

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

PIC16F87/88

18/20/28-Pin Enhanced Flash MCUs with nanoWatt Technology

Low-Power Features:

· Power-Managed modes:

- Primary Run: RC oscillator, 76 μA, 1 MHz, 2V

RC_RUN: 7 μA, 31.25 kHz, 2V
 SEC RUN: 9 μA, 32 kHz, 2V

- Sleep: 0.1 μA, 2V

• Timer1 Oscillator: 1.8 μ A, 32 kHz, 2V

Watchdog Timer: 2.2 μA, 2V
Two-Speed Oscillator Start-up

Oscillators:

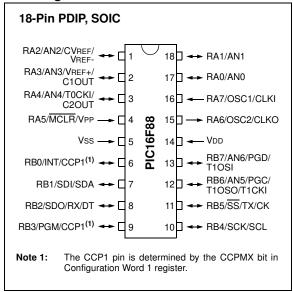
· Three Crystal modes:

- LP, XT, HS: up to 20 MHz

· Two External RC modes

· One External Clock mode:

- ECIO: up to 20 MHz

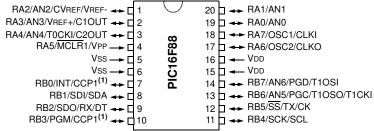

· Internal oscillator block:

 8 user selectable frequencies: 31 kHz, 125 kHz, 250 kHz, 500 kHz, 1 MHz, 2 MHz, 4 MHz, 8 MHz

Peripheral Features:

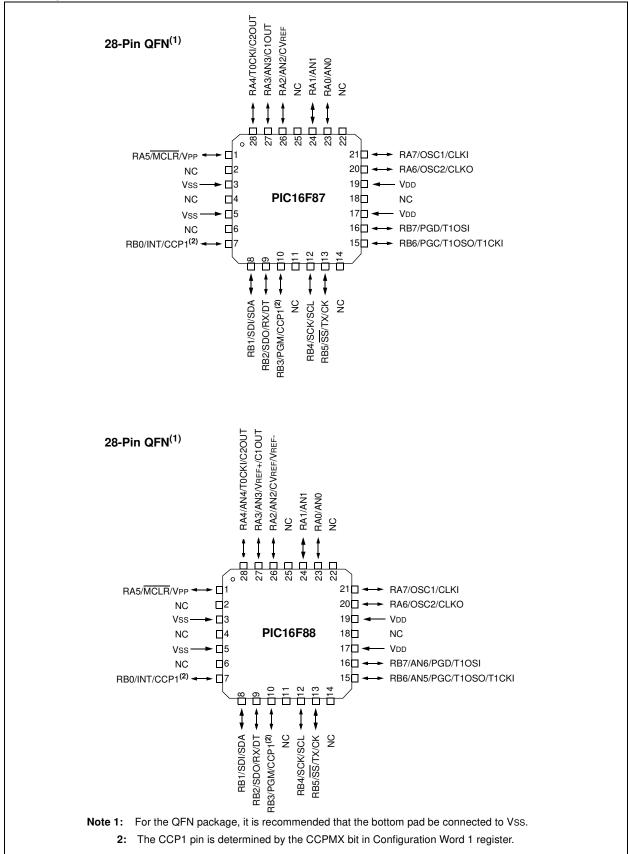
- · Capture, Compare, PWM (CCP) module:
 - Capture is 16-bit, max. resolution is 12.5 ns
 - Compare is 16-bit, max. resolution is 200 ns
 - PWM max. resolution is 10-bit
- 10-bit, 7-channel Analog-to-Digital Converter
- Synchronous Serial Port (SSP) with SPI (Master/Slave) and I²C[™] (Slave)
- Addressable Universal Synchronous Asynchronous Receiver Transmitter (AUSART/SCI) with 9-bit address detection:
 - RS-232 operation using internal oscillator (no external crystal required)
- Dual Analog Comparator module:
 - Programmable on-chip voltage reference
 - Programmable input multiplexing from device inputs and internal voltage reference
 - Comparator outputs are externally accessible

Pin Diagram



Special Microcontroller Features:

- 100,000 erase/write cycles Enhanced Flash program memory typical
- 1,000,000 typical erase/write cycles EEPROM data memory typical
- EEPROM Data Retention: > 40 years
- In-Circuit Serial Programming[™] (ICSP[™]) via two pins
- Processor read/write access to program memory
- Low-Voltage Programming
- In-Circuit Debugging via two pins
- Extended Watchdog Timer (WDT):
 - Programmable period from 1 ms to 268s
- · Wide operating voltage range: 2.0V to 5.5V


Device	Program Memory		Data Memory		I/O	10-bit	ССР				Timers
	Flash (bytes)	# Single-Word Instructions	SRAM (bytes)	EEPROM (bytes)	-, -	A/D (ch)		AUSART	Comparators	SSP	8/16-bit
PIC16F87	7168	4096	368	256	16	N/A	1	Υ	2	Υ	2/1
PIC16F88	7168	4096	368	256	16	1	1	Υ	2	Υ	2/1

Pin Diagrams 18-Pin PDIP, SOIC RA2/AN2/CVREF ←► 1 18 ☐ **→→** RA1/AN1 RA3/AN3/C1OUT → □ 2 17 ☐ **→→** RA0/AN0 RA4/T0CKI/C2OUT → □ 3 16 ☐ → RA7/OSC1/CLKI RA5/MCLR/VPP -15 ☐ ←► RA6/OSC2/CLKO Vss-**→** 🗆 5 14 ☐ ← VDD RB0/INT/CCP1⁽¹⁾ ← ☐ 6 13 ☐ ←► RB7/PGD/T1OSI RB1/SDI/SDA ↔ ☐ 7 12 → RB6/PGC/T1OSO/T1CKI RB2/SDO/RX/DT → □ 8 11 ☐ ←► RB5/SS/TX/CK RB3/PGM/CCP1⁽¹⁾ → □ 9 10 ☐ → RB4/SCK/SCL 20-Pin SSOP RA2/AN2/CVREF → □ 1 20 □ → RA1/AN1 RA3/AN3/C1OUT ↔ ☐ 2 19 □ → RA0/AN0 RA4/T0CKI/C2OUT → □ 3 18 ☐ → RA7/OSC1/CLKI PIC16F87 RA5/MCLR/VPP → ☐ 4 17 ☐ → RA6/OSC2/CLKO Vss → **□** 5 16 □ **←** VDD Vss → 6 15 □ **←** VDD RB0/INT/CCP1⁽¹⁾ → 7 14 ☐ ↔ RB7/PGD/T1OSI 13 ☐ ← RB6/PGC/T1OSO/T1CKI RB1/SDI/SDA ↔ ☐ 8 12 ☐ → RB5/SS/TX/CK RB2/SDO/RX/DT → □ 9 RB3/PGM/CCP1⁽¹⁾ → 10 11 ☐ ↔ RB4/SCK/SCL 18-Pin PDIP, SOIC RA2/AN2/CVREF/VREF- ☐ 1 18 ☐ ← RA1/AN1 RA3/AN3/VREF+/C1OUT ←→ ☐ 2 17 ☐ **→** RA0/AN0 RA4/AN4/T0CKI/C2OUT → □ 3 16 ☐ ←→ RA7/OSC1/CLKI RA5/MCLR/VPP → 4 15 ☐ ←→ RA6/OSC2/CLKO Vss → 5 14 ☐ **←** VDD RB0/INT/CCP1⁽¹⁾ → ☐ 6 13 ☐ ←→ RB7/AN6/PGD/T1OSI RB1/SDI/SDA → ☐ 7 12 ☐ → RB6/AN5/PGC/T1OSO/T1CKI 11 ☐ ← RB5/SS/TX/CK RB2/SDO/RX/DT ↔ 🗆 8 RB3/PGM/CCP1⁽¹⁾ → □ 9 10 ☐ → RB4/SCK/SCL 20-Pin SSOP RA2/AN2/CVREF/VREF- ← □ 1 20 🗖 ↔ RA1/AN1 19 → RA0/AN0 18 → RA7/OSC1/CLKI RA3/AN3/VREF+/C1OUT → □ 2 RA4/AN4/T0CKI/C2OUT ↔ ☐ 3

