Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs. With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas. We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry! ## Contact us Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China # PIC16C6X ### 8-Bit CMOS Microcontrollers #### Devices included in this data sheet: PIC16C61 PIC16C64A PIC16C62 PIC16CR64 PIC16C62A • PIC16C65 • PIC16CR62 PIC16C65A • PIC16C63 • PIC16CR65 PIC16CR63 • PIC16C66 PIC16C64 PIC16C67 #### PIC16C6X Microcontroller Core Features: - High performance RISC CPU - · Only 35 single word instructions to learn - All single cycle instructions except for program branches which are two-cycle - Operating speed: DC 20 MHz clock input DC - 200 ns instruction cycle - · Interrupt capability - · Eight level deep hardware stack - · Direct, indirect, and relative addressing modes - Power-on Reset (POR) - Power-up Timer (PWRT) and Oscillator Start-up Timer (OST) - Watchdog Timer (WDT) with its own on-chip RC oscillator for reliable operation - · Programmable code-protection - Power saving SLEEP mode - · Selectable oscillator options - Low-power, high-speed CMOS EPROM/ROM technology - · Fully static design - · Wide operating voltage range: 2.5V to 6.0V - Commercial, Industrial, and Extended temperature ranges - Low-power consumption: - < 2 mA @ 5V, 4 MHz - 15 μA typical @ 3V, 32 kHz - < 1 μA typical standby current #### PIC16C6X Peripheral Features: - Timer0: 8-bit timer/counter with 8-bit prescaler - Timer1: 16-bit timer/counter with prescaler, can be incremented during sleep via external crystal/clock - Timer2: 8-bit timer/counter with 8-bit period register, prescaler and postscaler - Capture/Compare/PWM (CCP) module(s) - Capture is 16-bit, max resolution is 12.5 ns, Compare is 16-bit, max resolution is 200 ns, PWM max resolution is 10-bit. - Synchronous Serial Port (SSP) with SPI and I²C[™] - Universal Synchronous Asynchronous Receiver Transmitter (USART/SCI) - Parallel Slave Port (PSP) 8-bits wide, with external RD, WR and CS controls - Brown-out detection circuitry for Brown-out Reset (BOR) | PIC16C6X Features | 61 | 62 | 62A | R62 | 63 | R63 | 64 | 64A | R64 | 65 | 65A | R65 | 66 | 67 | |----------------------------------|-------|--------------------------|--------------------------|--------------------------|--------------------------------|--------------------------------|--------------------------|--------------------------|--------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------| | Program Memory
(EPROM) x 14 | 1K | 2K | 2K | _ | 4K | _ | 2K | 2K | - | 4K | 4K | _ | 8K | 8K | | (ROM) x 14 | _ | _ | _ | 2K | _ | 4K | _ | _ | 2K | _ | - | 4K | - | _ | | Data Memory (Bytes) x 8 | 36 | 128 | 128 | 128 | 192 | 192 | 128 | 128 | 128 | 192 | 192 | 192 | 368 | 368 | | I/O Pins | 13 | 22 | 22 | 22 | 22 | 22 | 33 | 33 | 33 | 33 | 33 | 33 | 22 | 33 | | Parallel Slave Port | _ | _ | _ | _ | _ | _ | Yes | Yes | Yes | Yes | Yes | Yes | - | Yes | | Capture/Compare/PWM
