O. Timer1 oscillator output.
T1CKI				Timer1 clock input.
RC1/T1OSI	12	I/O	ST	
RC1	12	1/0	01	Digital I/O.
T1OSI				Timer1 oscillator input.
RC2/CCP1	13	I/O	ST	
RC2				Digital I/O.
CCP1				Capture1 input/Compare1 output/PWM1 output.
RC3/SCK/SCL	14	I/O	ST	
RC3				Digital I/O.
SCK				Synchronous serial clock input/output for SPI mode.
SCL	. –			Synchronous serial clock input/output for I ² C mode.
RC4/SDI/SDA	15	I/O	ST	
RC4 SDI				Digital I/O. SPI Data In pin (SPI mode).
SDA				SPI Data I/O pin (I ² C mode).
RC5/SDO	16	I/O	ST	
RC5	10	"0	01	Digital I/O.
SDO				SPI Data Out pin (SPI mode).
RC6	17	I/O	ST	Digital I/O.
RC7	18	I/O	ST	Digital I/O.
Vss	8, 19	P	_	Ground reference for logic and I/O pins.
VDD	20	P	<u> </u>	Positive supply for logic and I/O pins.
N 1 / 1 /	20		. —	

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

2.0 MEMORY ORGANIZATION

There are three memory blocks in the PIC16F872. The Program Memory and Data Memory have separate buses so that concurrent access can occur. Data memory is covered in this section; the EEPROM data memory and FLASH program memory blocks are detailed in Section 3.0.


Additional information on device memory may be found in the PICmicro[™] Mid-Range Reference Manual (DS33023).

2.1 Program Memory Organization

The PIC16F872 has a 13-bit program counter capable of addressing an 8K word x 14 bit program memory space. The PIC16F872 device actually has 2K words of FLASH program memory. Accessing a location above the physically implemented address will cause a wraparound.

The RESET vector is at 0000h and the interrupt vector is at 0004h.

FIGURE 2-1: PIC16F872 PROGRAM MEMORY MAP AND STACK

2.2 Data Memory Organization

The data memory is partitioned into multiple banks which contain the General Purpose Registers and the Special Function Registers. Bits RP1 (STATUS<6>) and RP0 (STATUS<5>) are the bank select bits.

RP1:RP0	Bank
00	0
01	1
10	2
11	3

Each bank extends up to 7Fh (128 bytes). The lower locations of each bank are reserved for the Special Function Registers. Above the Special Function Registers are General Purpose Registers, implemented as static RAM. All implemented banks contain Special Function Registers. Some frequently used Special Function Registers from one bank may be mirrored in another bank for code reduction and quicker access.

Note:	EEPROM Data Memory description can be							
	found in Section 4.0 of this data sheet.							

2.2.1 GENERAL PURPOSE REGISTER FILE

The register file can be accessed either directly, or indirectly through the File Select Register (FSR).

FIGURE 2-2: PIC16F872 REGISTER FILE MAP

	File Address		File Address		File Address	Ad	=ile dre
Indirect addr.(*)	00h	Indirect addr.(*)	80h	Indirect addr.(*)	100h	Indirect addr.(*)	180
TMR0	01h	OPTION_REG	81h	TMR0	101h		181
PCL	02h	PCL	82h	PCL	102h		182
STATUS	03h	STATUS	83h	STATUS	103h		183
FSR	04h	FSR	84h	FSR	104h		184
PORTA	05h	TRISA	85h		105h		185
PORTB	06h	TRISB	86h	PORTB	106h		186
PORTC	07h	TRISC	87h		107h	-	187
	08h		88h		108h		188
	09h		89h		109h		189
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH ⁻	18/
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18E
PIR1	0Ch	PIE1	8Ch	EEDATA	10Ch	EECON1	180
PIR2	0Dh	PIE2	8Dh	EEADR	10Dh	EECON2	18E
TMR1L	0Eh	PCON	8Eh	EEDATH	10Eh		18E
TMR1H	0Fh		8Fh	EEADRH	10Fh	Reserved ⁽¹⁾	18F
T1CON	10h		90h		110h	-	190
TMR2	11h	SSPCON2	91h				
T2CON	12h	PR2	92h				
SSPBUF	13h	SSPADD	93h				
SSPCON	14h	SSPSTAT	94h				
CCPR1L	15h		95h				
CCPR1H	16h		96h				
CCP1CON	17h		97h				
	18h		98h				
	19h		99h				
	1Ah		9Ah				
	1Bh		9Bh				
	1Ch		9Ch				
	1Dh		9Dh				
ADRESH	1Eh	ADRESL	9Eh				
ADCON0	1Fh	ADCON1	9Fh		120h	4	1 A (
	20h	General Purpose	A0h	accesses	12011	accesses	
General		Register		20h-7Fh		A0h - BFh	
Purpose		32 Bytes	BFh				1BF
Register			C0h			1	100
96 Bytes					16Fh		1EF
-			EFh F0h	20000000	170h		
		accesses 70h-7Fh		accesses 70h-7Fh		accesses 70h-7Fh	
_	7Fh		FFh		17Fh		1FF
Bank 0		Bank 1		Bank 2		Bank 3	
Unimplem	ented data	memory locations	s, read as	'0'.			
* Not a phys							