Note 1: The CCP1 pin is determined by the CCPMX bit in Configuration Word 1 register.

Pin Diagrams (Cont'd)

PIC16F87/88

Table of Contents

1.0	Device Overview	5
2.0	Memory Organization	11
3.0	Data EEPROM and Flash Program Memory	27
4.0	Oscillator Configurations	35
5.0	I/O Ports	51
6.0	Timer0 Module	67
7.0	Timer1 Module	71
8.0	Timer2 Module	79
9.0	Capture/Compare/PWM (CCP) Module	81
10.0	Synchronous Serial Port (SSP) Module	87
11.0	Addressable Universal Synchronous Asynchronous Receiver Transmitter (AUSART)	97
12.0	Analog-to-Digital Converter (A/D) Module	113
	Comparator Module	
14.0	Comparator Voltage Reference Module	127
15.0	Special Features of the CPU	129
16.0	Instruction Set Summary	149
17.0	Development Support	157
18.0	Electrical Characteristics	161
19.0	DC and AC Characteristics Graphs and Tables	191
20.0	Packaging Information	205
Appe	endix A: Revision History	215
Appe	endix B: Device Differences	215
INDE	EX	217
The N	Microchip Web Site	225
Custo	tomer Change Notification Service	225
Custo	tomer Support	225
Read	der Response	226
PIC1	16F87/88 Product Identification System	227

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- · Microchip's Worldwide Web site; http://www.microchip.com
- · Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

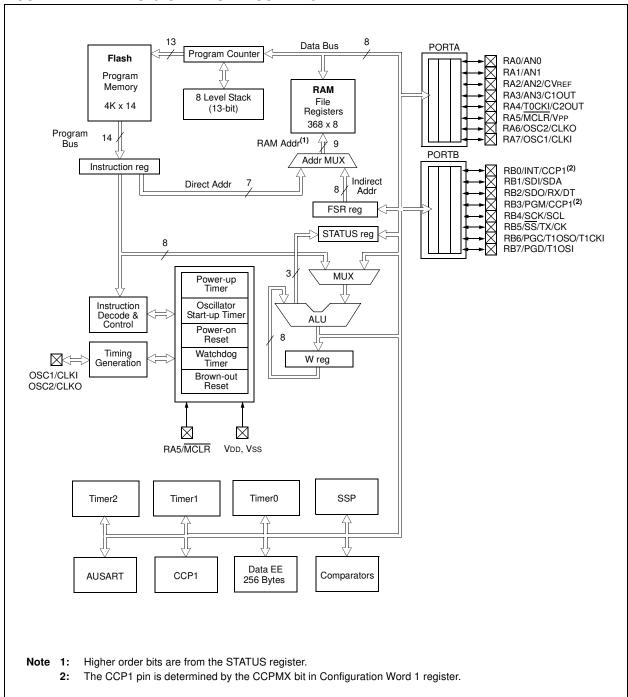
1.0 DEVICE OVERVIEW

This document contains device specific information for the operation of the PIC16F87/88 devices. Additional information may be found in the "PIC® Mid-Range MCU Family Reference Manual" (DS33023) which may be downloaded from the Microchip web site. This Reference Manual should be considered a complementary document to this data sheet and is highly recommended reading for a better understanding of the device architecture and operation of the peripheral modules.

The PIC16F87/88 belongs to the Mid-Range family of the PIC® devices. Block diagrams of the devices are shown in Figure 1-1 and Figure 1-2. These devices contain features that are new to the PIC16 product line:

- Low-power modes: RC_RUN allows the core and peripherals to be clocked from the INTRC, while SEC_RUN allows the core and peripherals to be clocked from the low-power Timer1. Refer to Section 4.7 "Power-Managed Modes" for further details.
- Internal RC oscillator with eight selectable frequencies, including 31.25 kHz, 125 kHz, 250 kHz, 500 kHz, 1 MHz, 2 MHz, 4 MHz and 8 MHz. The INTRC can be configured as a primary or secondary clock source. Refer to Section 4.5 "Internal Oscillator Block" for further details.
- The Timer1 module current consumption has been greatly reduced from 20 μA (previous PIC16 devices) to 1.8 μA typical (32 kHz at 2V), which is ideal for real-time clock applications. Refer to Section 7.0 "Timer1 Module" for further details.
- Extended Watchdog Timer (WDT) that can have a programmable period from 1 ms to 268s. The WDT has its own 16-bit prescaler. Refer to Section 15.12 "Watchdog Timer (WDT)" for further details.
- Two-Speed Start-up: When the oscillator is configured for LP, XT or HS Oscillator mode, this feature will clock the device from the INTRC while the oscillator is warming up. This, in turn, will enable almost immediate code execution. Refer to Section 15.12.3 "Two-Speed Clock Start-up Mode" for further details.
- Fail-Safe Clock Monitor: This feature will allow the device to continue operation if the primary or secondary clock source fails by switching over to the INTRC.
- The A/D module has a new register for PIC16 devices named ANSEL. This register allows easier configuration of analog or digital I/O pins.

TABLE 1-1: AVAILABLE MEMORY IN PIC16F87/88 DEVICES


Device	Program	Data	Data
	Flash	Memory	EEPROM
PIC16F87/88	4K x 14	368 x 8	256 x 8

There are 16 I/O pins that are user configurable on a pin-to-pin basis. Some pins are multiplexed with other device functions. These functions include:

- External Interrupt
- · Change on PORTB Interrupt
- Timer0 Clock Input
- Low-Power Timer1 Clock/Oscillator
- · Capture/Compare/PWM
- 10-bit, 7-channel A/D Converter (PIC16F88 only)
- SPI/I²C™
- · Two Analog Comparators
- AUSART
- MCLR (RA5) can be configured as an input

Table 1-2 details the pinout of the devices with descriptions and details for each pin.

FIGURE 1-1: PIC16F87 DEVICE BLOCK DIAGRAM

DS30487D-page 6

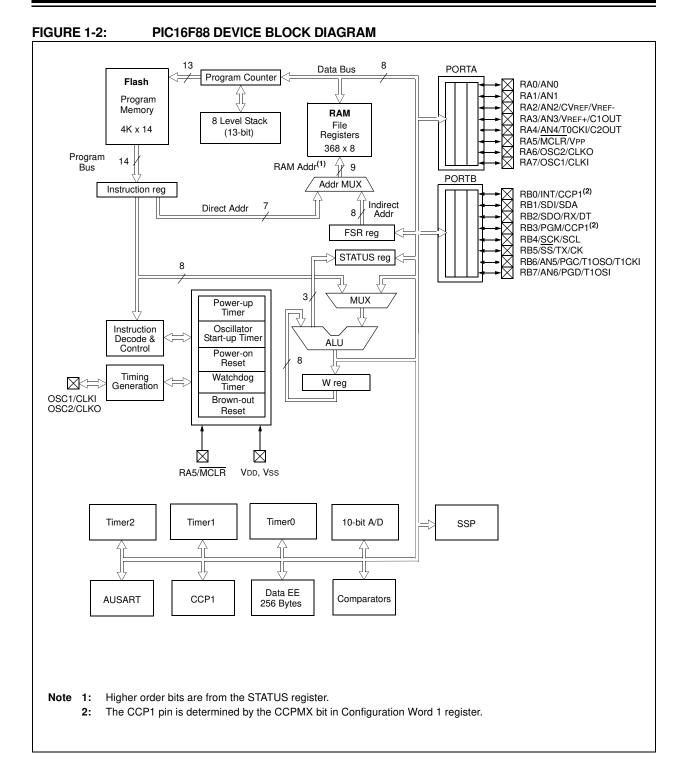


TABLE 1-2: PIC16F87/88 PINOUT DESCRIPTION

Pin Name	PDIP/ SOIC Pin#	SSOP Pin#	QFN Pin#	I/O/P Type	Buffer Type	Description
						PORTA is a bidirectional I/O port.
RA0/AN0	17	19	23			
RA0				I/O	TTL	Bidirectional I/O pin.
AN0				ı	Analog	Analog input channel 0.
RA1/AN1	18	20	24	1/0		BUT II LUO I
RA1 AN1				I/O I	TTL	Bidirectional I/O pin.
				'	Analog	Analog input channel 1.
RA2/AN2/CVREF/VREF- RA2	1	1	26	I/O	TTL	Bidirectional I/O pin.
AN2				1/0	Analog	Analog input channel 2.
CVREF				Ö	Analog	Comparator VREF output.
VREF-(4)				Ī	Analog	A/D reference voltage (Low) input.
RA3/AN3/VREF+/C1OUT	2	2	27			
RA3				I/O	TTL	Bidirectional I/O pin.
AN3				I	Analog	Analog input channel 3.
VREF+ ⁽⁴⁾				I	Analog	A/D reference voltage (High) input.
C1OUT				0		Comparator 1 output.
RA4/AN4/T0CKI/C2OUT	3	3	28			
RA4				I/O	ST	Bidirectional I/O pin.
AN4 ⁽⁴⁾ T0CKI				ļ ļ	Analog ST	Analog input channel 4.
C2OUT				0	51	Clock input to the TMR0 timer/counter. Comparator 2 output.
	_	,		O		Comparator 2 output.
RA5/MCLR/VPP RA5	4	4	1		ST	Input pin.
MCLR				i	ST	Master Clear (Reset). Input/programming voltage
MOEIT				·	0.	input. This pin is an active-low Reset to the device.
VPP				Р	_	Programming voltage input.
RA6/OSC2/CLKO	15	17	20			
RA6				I/O	ST	Bidirectional I/O pin.
OSC2				0	_	Oscillator crystal output. Connects to crystal or
01.140				0		resonator in Crystal Oscillator mode.
CLKO				0	_	In RC mode, this pin outputs CLKO signal which has 1/4 the frequency of OSC1 and denotes the
						instruction cycle rate.
RA7/OSC1/CLKI	16	18	21			mondon dy dio rato.
RA7	'0	10	-	I/O	ST	Bidirectional I/O pin.
OSC1				ı, O	ST/CMOS ⁽³⁾	Oscillator crystal input.
CLKI				- 1	_	External clock source input.

Legend:

I = Input

O = Output

I/O = Input/Output

P = Power

- = Not used

TTL = TTL Input

ST = Schmitt Trigger Input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

^{2:} This buffer is a Schmitt Trigger input when used in Serial Programming mode.

^{3:} This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.

^{4:} PIC16F88 devices only.

^{5:} The CCP1 pin is determined by the CCPMX bit in Configuration Word 1 register.

TABLE 1-2: PIC16F87/88 PINOUT DESCRIPTION (CONTINUED)

Pin Name	PDIP/ SOIC Pin#	SSOP Pin#	QFN Pin#	I/O/P Type	Buffer Type	Description
						PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-up on all inputs.
RB0/INT/CCP1 ⁽⁵⁾ RB0 INT CCP1	6	7	7	I/O I I/O	TTL ST ⁽¹⁾ ST	Bidirectional I/O pin. External interrupt pin. Capture input, Compare output, PWM output.
RB1/SDI/SDA RB1 SDI SDA	7	8	8	I/O I I/O	TTL ST ST	Bidirectional I/O pin. SPI data in. I ² C™ data.
RB2/SDO/RX/DT RB2 SDO RX DT	8	9	9	I/O O I I/O	TTL ST	Bidirectional I/O pin. SPI data out. AUSART asynchronous receive. AUSART synchronous detect.
RB3/PGM/CCP1 ⁽⁵⁾ RB3 PGM CCP1	9	10	10	I/O I/O I	TTL ST ST	Bidirectional I/O pin. Low-Voltage ICSP™ Programming enable pin. Capture input, Compare output, PWM output.
RB4/SCK/SCL RB4 SCK SCL	10	11	12	I/O I/O I	TTL ST ST	Bidirectional I/O pin. Interrupt-on-change pin. Synchronous serial clock input/output for SPI. Synchronous serial clock Input for I ² C.
RB5/SS/TX/CK RB5 SS TX CK	11	12	13	I/O I O I/O	TTL TTL	Bidirectional I/O pin. Interrupt-on-change pin. Slave select for SPI in Slave mode. AUSART asynchronous transmit. AUSART synchronous clock.
RB6/AN5/PGC/T1OSO/ T1CKI RB6 AN5 ⁽⁴⁾ PGC T1OSO T1CKI	12	13	15	I/O /O 	TTL ST ⁽²⁾ ST ST	Bidirectional I/O pin. Interrupt-on-change pin. Analog input channel 5. In-Circuit Debugger and programming clock pin. Timer1 oscillator output. Timer1 external clock input.
RB7/AN6/PGD/T1OSI RB7 AN6 ⁽⁴⁾ PGD T1OSI	13	14	16	I/O 	TTL ST ⁽²⁾ ST	Bidirectional I/O pin. Interrupt-on-change pin. Analog input channel 6. In-Circuit Debugger and ICSP programming data pin. Timer1 oscillator input.
Vss	5	5, 6	3, 5	Р	-	Ground reference for logic and I/O pins.
VDD	14	15, 16	17, 19	Р	-	Positive supply for logic and I/O pins.