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral modules for controlling the desired operation of the device. These registers are implemented as static RAM. A list of these registers is given in Table 2-1. The Special Function Registers can be classified into two sets: core (CPU) and peripheral. Those registers associated with the core functions are described in detail in this section. Those related to the operation of the peripheral features are described in detail in the peripheral feature section.

TABLE 2-1:	SPECIAL FUNCTION REGISTER SUMMARY
------------	-----------------------------------

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Details on page:
Bank 0											
00h ⁽²⁾	INDF		g this locations is this location is the second s		tents of FSR	to address	data memo	ry		0000 0000	21, 93
01h	TMR0	Timer0 M	odule Regist	ter						xxxx xxxx	35, 93
02h ⁽²⁾	PCL	Program (Counter (PC) Least Sign	ificant Byte					0000 0000	20, 93
03h ⁽²⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	12, 93
04h ⁽²⁾	FSR	Indirect D	ata Memory	Address Po	inter		•			xxxx xxxx	21, 93
05h	PORTA	—	_	PORTA Da	ta Latch whe	en written: P	ORTA pins	when read		0x 0000	29, 93
06h	PORTB	PORTB D	ata Latch w	hen written:	PORTB pins	when read				xxxx xxxx	31, 93
07h	PORTC	PORTC D	ata Latch w	hen written:	PORTC pin	s when read				XXXX XXXX	33, 93
08h	—	Unimplem	nented							—	—
09h	—	Unimplem	nented							—	—
0Ah ^(1,2)	PCLATH	—	—	_	Write Buffe	er for the up	per 5 bits of	the Program	m Counter	0 0000	20, 93
0Bh ⁽²⁾	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	14, 93
0Ch	PIR1	(3)	ADIF	(3)	(3)	SSPIF	CCP1IF	TMR2IF	TMR1IF	r0rr 0000	16, 93
0Dh	PIR2	_	(3)	_	EEIF	BCLIF		_	(3)	-r-0 0r	18, 93
0Eh	TMR1L	Holding R	Holding Register for the Least Significant Byte of the 16-bit TMR1 Register								40, 94
0Fh	TMR1H	Holding R	Holding Register for the Most Significant Byte of the 16-bit TMR1 Register								40, 94
10h	T1CON	—	—	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR1ON	00 0000	39, 94
11h	TMR2	Timer2 M	odule Regist	ter						0000 0000	43, 94
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	43, 94
13h	SSPBUF	Synchron	ous Serial P	ort Receive	Buffer/Trans	mit Register				XXXX XXXX	55, 94
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	53, 94
15h	CCPR1L			/M Register	, ,					xxxx xxxx	45, 94
16h	CCPR1H	Capture/C	Compare/PW	/M Register	I (MSB)					xxxx xxxx	45, 94
17h	CCP1CON	—	—	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	45, 94
18h	—	Unimplem								—	—
19h	—	Unimplem								—	—
1Ah	—	Unimplem								—	—
1Bh	—	Unimplem								—	—
1Ch	—	Unimplem								—	
1Dh	—	Unimplem								—	—
1Eh	ADRESH		It Register H				1			XXXX XXXX	84, 94
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/ DONE	-	ADON	0000 00-0	79, 94

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

2: These registers can be addressed from any bank.

3: These bits are reserved; always maintain these bits clear.