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

3: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.

4: PIC16F88 devices only.

5: The CCP1 pin is determined by the CCPMX bit in Configuration Word 1 register.

D	\sim 1		EO.	7/88	0
		OI	ГО		0

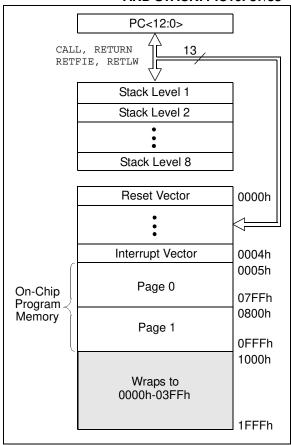
NOTES:

2.0 MEMORY ORGANIZATION

There are two memory blocks in the PIC16F87/88 devices. These are the program memory and the data memory. Each block has its own bus, so access to each block can occur during the same oscillator cycle.

The data memory can be further broken down into the general purpose RAM and the Special Function Registers (SFRs). The operation of the SFRs that control the "core" are described here. The SFRs used to control the peripheral modules are described in the section discussing each individual peripheral module.

The data memory area also contains the data EEPROM memory. This memory is not directly mapped into the data memory but is indirectly mapped. That is, an indirect address pointer specifies the address of the data EEPROM memory to read/write. The PIC16F87/88 device's 256 bytes of data EEPROM memory have the address range of 00h-FFh. More details on the EEPROM memory can be found in **Section 3.0** "Data **EEPROM and Flash Program Memory**".


Additional information on device memory may be found in the "*PIC*® *Mid-Range MCU Family Reference Manual*" (DS33023).

2.1 Program Memory Organization

The PIC16F87/88 devices have a 13-bit program counter capable of addressing an 8K x 14 program memory space. For the PIC16F87/88, the first 4K x 14 (0000h-0FFFh) is physically implemented (see Figure 2-1). Accessing a location above the physically implemented address will cause a wraparound. For example, the same instruction will be accessed at locations 020h, 420h, 820h, C20h, 1020h, 1420h, 1820h and 1C20h.

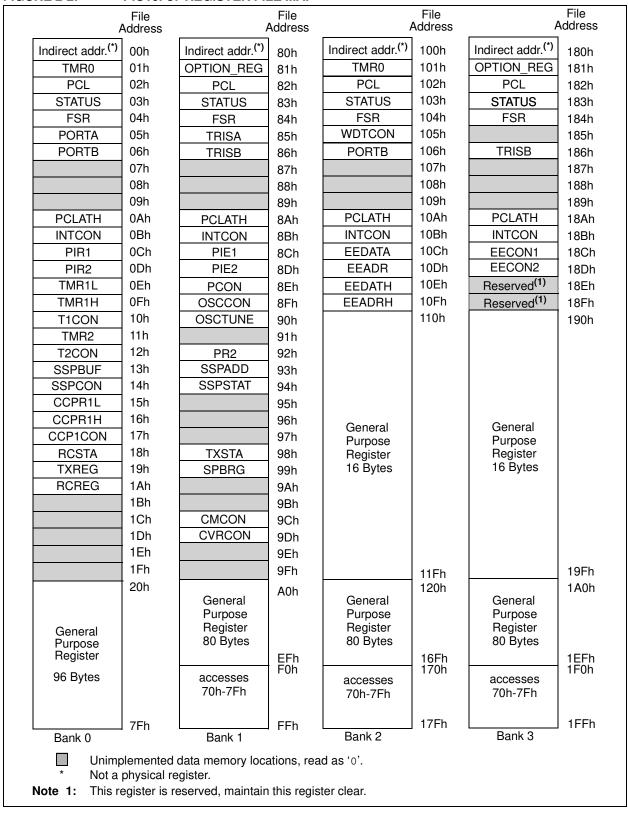
The Reset vector is at 0000h and the interrupt vector is at 0004h.

FIGURE 2-1: PROGRAM MEMORY MAP AND STACK: PIC16F87/88

2.2 Data Memory Organization

The data memory is partitioned into multiple banks that contain the General Purpose Registers and the Special Function Registers. Bits RP1 (STATUS<6>) and RP0 (STATUS<5>) are the bank select bits.

RP1:RP0	Bank
00	0
01	1
10	2
11	3


Each bank extends up to 7Fh (128 bytes). The lower locations of each bank are reserved for the Special Function Registers. Above the Special Function Registers are General Purpose Registers, implemented as static RAM. All implemented banks contain SFRs. Some "high use" SFRs from one bank may be mirrored in another bank for code reduction and quicker access (e.g., the STATUS register is in Banks 0-3).

Note: EEPROM data memory description can be found in Section 3.0 "Data EEPROM and Flash Program Memory" of this data sheet.

2.2.1 GENERAL PURPOSE REGISTER FILE

The register file can be accessed either directly, or indirectly, through the File Select Register (FSR).

FIGURE 2-2: PIC16F87 REGISTER FILE MAP

A	File Address	Α	File ddress	A	File Address	A	File Addres
Indirect addr.(*)	00h	Indirect addr.(*)	80h	Indirect addr.(*)	100h	Indirect addr.(*)	180
TMR0	01h	OPTION REG	81h	TMR0	101h	OPTION REG	181
PCL	02h	PCL	82h	PCL	102h	PCL	182
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183
FSR	04h	FSR	84h	FSR	104h	FSR	184
PORTA	05h	TRISA	85h	WDTCON	105h		185
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186
	07h		87h		107h		187
	08h		88h		108h		188
	09h		89h		109h		189
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18A
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18B
PIR1	0Ch	PIE1	8Ch	EEDATA	10Ch	EECON1	18C
PIR2	0Dh	PIE2	8Dh	EEADR	10Dh	EECON2	18D
TMR1L	0Eh	PCON	8Eh	EEDATH	10Eh	Reserved ⁽¹⁾	18E
TMR1H	0Fh	OSCCON	8Fh	EEADRH	10Fh	Reserved ⁽¹⁾	18F
T1CON	10h	OSCTUNE	90h		110h		190
TMR2	11h		91h				
T2CON	12h	PR2	92h				
SSPBUF	13h	SSPADD	93h				
SSPCON	14h	SSPSTAT	94h				
CCPR1L	15h		95h				
CCPR1H	16h		96h	General		General	
CCP1CON	17h 18h	TVOTA	97h	Purpose		Purpose	
RCSTA TXREG	19h	TXSTA SPBRG	98h	Register 16 Bytes		Register 16 Bytes	
RCREG	1Ah	SFBNG	99h 9Ah	10 25,000		10 27100	
HOHEG	1Bh	ANSEL	9Bh				
	1Ch	CMCON	9Ch				
	1Dh	CVRCON	9Dh				
ADRESH	1Eh	ADRESL	9Eh				
ADCON0	1Fh	ADCON1	9Fh		11Fh		19F
General Purpose Register	20h	General Purpose Register 80 Bytes	A0h EFh	General Purpose Register 80 Bytes	120h 16Fh	General Purpose Register 80 Bytes	1A0
_			F0h		170h		1F0
96 Bytes		accesses 70h-7Fh		accesses 70h-7Fh		accesses 70h-7Fh	
	7Fh		FFh		17Fh		1FF
Bank 0		Bank 1		Bank 2		Bank 3	
* Not a	physical r	I data memory loca egister. reserved, maintair					

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral modules for controlling the desired operation of the device. These registers are implemented as static RAM. A list of these registers is given in Table 2-1. The Special Function Registers can be classified into two sets: core (CPU) and peripheral. Those registers associated with the core functions are described in detail in this section. Those related to the operation of the peripheral features are described in detail in the peripheral feature section.

TABLE 2-1: SPECIAL FUNCTION REGISTER SUMMARY

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Details on page
Bank 0											
00h ⁽²⁾	INDF	Addressing	g this locatio	n uses conte	nts of FSR to	address data	memory (not	a physical r	egister)	0000 0000	26, 135
01h	TMR0	Timer0 Mo	dule Registe	er						xxxx xxxx	69
02h ⁽²⁾	PCL	Program C	Counter (PC)	Least Signifi	icant Byte					0000 0000	
03h ⁽²⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	17
04h ⁽²⁾	FSR	Indirect Da	ta Memory A		xxxx xxxx	135					
05h	PORTA		ata Latch whata Latch wh		xxxx 0000 xxx0 0000	52					
06h	PORTB		ata Latch wh ata Latch wh		xxxx xxxx 00xx xxxx	58					
07h	_	Unimpleme	ented							_	_
08h	_	Unimpleme	ented							_	_
09h	_	Unimpleme	ented							_	_
0Ah ^(1,2)	PCLATH	_	_	_	Write Buffer	for the Upper	5 bits of the F	Program Cou	unter	0 0000	135
0Bh ⁽²⁾	INTCON	GIE	GIE PEIE TMROIE INTOIE RBIE TMROIF INTOIF RBIF						0000 000x	19, 69, 77	
0Ch	PIR1	_	ADIF ⁽⁴⁾	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	-000 0000	21, 77
0Dh	PIR2	OSFIF	CMIF	_	EEIF	_	_	_	_	00-0	23, 34
0Eh	TMR1L	Holding Re	egister for the	e Least Signi	ificant Byte of	the 16-bit TM	IR1 Register			xxxx xxxx	77, 83
0Fh	TMR1H	Holding Re	egister for the	e Most Signif	ficant Byte of	the 16-bit TMI	R1 Register			xxxx xxxx	77, 83
10h	T1CON	_	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	-000 0000	72, 83
11h	TMR2	Timer2 Mo	dule Registe	er						0000 0000	80, 85
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	80, 85
13h	SSPBUF	Synchrono	us Serial Po	rt Receive B	uffer/Transmi	t Register				xxxx xxxx	90, 95
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	89, 95
15h	CCPR1L	Capture/C	ompare/PWI	M Register 1	(LSB)					xxxx xxxx	83, 85
16h	CCPR1H	Capture/C	ompare/PWI	M Register 1	(MSB)					xxxx xxxx	83, 85
17h	CCP1CON	_	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	81, 83
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	98, 99
19h	TXREG	AUSART 1	ransmit Dat	a Register						0000 0000	103
1Ah	RCREG	AUSART F	AUSART Receive Data Register								105
1Bh	_	Unimplemented								_	
1Ch		Unimplemented								_	
1Dh	_	Unimplemented									_
1Eh	ADRESH ⁽⁴⁾	A/D Result Register High Byte xxxx x									120
1Fh	ADCON0 ⁽⁴⁾	ADCS1									114, 120

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

- Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for PC<12:8>, whose contents are transferred to the upper byte of the program counter.
 - 2: These registers can be addressed from any bank.
 - 3: RA5 is an input only; the state of the TRISA5 bit has no effect and will always read '1'.
 - 4: PIC16F88 device only.

TABLE 2-1: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Details on page
Bank 1											
80h ⁽²⁾	INDF	Addressin	g this locatio	n uses conte	nts of FSR to	address data	memory (not	a physical r	egister)	0000 0000	26, 135
81h	OPTION_REG	RBPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0	1111 1111	18, 69
82h ⁽²⁾	PCL	Program C	gram Counter (PC) Least Significant Byte							0000 0000	135
83h ⁽²⁾	STATUS	IRP	IRP RP1 RP0 TO PD Z DC C								17
84h ⁽²⁾	FSR	Indirect Da	ata Memory /	Address Poir	ter					xxxx xxxx	135
85h	TRISA	TRISA7	TRISA6	TRISA5 ⁽³⁾	PORTA Data	a Direction Re	gister (TRISA	<4:0>)		1111 1111	52, 126
86h	TRISB	PORTB D	ata Direction	Register						1111 1111	58, 85
87h	_	Unimplem	ented							_	_
88h	_	Unimplem	ented							_	_
89h	_	Unimplem	ented							_	_
8Ah ^(1,2)	PCLATH	_	_	_	Write Buffer	for the Upper	5 bits of the F	Program Cou	unter	0 0000	135
8Bh ⁽²⁾	INTCON	GIE	PEIE	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x	19, 69, 77
8Ch	PIE1	_	ADIE ⁽⁴⁾	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-000 0000	20, 80
8Dh	PIE2	OSFIE	CMIE	_	EEIE	_	_	_	_	00-0	22, 34
8Eh	PCON	_	ı	_	_	_	_	POR	BOR	0q	24
8Fh	OSCCON	_	IRCF2	IRCF1	IRCF0	OSTS	IOFS	SCS1	SCS0	-000 0000	40
90h	OSCTUNE	_	_	TUN5	TUN4	TUN3	TUN2	TUN1	TUN0	00 0000	38
91h	_	Unimplem	ented							_	_
92h	PR2	Timer2 Pe	riod Registe	r						1111 1111	80, 85
93h	SSPADD	Synchrono	ous Serial Po	ort (I ² C™ mo	de) Address F	Register				0000 0000	95
94h	SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	88, 95
95h	1	Unimplem	ented							_	_
96h	_	Unimplem	ented							_	_
97h	_	Unimplem	ented							_	_
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	97, 99
99h	SPBRG	Baud Rate	Generator F	Register						0000 0000	99, 103
9Ah	-	Unimplem	ented							_	_
9Bh	ANSEL ⁽⁴⁾	_	ANS6	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0	-111 1111	120
9Ch	CMCON	C2OUT	C1OUT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0111	121, 126, 128
9Dh	CVRCON	CVREN	CVROE	CVRR	_	CVR3	CVR2	CVR1	CVR0	000- 0000	126, 128
9Eh	ADRESL ⁽⁴⁾	A/D Resul	V/D Result Register Low Byte								120
9Fh	ADCON1 ⁽⁴⁾	ADFM	ADCS2	VCFG1	VCFG0	_	_	_	_	0000	52, 115, 120