TABLE 2-1:	SPECIAL FUNCTION REGISTER SUMMARY	(CONTINUED)
-------------------	-----------------------------------	-------------

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Details on page:
Bank 1											
80h ⁽²⁾	INDF		ng this location vsical registe		tents of FSR	to address	data memo	ry		0000 0000	21, 93
81h	OPTION_REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	13, 94
82h ⁽²⁾	PCL	Program	Program Counter (PC) Least Significant Byte							0000 0000	20, 93
83h ⁽²⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	12, 93
84h ⁽²⁾	FSR	Indirect da	ata memory	address poi	nter	•	•			xxxx xxxx	21, 93
85h	TRISA	—	— PORTA Data Direction Register							11 1111	29, 94
86h	TRISB	PORTB D	ata Direction	n Register						1111 1111	31, 94
87h	TRISC	PORTC D	Data Direction	n Register						1111 1111	33, 94
88h	—	Unimplem	nented							—	
89h	—	Unimplemented						—			
8Ah ^(1,2)	PCLATH	—	— — Write Buffer for the upper 5 bits of the Program Counter				0 0000	20, 93			
8Bh ⁽²⁾	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	14, 93
8Ch	PIE1	(3)	ADIE	(3)	(3)	SSPIE	CCP1IE	TMR2IE	TMR1IE	r0rr 0000	15, 94
8Dh	PIE2	—	(3)		EEIE	BCLIE	_		(3)	-r-0 0r	17, 94
8Eh	PCON	—	—	_	—	—	_	POR	BOR	dd	19, 94
8Fh	—	Unimplem	nented							—	_
90h	—	Unimplem	nented							—	_
91h	SSPCON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000 0000	54, 94
92h	PR2		eriod Registe							1111 1111	43, 94
93h	SSPADD	Synchron	ous Serial P	ort (I ² C moo	le) Address	Register				0000 0000	58, 94
94h	SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	52, 94
95h	—	Unimplem	nented							—	_
96h	—	Unimplem	nented							—	_
97h	—	Unimplem	nented							—	—
95h	—	Unimplem	nented								
95h	—	Unimplem								—	—
9Ah	—	Unimplem								—	—
9Bh	—	Unimplem								-	
9Ch	—	Unimplem									
9Dh		Unimplem								—	
9Eh	ADRESL		A/D Result Register Low Byte							XXXX XXXX	84, 94
9Fh	ADCON1	ADFM	—	—	—	PCFG3	PCFG2	PCFG1	PCFG0	0 0000	80, 94

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

2: These registers can be addressed from any bank.

3: These bits are reserved; always maintain these bits clear.

TABLE 2-1:	SPECIAL FUNCTION REGISTER SUMMARY	(CONTINUED))
-------------------	-----------------------------------	-------------	---

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Details on page:
Bank 2											
100h ⁽²⁾	INDF		g this locations is the second s		tents of FSR	to address	data memo	ry		0000 0000	21, 93
101h	TMR0	Timer0 M	mer0 Module Register							xxxx xxxx	35, 93
102h ⁽²⁾	PCL	Program (Counter (PC) Least Sigr	nificant Byte					0000 0000	20, 93
103h ⁽²⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	12, 93
104h ⁽²⁾	FSR	Indirect D	ata Memory	Address Po	ointer					xxxx xxxx	21, 93
105h	—	Unimplem	nented							_	
106h	PORTB PORTB Data Latch when written: PORTB pins when read							xxxx xxxx	31, 93		
107h	—	— Unimplemented							—	—	
108h	—	Unimplem	nented							—	_
109h	—	Unimplem	nented							_	—
10Ah ^(1,2)	PCLATH		_	_	Write Buffe	r for the upp	er 5 bits of	the Program	n Counter	0 0000	20, 93
10Bh ⁽²⁾	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	14, 93
10Ch	EEDATA	EEPROM Data Register Low Byte								xxxx xxxx	23, 94
10Dh	EEADR	EEPROM Address Register Low Byte							XXXX XXXX	23, 94	
10Eh	EEDATH	EEPROM Data Register High Byte							xxxx xxxx	23, 94	
10Fh	EEADRH	— — EEPROM Address Register High Byte							xxxx xxxx	23, 94	
Bank 3											
180h ⁽²⁾	INDF		g this locations is this location is the second s		tents of FSR	to address	data memo	ry		0000 0000	21, 93
181h	OPTION_REG	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	13, 94
182h ⁽²⁾	PCL	Program (Counter (PC) Least Sig	nificant Byte	9	•		•	0000 0000	20, 93
183h ⁽²⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	12, 93
184h ⁽²⁾	FSR	Indirect D	ata Memory	Address Po	ointer					xxxx xxxx	21, 93
185h	—	Unimplem	nented							_	
186h	TRISB	PORTB D	ata Directio	n Register						1111 1111	31, 94
187h	—	Unimplem	nented							—	—
188h	—	Unimplem	nented							—	—
189h	—	— Unimplemented							—	—	
18Ah ^(1,2)	PCLATH	_	_	_	Write Buff	er for the up	per 5 bits of	the Prograr	m Counter	0 0000	20, 93
18Bh ⁽²⁾	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	14, 93
18Ch	EECON1	EEPGD	—	—	—	WRERR	WREN	WR	RD	x x000	24, 94
18Dh	EECON2	EEPROM	Control Re	gister2 (not a	a physical re	gister)					23, 94
18Eh	Reserved; maintain clear								0000 0000	—	
18Fh		Reserved	; maintain cl	ear						0000 0000	_