 $\begin{array}{ll} \textbf{Legend:} & \text{\mathbf{x} = unknown, \mathbf{u} = unchanged, \mathbf{q} = value depends on condition, \mathbf{r} = unimplemented, read as '0', \mathbf{r} = reserved.} \\ & \textbf{Shaded locations are unimplemented, read as '0'.} \end{array}$

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for PC<12:8>, whose contents are transferred to the upper byte of the program counter.

- 2: These registers can be addressed from any bank.
- 3: RA5 is an input only; the state of the TRISA5 bit has no effect and will always read '1'.
- 4: PIC16F88 device only.

TABLE 2-1: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

IADLL	0.		1 011011	OIT HEG		OWINAN I	(0011111	iold,			
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Details on page
Bank 2											
100h ⁽²⁾	INDF	Addressing	g this locatio	n uses conte	ents of FSR to	address data	memory (not	a physical re	egister)	0000 0000	26, 135
101h	TMR0	Timer0 Mo	dule Registe	er						xxxx xxxx	69
102h ⁽²⁾	PCL	Program C	Counter's (PC	C) Least Sign	nificant Byte					0000 0000	135
103h ⁽²⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	17
104h ⁽²⁾	FSR	Indirect Da	rect Data Memory Address Pointer								135
105h	WDTCON	_	WDTPS3 WDTPS2 WDTPS1 WDTPS0 SWDTEN								142
106h	PORTB		RTB Data Latch when written; PORTB pins when read (PIC16F87) RTB Data Latch when written; PORTB pins when read (PIC16F88)								58
107h	_	Unimplem	implemented							_	_
108h	_	Unimplem	ented							_	_
109h	_	Unimplem	ented							_	_
10Ah ^(1,2)	PCLATH	_	_	_	Write Buffer	for the Upper	5 bits of the F	Program Cou	ınter	0 0000	135
10Bh ⁽²⁾	INTCON	GIE	PEIE	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x	19, 69, 77
10Ch	EEDATA	EEPROM/	Flash Data F	Register Low	Byte					xxxx xxxx	34
10Dh	EEADR	EEPROM/	Flash Addre	ss Register L	ow Byte					xxxx xxxx	34
10Eh	EEDATH	_	_	EEPROM/F	lash Data Re	gister High By	te			xx xxxx	34
10Fh	EEADRH	_	_	_	_	EEPROM/Fla	ash Address F	Register High	n Byte	xxxx	34
Bank 3						•					•
180h ⁽²⁾	INDF	Addressing	g this locatio	n uses conte	ents of FSR to	address data	memory (not	a physical re	egister)	0000 0000	135
181h	OPTION_REG	RBPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0	1111 1111	18, 69
182h ⁽²⁾	PCL	Program C	Counter (PC)	Least Signi	ficant Byte			u .		0000 0000	135
183h ⁽²⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	17
184h ⁽²⁾	FSR	Indirect Da	ta Memory A	Address Poir	nter	l	I		l	xxxx xxxx	135
185h	_	Unimplem	ented							_	_
186h	TRISB	PORTB Da	ata Direction	Register						1111 1111	58, 83
187h	_	Unimplem	ented							_	_
188h	_	Unimplem	ented							_	_
189h	_	Unimplem	ented							_	_
18Ah ^(1,2)	PCLATH	_	_	_	Write Buffer	for the Upper	5 bits of the F	Program Cou	unter	0 0000	135
18Bh ⁽²⁾	INTCON	GIE	PEIE	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x	19, 69, 77
18Ch	EECON1	EEPGD	_	_	FREE	WRERR	WREN	WR	RD	xx x000	28, 34
18Dh	EECON2	EEPROM	EEPROM Control Register 2 (not a physical register)								34
18Eh	_	Reserved,	maintain cle	ar						0000 0000	_
18Fh	_	Reserved,	maintain cle	ar						0000 0000	_

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

- Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for PC<12:8>, whose contents are transferred to the upper byte of the program counter.
 - 2: These registers can be addressed from any bank.
 - 3: RA5 is an input only; the state of the TRISA5 bit has no effect and will always read '1'.
 - 4: PIC16F88 device only.

2.2.2.1 STATUS Register

The STATUS register, shown in Register 2-1, contains the arithmetic status of the ALU, the Reset status and the bank select bits for data memory.

The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as '000u uluu' (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register because these instructions do not affect the Z, C or DC bits from the STATUS register. For other instructions not affecting any Status bits, see Section 16.0 "Instruction Set Summary".

Note: The C and DC bits operate as a borrow and digit borrow bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

REGISTER 2-1: STATUS: ARITHMETIC STATUS REGISTER (ADDRESS 03h, 83h, 103h, 183h)

R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x
IRP	RP1	RP0	TO	PD	Z	DC	С
hit 7							hit 0

bit 7 IRP: Register Bank Select bit (used for indirect addressing)

1 = Bank 2, 3 (100h-1FFh)

0 = Bank 0, 1 (00h-FFh)

bit 6-5 **RP<1:0>:** Register Bank Select bits (used for direct addressing)

11 = Bank 3 (180h-1FFh)

10 = Bank 2 (100h-17Fh)

01 = Bank 1 (80h-FFh)

00 = Bank 0 (00h-7Fh)

Each bank is 128 bytes.

bit 4 **TO**: Time-out bit

1 = After power-up, CLRWDT instruction or SLEEP instruction

0 = A WDT time-out occurred

bit 3 **PD:** Power-Down bit

1 = After power-up or by the CLRWDT instruction

0 = By execution of the SLEEP instruction

bit 2 Z: Zero bit

1 = The result of an arithmetic or logic operation is zero

0 = The result of an arithmetic or logic operation is not zero

bit 1 DC: Digit carry/borrow bit (ADDWF, ADDLW, SUBLW and SUBWF instructions)(1)

1 = A carry-out from the 4th low-order bit of the result occurred

0 = No carry-out from the 4th low-order bit of the result

bit 0 C: Carry/borrow bit (ADDWF, ADDLW, SUBLW and SUBWF instructions)(1,2)

1 = A carry-out from the Most Significant bit of the result occurred

0 = No carry-out from the Most Significant bit of the result occurred

Note 1: For borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand.