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

2: These registers can be addressed from any bank.

3: These bits are reserved; always maintain these bits clear.

2.2.2.1 STATUS Register

The STATUS register contains the arithmetic status of the ALU, the RESET status and the bank select bits for data memory.

The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable, therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as $000u \ u1uu$ (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect the Z, C or DC bits from the STATUS register. For other instructions not affecting any status bits, see the "Instruction Set Summary."

Note:	The C and DC bits operate as a borrow							
	and digit borrow bit, respectively, in sub-							
	traction. See the SUBLW and SUBWF							
	instructions for examples.							

REGISTER 2-1: STATUS REGISTER (ADDRESS: 03h, 83h, 103h, 183h)

	R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x				
	IRP	RP1	RP0	TO	PD	Z	DC	С				
	bit 7							bit 0				
bit 7	IRP: Register Bank Select bit (used for indirect addressing)											
	1 = Bank 2, 3 (100h - 1FFh) 0 = Bank 0, 1 (00h - FFh)											
bit 6:5	RP1:RP0: Register Bank Select bits (used for direct addressing)											
		3 (180h - 1F	,									
		2 (100h - 17 1 (80h - FFI	,									
		0 (00h - 7Fl	,									
	Each bank	is 128 byte	S									
bit 4	TO: Time-o	TO: Time-out bit										
	 1 = After power-up, CLRWDT instruction, or SLEEP instruction 0 = A WDT time-out occurred 											
bit 3	PD: Power	r-down bit										
		ower-up or t ecution of the			on							
bit 2	Z: Zero bit											
		sult of an ari sult of an ari		•	on is zero on is not zero	0						
bit 1	DC: Digit o	arry/borrow	bit (ADDWF, 2	ADDLW, SUE	BLW, SUBWF i	instructions)						
	(for borrow	the polarity	is reversed))								
					e result occu	rred						
1.11.0		ry-out from t										
bit 0	-	-			JBWF instru	-						
					the result or of the result of							
	Note:	Note: For borrow the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order bit of the source register.										
	Legend:											
	R = Reada	able bit	W = W	ritable bit	U = Unin	nplemented	bit, read as '	0'				

'1' = Bit is set

- n = Value at POR

x = Bit is unknown

'0' = Bit is cleared

2.2.2.2 OPTION_REG Register

The OPTION_REG Register is a readable and writable register, which contains various control bits to configure the TMR0 prescaler/WDT postscaler (single assignable register known also as the prescaler), the External INT Interrupt, TMR0 and the weak pull-ups on PORTB.

Note: To achieve a 1:1 prescaler assignment for the TMR0 register, assign the prescaler to the Watchdog Timer.

REGISTER 2-2: OPTION_REG REGISTER (ADDRESS 81h, 181h)

	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0			
	bit 7							bit 0			
bit 7	1 = PORT	DRTB Pull-up B pull-ups ar	e disabled	. in dividuo 1		lun n					
bit 6		B pull-ups ar Interrupt Edg		y individual	port latch va	liues					
	1 = Interru	pt on rising e	edge of RB0								
bit 5	TOCS: TM	R0 Clock So	urce Select	bit							
		1 = Transition on RA4/T0CKI pin 0 = Internal instruction cycle clock (CLKOUT)									
bit 4	TOSE : TMR0 Source Edge Select bit 1 = Increment on high-to-low transition on RA4/T0CKI pin 0 = Increment on low-to-high transition on RA4/T0CKI pin										
bit 3	PSA: Prescaler Assignment bit										
		aler is assign aler is assign			Э						
bit 2-0	PS2:PS0:	Prescaler Ra	ate Select bi	ts							
	Bit Value	TMR0 Rate	WDT Rate								
	000 001 010 011 100 101 110 111	1:2 1:4 1:8 1:16 1:32 1:64 1:128 1:256	1 : 1 1 : 2 1 : 4 1 : 8 1 : 16 1 : 32 1 : 64 1 : 128								
	Legend:										
	R = Read	able bit	W = W	ritable bit	U = Unin	nplemented	bit, read as	0'			
- n = Value at POR $'1'$ = Bit is set $'0'$ = Bit is cleared x = Bit is u							nknown				

ation of the device

2.2.2.3 INTCON Register

The INTCON Register is a readable and writable register, which contains various enable and flag bits for the TMR0 register overflow, RB Port change and External RB0/INT pin interrupts.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-3: INTCON REGISTER (ADDRESS: 0Bh, 8Bh, 10Bh, 18Bh)

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x		
	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF		
	bit 7							bit 0		
bit 7		I Interrupt E								
		s all unmasl es all interru	ked interrupt pts	S						
bit 6	PEIE: Perip	oheral Interr	upt Enable b	bit						
			ked peripher eral interrup	•						
bit 5	TMR0IE: T	MR0 Overflo	ow Interrupt	Enable bit						
	 1 = Enables the TMR0 interrupt 0 = Disables the TMR0 interrupt 									
bit 4	INTE: RB0/INT External Interrupt Enable bit									
	 1 = Enables the RB0/INT external interrupt 0 = Disables the RB0/INT external interrupt 									
bit 3	RBIE: RB R	Port Change	e Interrupt Er	nable bit						
			rt change in ort change in							
bit 2	TMR0IF: T	MR0 Overflo	ow Interrupt	Flag bit						
			overflowed not overflow		ared in soft	ware)				
bit 1	INTF: RB0/	INT Externa	al Interrupt F	lag bit						
			nal interrupt nal interrupt	•		red in softwa	are)			
bit 0	RBIF: RB F	Port Change	Interrupt Fl	ag bit						
	the bit.		RB7:RB4 pii DRTB will en i software).							
	0 = None o	f the RB7:R	B4 pins hav	e changed s	tate					
	Legend:									
	R = Reada	ble bit	W = W	ritable bit	U = Unim	plemented	bit, read as	'0'		
	- n = Value	at POR	'1' = B	t is set	'0' = Bit is	s cleared	x = Bit is u	nknown		

PIE1 Register 2.2.2.4

The PIE1 register contains the individual enable bits for the peripheral interrupts.

Note:	Bit PEIE (INTCON<6>) must be set to
	enable any peripheral interrupt.

PIE1 REGISTER (ADDRESS: 8Ch) **REGISTER 2-4:**

		•									
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	reserved	ADIE	reserved	reserved	SSPIE	CCP1IE	TMR2IE	TMR1IE			
	bit 7							bit 0			
bit 7	Reserved:	Reserved: Always maintain these bits clear									
bit 6	ADIE: A/D (Converter li	nterrupt Ena	ble bit							
	1 = Enables the A/D converter interrupt										
	0 = Disables the A/D converter interrupt										
bit 5-4	Reserved: Always maintain these bits clear										
bit 3	-	SSPIE: Synchronous Serial Port Interrupt Enable bit									
	1 = Enables										
	0 = Disable	0 = Disables the SSP interrupt									
bit 2	CCP1IE: CO	CP1 Interru	pt Enable bi	t							
	1 = Enables										
	0 = Disable	s the CCP1	interrupt								
bit 1	TMR2IE: T	MR2 to PR2	2 Match Inte	rrupt Enable	bit						
			to PR2 mat								
	0 = Disable	s the TMR2	to PR2 mat	tch interrupt							
bit 0	TMR1IE: TN	MR1 Overfl	ow Interrupt	Enable bit							
	1 = Enables	s the TMR1	overflow int	errupt							
	0 = Disable	s the TMR1	overflow in	terrupt							
	Legend:										
	R = Readab	ole bit	W = W	ritable bit	U = Unin	nplemented	bit, read as	0'			
	- n = Value	at POR	'1' = B	it is set	'0' = Bit i	s cleared	x = Bit is u	nknown			

PIC16F872

2.2.2.5 PIR1 Register

The PIR1 register contains the individual flag bits for the peripheral interrupts.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt bits are clear prior to enabling an interrupt.