2: For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low-order bit of the source register.

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

2.2.2.2 OPTION_REG Register

The OPTION_REG register is a readable and writable register that contains various control bits to configure the TMR0 prescaler/WDT postscaler (single assignable register known also as the prescaler), the external INT interrupt, TMR0 and the weak pull-ups on PORTB.

Note: To achieve a 1:1 prescaler assignment for the TMR0 register, assign the prescaler to the Watchdog Timer. Although the prescaler can be assigned to either the WDT or Timer0, but not both, a new divide counter is implemented in the WDT circuit to give multiple WDT time-out selections. This allows TMR0 and WDT to each have their own scaler. Refer to Section 15.12 "Watchdog Timer (WDT)" for further details.

REGISTER 2-2: OPTION_REG: OPTION CONTROL REGISTER (ADDRESS 81h, 181h)

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
RBPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0	
bit 7								

bit 7 RBPU: PORTB Pull-up Enable bit

1 = PORTB pull-ups are disabled

0 = PORTB pull-ups are enabled by individual port latch values

bit 6 INTEDG: Interrupt Edge Select bit

1 = Interrupt on rising edge of RB0/INT pin

0 = Interrupt on falling edge of RB0/INT pin

bit 5 TOCS: TMR0 Clock Source Select bit

1 = Transition on RA4/T0CKI/C2OUT pin

0 = Internal instruction cycle clock (CLKO)

bit 4 T0SE: TMR0 Source Edge Select bit

1 = Increment on high-to-low transition on RA4/T0CKI/C2OUT pin

0 = Increment on low-to-high transition on RA4/T0CKI/C2OUT pin

bit 3 **PSA:** Prescaler Assignment bit

1 = Prescaler is assigned to the WDT

0 = Prescaler is assigned to the Timer0 module

bit 2-0 **PS<2:0>:** Prescaler Rate Select bits

Bit Value	TMR0 Rate	WDT Rate		
000	1:2	1:1		
001	1:4	1:2		
010	1:8	1:4		
011	1:16	1:8		
100	1:32	1:16		
101	1:64	1:32		
110	1:128	1:64		
111	1:256	1:128		

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

2.2.2.3 INTCON Register

The INTCON register is a readable and writable register that contains various enable and flag bits for the TMR0 register overflow, RB Port change and External RB0/INT pin interrupts.

Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-3: INTCON: INTERRUPT CONTROL REGISTER (ADDRESS 0Bh, 8Bh, 10Bh, 18Bh)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x
GIE	PEIE	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF

Note:

bit 7 bit 0

bit 7 GIE: Global Interrupt Enable bit

1 = Enables all unmasked interrupts

0 = Disables all interrupts

bit 6 **PEIE:** Peripheral Interrupt Enable bit

1 = Enables all unmasked peripheral interrupts

0 = Disables all peripheral interrupts

bit 5 TMR0IE: TMR0 Overflow Interrupt Enable bit

1 = Enables the TMR0 interrupt

0 = Disables the TMR0 interrupt

bit 4 INTOIE: RB0/INT External Interrupt Enable bit

1 = Enables the RB0/INT external interrupt

0 = Disables the RB0/INT external interrupt

bit 3 RBIE: RB Port Change Interrupt Enable bit

1 = Enables the RB port change interrupt

0 = Disables the RB port change interrupt

bit 2 TMR0IF: TMR0 Overflow Interrupt Flag bit

1 = TMR0 register has overflowed (must be cleared in software)

0 = TMR0 register did not overflow

bit 1 INTOIF: RB0/INT External Interrupt Flag bit

1 = The RB0/INT external interrupt occurred (must be cleared in software)

0 = The RB0/INT external interrupt did not occur

bit 0 RBIF: RB Port Change Interrupt Flag bit

A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition and allow flag bit RBIF to be cleared.

1 = At least one of the RB7:RB4 pins changed state (must be cleared in software)

0 = None of the RB7:RB4 pins have changed state

Legend:

 $R = Readable \ bit \ W = Writable \ bit \ U = Unimplemented \ bit, read as '0' -n = Value \ at POR \ '1' = Bit is set \ '0' = Bit is cleared \ x = Bit is unknown$

2.2.2.4 PIE1 Register

This register contains the individual enable bits for the peripheral interrupts.

Note: Bit PEIE (INTCON<6>) must be set to enable any peripheral interrupt.

REGISTER 2-4: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1 (ADDRESS 8Ch)

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	ADIE ⁽¹⁾	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE
bit 7							bit 0

bit 7 Unimplemented: Read as '0'

bit 6 ADIE: A/D Converter Interrupt Enable bit⁽¹⁾

1 = Enabled

0 = Disabled

Note 1: This bit is only implemented on the PIC16F88. The bit will read '0' on the PIC16F87.

bit 5 RCIE: AUSART Receive Interrupt Enable bit

1 = Enabled

0 = Disabled

bit 4 TXIE: AUSART Transmit Interrupt Enable bit

1 = Enabled

0 = Disabled

bit 3 SSPIE: Synchronous Serial Port (SSP) Interrupt Enable bit

1 = Enabled

0 = Disabled

bit 2 CCP1IE: CCP1 Interrupt Enable bit

1 = Enabled

0 = Disabled

bit 1 TMR2IE: TMR2 to PR2 Match Interrupt Enable bit

1 = Enabled

0 = Disabled

bit 0 TMR1IE: TMR1 Overflow Interrupt Enable bit

1 = Enabled

0 = Disabled

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

2.2.2.5 PIR1 Register

This register contains the individual flag bits for the peripheral interrupts.

Note:

Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit, or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-5: PIR1: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 1 (ADDRESS 0Ch)

U-0	R/W-0	R-0	R-0	R-0	R/W-0	R/W-0	R/W-0
_	ADIF ⁽¹⁾	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF
bit 7							bit 0

bit 0

- bit 7 Unimplemented: Read as '0'
- **ADIF:** A/D Converter Interrupt Flag bit⁽¹⁾ bit 6
 - 1 = The A/D conversion completed (must be cleared in software)
 - 0 = The A/D conversion is not complete
 - Note 1: This bit is only implemented on the PIC16F88. The bit will read '0' on the PIC16F87.
- bit 5 RCIF: AUSART Receive Interrupt Flag bit
 - 1 = The AUSART receive buffer is full (cleared by reading RCREG)
 - 0 = The AUSART receive buffer is not full
- bit 4 TXIF: AUSART Transmit Interrupt Flag bit
 - 1 = The AUSART transmit buffer is empty (cleared by writing to TXREG)
 - 0 = The AUSART transmit buffer is full
- bit 3 SSPIF: Synchronous Serial Port (SSP) Interrupt Flag bit
 - 1 = The transmission/reception is complete (must be cleared in software)
 - 0 = Waiting to transmit/receive
- bit 2 CCP1IF: CCP1 Interrupt Flag bit

Capture mode:

- 1 = A TMR1 register capture occurred (must be cleared in software)
- 0 = No TMR1 register capture occurred

Compare mode:

- 1 = A TMR1 register compare match occurred (must be cleared in software)
- 0 = No TMR1 register compare match occurred

PWM mode:

Unused in this mode.