REGISTER 2-5: PIR1 REGISTER (ADDRESS: 0Ch)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
reserved	ADIF	reserved	reserved	SSPIF	CCP1IF	TMR2IF	TMR1IF
bit 7							bit 0

- bit 7 Reserved: Always maintain these bits clear
- bit 6 ADIF: A/D Converter Interrupt Flag bit
 - 1 = An A/D conversion completed
 - 0 = The A/D conversion is not complete
- bit 5-4 Reserved: Always maintain these bits clear
- bit 3 SSPIF: Synchronous Serial Port (SSP) Interrupt Flag
 - 1 = The SSP interrupt condition has occurred, and must be cleared in software before returning from the Interrupt Service Routine. The conditions that will set this bit are:
 - SPI
 - A transmission/reception has taken place
 - I²C Slave
 - A transmission/reception has taken place
 - I²C Master
 - A transmission/reception has taken place
 - The initiated START condition was completed by the SSP module
 - The initiated STOP condition was completed by the SSP module
 - The initiated Restart condition was completed by the SSP module
 - The initiated Acknowledge condition was completed by the SSP module
 - A START condition occurred while the SSP module was idle (multi-master system)
 - A STOP condition occurred while the SSP module was idle (multi-master system)
 - 0 = No SSP interrupt condition has occurred
- bit 2 CCP1IF: CCP1 Interrupt Flag bit

Capture mode:

- 1 = A TMR1 register capture occurred (must be cleared in software)
- 0 = No TMR1 register capture occurred

Compare mode:

- 1 = A TMR1 register compare match occurred (must be cleared in software)
- 0 = No TMR1 register compare match occurred
- PWM mode: Unused in this mode
- bit 1 TMR2IF: TMR2 to PR2 Match Interrupt Flag bit
 - 1 = TMR2 to PR2 match occurred (must be cleared in software)
 - 0 = No TMR2 to PR2 match occurred

bit 0 TMR1IF: TMR1 Overflow Interrupt Flag bit

- 1 = TMR1 register overflowed (must be cleared in software)
- 0 = TMR1 register did not overflow

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

x = Bit is unknown

2.2.2.6 PIE2 Register

The PIE2 register contains the individual enable bits for the CCP2 peripheral interrupt, the SSP bus collision interrupt, and the EEPROM write operation interrupt.

- n = Value at POR

REGISTER 2-6:	PIE2 REGISTER (ADDRESS: 8Dh)							
	U-0	R/W-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0
		reserved		EEIE	BCLIE	—	—	reserved
	bit 7							bit 0
bit 7	Unimplem	ented: Read	as '0'					
bit 6	Reserved:	Always mai	ntain this bit	clear				
bit 5	Unimplem	ented: Read	d as '0'					
bit 4	EEIE: EEP	ROM Write	Operation In	terrupt Enal	ole bit			
	 1 = Enable EEPROM write interrupt 0 = Disable EEPROM write interrupt 							
bit 3	BCLIE: Bus Collision Interrupt Enable bit							
	 1 = Enable bus collision interrupt 0 = Disable bus collision interrupt 							
bit 2-1	Unimplemented: Read as '0'							
bit 0	Reserved: Always maintain this bit clear							
	Legend:							
	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'						0'	

'1' = Bit is set

'0' = Bit is cleared

PIC16F872

2.2.2.7 PIR2 Register

bit 3

The PIR2 register contains the flag bits for the CCP2 interrupt, the SSP bus collision interrupt and the EEPROM write operation interrupt.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-7: PIR2 REGISTER (ADDRESS: 0Dh)

U-0	R/W-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0
—	reserved	_	EEIF	BCLIF	—	-	reserved
bit 7							bit 0

- bit 7 Unimplemented: Read as '0'
- bit 6 Reserved: Always maintain this bit clear
- bit 5 Unimplemented: Read as '0'
- bit 4 **EEIF**: EEPROM Write Operation Interrupt Flag bit
 - 1 = The write operation completed (must be cleared in software)
 - 0 = The write operation is not complete or has not been started
 - **BCLIF**: Bus Collision Interrupt Flag bit 1 = A bus collision has occurred in the SSP, when configured for I²C Master mode 0 = No bus collision has occurred
- bit 2-1 Unimplemented: Read as '0'
- bit 0 **Reserved**: Always maintain this bit clear

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

2.2.2.8 PCON Register

bit 1

The Power Control (PCON) Register contains flag bits to allow differentiation between a Power-on Reset (POR), a Brown-out Reset (BOR), a Watchdog Reset (WDT) and an external MCLR Reset.