- bit 1 TMR2IF: TMR2 to PR2 Interrupt Flag bit
 - 1 = A TMR2 to PR2 match occurred (must be cleared in software)
 - 0 = No TMR2 to PR2 match occurred
- bit 0 TMR1IF: TMR1 Overflow Interrupt Flag bit
 - 1 = The TMR1 register overflowed (must be cleared in software)
 - 0 = The TMR1 register did not overflow

Legend	
--------	--

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' '1' = Bit is set '0' = Bit is cleared -n = Value at POR x = Bit is unknown

PIC16F87/88

2.2.2.6 PIE2 Register

The PIE2 register contains the individual enable bit for the EEPROM write operation interrupt.

REGISTER 2-6: PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2 (ADDRESS 8Dh)

	R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0
	OSFIE	CMIE	_	EEIE	_	_	_	
1.1.								11:0

bit 7 bit 0

bit 7 OSFIE: Oscillator Fail Interrupt Enable bit

1 = Enabled

0 = Disabled

bit 6 **CMIE:** Comparator Interrupt Enable bit

1 =Enabled 0 =Disabled

bit 5 Unimplemented: Read as '0'

bit 4 **EEIE:** EEPROM Write Operation Interrupt Enable bit

1 =Enabled 0 =Disabled

bit 3-0 Unimplemented: Read as '0'

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

2.2.2.7 PIR2 Register

The PIR2 register contains the flag bit for the EEPROM write operation interrupt.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit, or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to

enabling an interrupt.

REGISTER 2-7: PIR2: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 2 (ADDRESS 0Dh)

	R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0
	OSFIF	CMIF	_	EEIF	_	_	_	_
bit 7								

bit 7 OSFIF: Oscillator Fail Interrupt Flag bit

1 = System oscillator failed, clock input has changed to INTRC (must be cleared in software)

0 = System clock operating

bit 6 CMIF: Comparator Interrupt Flag bit

1 = Comparator input has changed (must be cleared in software)

0 = Comparator input has not changed

bit 5 Unimplemented: Read as '0'

bit 4 **EEIF:** EEPROM Write Operation Interrupt Flag bit

1 = The write operation completed (must be cleared in software)

0 = The write operation is not complete or has not been started

bit 3-0 Unimplemented: Read as '0'

PIC16F87/88

2.2.2.8 PCON Register

Note: Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its corresponding enable bit, or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

The Power Control (PCON) register contains a flag bit to allow differentiation between a Power-on Reset (POR), a Brown-out Reset, an external MCLR Reset and WDT Reset.

Note: BOR is unknown on Power-on Reset. It must then be set by the user and checked on subsequent Resets to see if BOR is clear, indicating a brown-out has occurred. The BOR status bit is a 'don't care' and is not necessarily predictable if the brown-out circuit is disabled (by clearing the BOREN bit in the Configuration Word register).

REGISTER 2-8: PCON: POWER CONTROL REGISTER (ADDRESS 8Eh)

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-x
_	_	_	_	_	_	POR	BOR
bit 7							bit 0

bit 7-2 Unimplemented: Read as '0'

bit 1 POR: Power-on Reset Status bit

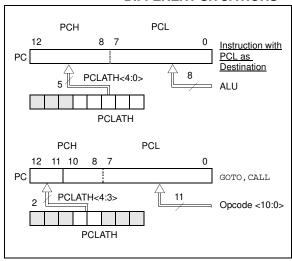
1 = No Power-on Reset occurred

0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)

bit 0 BOR: Brown-out Reset Status bit

1 = No Brown-out Reset occurred

0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)


Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

2.3 PCL and PCLATH

The Program Counter (PC) is 13 bits wide. The low byte comes from the PCL register which is a readable and writable register. The upper bits (PC<12:8>) are not readable but are indirectly writable through the PCLATH register. On any Reset, the upper bits of the PC will be cleared. Figure 2-4 shows the two situations for the loading of the PC. The upper example in the figure shows how the PC is loaded on a write to PCL (PCLATH<4:0> \rightarrow PCH). The lower example in the figure shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3> \rightarrow PCH).

FIGURE 2-4: LOADING OF PC IN DIFFERENT SITUATIONS

2.3.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When doing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block). Refer to the application note, AN556, "Implementing a Table Read".

2.3.2 STACK

The PIC16F87/88 family has an 8-level deep x 13-bit wide hardware stack. The stack space is not part of either program or data space and the Stack Pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

- **Note 1:** There are no status bits to indicate stack overflow or stack underflow conditions.
 - 2: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW and RETFIE instructions, or the vectoring to an interrupt address.

2.4 Program Memory Paging

All PIC16F87/88 devices are capable of addressing a continuous 8K word block of program memory. The CALL and GOTO instructions provide only 11 bits of address to allow branching within any 2K program memory page. When doing a CALL or GOTO instruction, the upper 2 bits of the address are provided by PCLATH<4:3>. When doing a CALL or GOTO instruction, the user must ensure that the page select bits are programmed so that the desired program memory page is addressed. If a return from a CALL instruction (or interrupt) is executed, the entire 13-bit PC is popped off the stack. Therefore, manipulation of the PCLATH<4:3> bits is not required for the RETURN instructions (which POPs the address from the stack).

Note: The contents of the PCLATH register are unchanged after a RETURN or RETFIE instruction is executed. The user must rewrite the contents of the PCLATH register for any subsequent subroutine calls or GOTO instructions.

Example 2-1 shows the calling of a subroutine in page 1 of the program memory. This example assumes that PCLATH is saved and restored by the Interrupt Service Routine (if interrupts are used).

EXAMPLE 2-1: CALL OF A SUBROUTINE IN PAGE 1 FROM PAGE 0

```
ORG 0x500
         BCF PCLATH, 4
         BSF PCLATH, 3 ;Select page 1
                        ; (800h-FFFh)
         CALL SUB1 P1
                        ;Call subroutine in
                        ;page 1 (800h-FFFh)
         :
         ORG 0x900
                        ;page 1 (800h-FFFh)
SUB1 P1
                        ; called subroutine
                        ;page 1 (800h-FFFh)
         RETURN
                        return to
                        ; Call subroutine
                        ;in page 0
                        ; (000h-7FFh)
```