Note:	BOR is unknown on POR. It must be set by
	the user and checked on subsequent
	RESETS to see if BOR is clear, indicating
	a brown-out has occurred. The BOR status
	bit is a don't care and is not predictable if
	the brown-out circuit is disabled (by clear-
	ing the BODEN bit in the Configuration
	Word).

REGISTER 2-8: PCON REGISTER (ADDRESS: 8Eh)

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-1
—	_	_	—	—	_	POR	BOR
bit 7							bit 0

bit 7-2 Unimplemented: Read as '0'

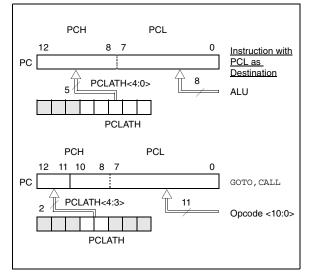
POR: Power-on Reset Status bit

1 = No Power-on Reset occurred

0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)

bit 0 BOR: Brown-out Reset Status bit

1 = No Brown-out Reset occurred


0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

2.3 PCL and PCLATH

The program counter (PC) is 13-bits wide. The low byte comes from the PCL register, which is a readable and writable register. The upper bits (PC<12:8>) are not readable, but are indirectly writable through the PCLATH register. On any RESET, the upper bits of the PC will be cleared. Figure 2-3 shows the two situations for the loading of the PC. The upper example in the figure shows how the PC is loaded on a write to PCL (PCLATH<4:0> \rightarrow PCH). The lower example in the figure shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3> \rightarrow PCH).

FIGURE 2-3: LOADING OF PC IN DIFFERENT SITUATIONS

2.3.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When doing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256 byte block). Refer to the Application Note, *"Implementing a Table Read"* (AN556).

2.3.2 STACK

The PIC16FXXX family has an 8-level deep x 13-bit wide hardware stack. The stack space is not part of either program or data space and the stack pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

Note 1: There are no status bits to indicate stack overflow or stack underflow conditions.

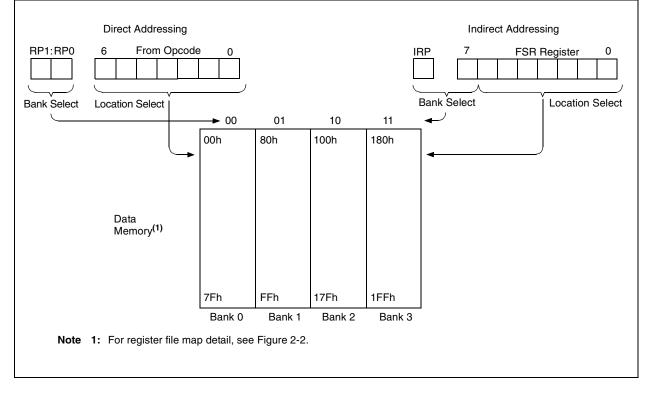
2: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW and RETFIE instructions, or the vectoring to an interrupt address.

2.4 Program Memory Paging

All PIC16FXXX devices are capable of addressing a continuous 8K word block of program memory. The CALL and GOTO instructions provide only 11 bits of address to allow branching within any 2K program memory page. When doing a CALL or GOTO instruction, the upper 2 bits of the address are provided by PCLATH<4:3>. Since the PIC16F872 has only 2K words of program memory or one page, additional code is not required to ensure that the correct page is selected before a CALL or GOTO instruction is executed. The PCLATH<4:3> bits should always be maintained as zeros. If a return from a CALL instruction (or interrupt) is executed, the entire 13-bit PC is popped off the stack. Therefore, manipulation of the PCLATH<4:3> bits are not required for the return instructions (which POPs the address from the stack).

Note: The contents of the PCLATH register are unchanged after a RETURN or RETFIE instruction is executed. The user must rewrite the contents of the PCLATH register for any subsequent subroutine calls or GOTO instructions.

2.5 Indirect Addressing, INDF and FSR Registers


The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.

Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses the register pointed to by the File Select Register, FSR. Reading the INDF register itself indirectly (FSR = '0'), will read 00h. Writing to the INDF register indirectly results in a no operation (although status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 2-4. A simple program to clear RAM locations 20h-2Fh using indirect addressing is shown in Example 2-1.

EXAMPLE 2-1: INDIRECT ADDRESSING

	MOVLW	0x20	;initialize pointer
	MOVWF	FSR	;to RAM
NEXT	CLRF	INDF	clear INDF register;
	INCF	FSR,F	;inc pointer
	BTFSS	FSR,4	;all done?
	GOTO	NEXT	;no clear next
CONTINUE			
	:		;yes continue
			· •

NOTES:

3.0 DATA EEPROM AND FLASH PROGRAM MEMORY

The Data EEPROM and FLASH Program Memory are readable and writable during normal operation over the entire VDD range. These operations take place on a single byte for Data EEPROM memory and a single word for Program memory. A write operation causes an erase-then-write operation to take place on the specified byte or word. A bulk erase operation may not be issued from user code (which includes removing code protection).

Access to program memory allows for checksum calculation. The values written to Program memory do not need to be valid instructions. Therefore, numbers of up to 14 bits can be stored in memory for use as calibration parameters, serial numbers, packed 7-bit ASCII, etc. Executing a program memory location, containing data that forms an invalid instruction, results in the execution of a NOP instruction.

The EEPROM Data memory is rated for high erase/ write cycles (specification #D120). The FLASH Program memory is rated much lower (specification #D130) because EEPROM Data memory can be used to store frequently updated values. An on-chip timer controls the write time and it will vary with voltage and temperature, as well as from chip to chip. Please refer to the specifications for exact limits (specifications #D122 and #D133).

A byte or word write automatically erases the location and writes the new value (erase before write). Writing to EEPROM Data memory does not impact the operation of the device. Writing to Program memory will cease the execution of instructions until the write is complete. The program memory cannot be accessed during the write. During the write operation, the oscillator continues to run, the peripherals continue to function and interrupt events will be detected and essentially "queued" until the write is complete. When the write completes, the next instruction in the pipeline is executed and the branch to the interrupt vector will take place if the interrupt is enabled and occurred during the write.

Read and write access to both memories take place indirectly through a set of Special Function Registers (SFR). The six SFRs used are:

- EEDATA
- EEDATH
- EEADR
- EEADRH
- EECON1
- EECON2

The EEPROM Data memory allows byte read and write operations without interfering with the normal operation of the microcontroller. When interfacing to EEPROM Data memory, the EEADR register holds the address to be accessed. Depending on the operation, the EEDATA register holds the data to be written or the data read at the address in EEADR. The PIC16F872 has 64 bytes of EEPROM Data memory and therefore, requires that the two Most Significant bits of EEADR remain clear. EEPROM Data memory on these devices wraps around to 0 (i.e., 40h in the EEADR maps to 00h).

The FLASH Program memory allows non-intrusive read access, but write operations cause the device to stop executing instructions until the write completes. When interfacing to the Program memory, the EEADRH:EEADR registers pair forms a two-byte word which holds the 13-bit address of the memory location being accessed. The EEDATH:EEDATA register pair holds the 14-bit data for writes or reflects the value of program memory after a read operation. Just as in EEPROM Data memory accesses, the value of the EEADRH:EEADR registers must be within the valid range of program memory, depending on the device (0000h to 07FFh). Addresses outside of this range wrap around to 0000h (i.e., 0800h maps to 0000h).

3.1 EECON1 and EECON2 Registers

The EECON1 register is the control register for configuring and initiating the access. The EECON2 register is not a physically implemented register, but is used exclusively in the memory write sequence to prevent inadvertent writes.

There are many bits used to control the read and write operations to EEPROM Data and FLASH Program memory. The EEPGD bit determines if the access will be a program or data memory access. When clear, any subsequent operations will work on the EEPROM Data memory. When set, all subsequent operations will operate in the Program memory.

Read operations only use one additional bit, RD, which initiates the read operation from the desired memory location. Once this bit is set, the value of the desired memory location will be available in the data registers. This bit cannot be cleared by firmware. It is automatically cleared at the end of the read operation. For EEPROM Data memory reads, the data will be available in the EEDATA register in the very next instruction cycle after the RD bit is set. For program memory reads, the data will be loaded into the EEDATH:EEDATA registers, following the second instruction after the RD bit is set.