Module(s) | _ | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | | Timer Modules | 1 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | | Serial Communication | _ | SPI/
I ² C | SPI/
I ² C | SPI/
I ² C | SPI/I ² C,
USART | SPI/I ² C,
USART | SPI/
I ² C | SPI/
I ² C | SPI/
I ² C | SPI/I ² C,
USART | | In-Circuit Serial
Programming | Yes | Brown-out Reset | _ | _ | Yes | Yes | Yes | Yes | _ | Yes | Yes | _ | Yes | Yes | Yes | Yes | | Interrupt Sources | 3 | 7 | 7 | 7 | 10 | 10 | 8 | 8 | 8 | 11 | 11 | 11 | 10 | 11 | | Sink/Source Current (mA) | 25/20 | 25/25 | 25/25 | 25/25 | 25/25 | 25/25 | 25/25 | 25/25 | 25/25 | 25/25 | 25/25 | 25/25 | 25/25 | 25/25 | #### Pin Diagrams PDIP, SOIC, Windowed CERDIP SDIP, SOIC, SSOP, Windowed CERDIP (300 mil) 18 → RA1 MCI R/Vpp RA3 ← 2 RA4/T0CKI ← 3 RA0 ← □ 2 27 ☐ → RB6 26 ☐ → RB5 17 → RA0 RA1 **← ►** □ 3 16 → OSC1/CLKIN 25 □ → RB4 MCLR/VPP → 4 15 → OSC2/CLKOUT RA3 **→** □ 5 24 ☐ → RB3 Vss --- □ 5 RA4/T0CKI ← □ 6 23 ☐ → RB2 RA5/SS → □ 7 Vss → □ 8 22 ☐ → RB1 21 ☐ → RB0/INT 13 ←→ RB7 RB0/INT ← 6 RB1 **→** 7 12 ←→ RB6 20 - VDD 19 - VSS RB2 → □ 8 11 → RB5 RC0/T1OSI/T1CKI ← ☐ 11 RC1/T1OSO ← ☐ 12 RC2/CCP1 ← ☐ 13 RB3 **→** 9 RB4 16 ☐ ←→ RC5/SDO PIC16C61 RC3/SCK/SCL ← ► □ 14 15 ☐ ←→ RC4/SDI/SDA **PIC16C62** SDIP, SOIC, SSOP, Windowed CERDIP (300 mil) SDIP, SOIC, Windowed CERDIP (300 mil) R/VPP - C RA0 - C RA1 - C RA2 - C MCI B/Vpp -28 ☐ ←→ RB7 MCI B/Vpp -□ ←→ RB6 □ - RB6 RA1 → □ 3 26 ☐ ←→ RB5 26 ☐ ←→ RB5 RA2 ▼ ► □ 4 25 ☐ ←→ RB4 4 25 ☐ ←→ RB4 RA3 **→** 5 RA4/T0CKI **→** 6 24 ☐ → RB3 23 ☐ → RB2 24 ☐ → RB3 23 ☐ → RB2 RA5/SS → □ 7 22 ☐ → RB1 Vss — **-** □ 8 21 □ - RB0/INT OSC1/CLKIN → 9 OSC2/CLKOUT ← 10 10 10 19 ☐ **→** Vss RC0/T1OSO/T1CKI - 11 RC1/T1OSI - 12 RC2/CCP1 - 13 RC0/T1OSO/T1CKI ---18 ☐ ← ► RC7/RX/DT 17 ☐ → RC6 12 17 ☐ → RC6/TX/CK RC2/CCP1 → ► 16 - RC5/SDO 13 16 - RC5/SDO RC3/SCK/SCL ← ► RC3/SCK/SCL → □ 14 15 T → RC4/SDI/SDA 15 RC4/SDI/SDA PIC16C62A PIC16C63 PIC16CR62 PIC16CR63 **PIC16C66** PDIP, Windowed CERDIP MCLR/Vpp → □ 1 40 1 → BR7 MCLB/Vpp → 1 40 1 → BB7 39 ☐ < ► RB6 38 ☐ < ► RB5 RA0 ▼ ► □ 2 RA1 → □ 3 37 RB4 36 RB3 35 RB2 34 RB1 RA2 ▼ ► □ 4 36 ☐ < ► RB3 35 ☐ < ► RB2 BA3 ▼ ► □ 5 RA4/T0CKI → □ 6 RA5/SS → □ 7 33 ☐ → ► RB0/INT RE0/RD → □ 8 RE1/WR → □ 9 RE2/CS → □ 10 26 → RC7/RX/DT PIC16C64A PIC16C64 **PIC16C65** PIC16CR64 PIC16C65A PIC16CR65 PIC16C67 #### Pin Diagrams (Cont.'d) ### PIC16C6X #### **Table Of Contents** | 1.0 General Description | 5 | |---|-----| | 2.0 PIC16C6X Device Varieties | 7 | | 3.0 Architectural Overview | g | | 4.0 Memory Organization | 19 | | 5.0 I/O Ports | 51 | | 6.0 Overview of Timer Modules | 63 | | 7.0 Timer0 Module | 65 | | 8.0 Timer1 Module | 71 | | 9.0 Timer2 Module | | | 10.0 Capture/Compare/PWM (CCP) Module(s) | 77 | | 11.0 Synchronous Serial Port (SSP) Module | 83 | | 12.0 Universal Synchronous Asynchronous Receiver Transmitter (USART) Module | 105 | | 13.0 Special Features of the CPU | 123 | | 14.0 Instruction Set Summary | 143 | | 15.0 Development Support | 159 | | 16.0 Electrical Characteristics for PIC16C61 | 163 | | 17.0 DC and AC Characteristics Graphs and Tables for PIC16C61 | 173 | | 18.0 Electrical Characteristics for PIC16C62/64 | 183 | | 19.0 Electrical Characteristics for PIC16C62A/R62/64A/R64 | 199 | | 20.0 Electrical Characteristics for PIC16C65 | 215 | | 21.0 Electrical Characteristics for PIC16C63/65A | 231 | | 22.0 Electrical Characteristics for PIC16CR63/R65 | 247 | | 23.0 Electrical Characteristics for PIC16C66/67 | 263 | | 24.0 DC and AC Characteristics Graphs and Tables for: | | | PIC16C62, PIC16C62A, PIC16CR62, PIC16C63, PIC16C64, PIC16C64A, PIC16CR64, | | | PIC16C65A, PIC16C66, PIC16C67 | 281 | | 25.0 Packaging Information | 291 | | Appendix A: Modifications | 307 | | Appendix B: Compatibility | 307 | | Appendix C: What's New | 308 | | Appendix D: What's Changed | 308 | | Appendix E: PIC16/17 Microcontrollers | | | Pin Compatibility | | | Index | | | List of Equation and Examples | | | List of Figures | 326 | | List of Tables | | | Reader Response | | | PIC16C6X Product Identification System | 335 | For register and module descriptions in this data sheet, device legends show which devices apply to those sections. For example, the legend below shows that some features of only the PIC16C62A, PIC16CR62, PIC16C63, PIC16C64A, PIC16CR64, and PIC16C65A are described in this section. Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67 #### To Our Valued Customers We constantly strive to improve the quality of all our products and documentation. We have spent an exceptional amount of time to ensure that these documents are correct. However, we realize that we may have missed a few things. If you find any information that is missing or appears in error, please use the reader response form in the back of this data sheet to inform us. We appreciate your assistance in making this a better document. #### 1.0 GENERAL DESCRIPTION The PIC16CXX is a family of low-cost, high-performance, CMOS, fully-static, 8-bit microcontrollers. All PIC16/17 microcontrollers employ an advanced RISC architecture. The PIC16CXX microcontroller family has enhanced core features, eight-level deep stack, and multiple internal and external interrupt sources. The separate instruction and data buses of the Harvard architecture allow a 14-bit wide instruction word with separate 8-bit wide data. The two stage instruction pipeline allows all instructions to execute in a single cycle, except for program branches (which require two cycles). A total of 35 instructions (reduced instruction set) are available. Additionally, a large register set gives some of the architectural innovations used to achieve a very high performance. PIC16CXX microcontrollers typically achieve a 2:1 code
compression and a 4:1 speed improvement over other 8-bit microcontrollers in their class. The **PIC16C61** device has 36 bytes of RAM and 13 I/O pins. In addition a timer/counter is available. The PIC16C62/62A/R62 devices have 128 bytes of RAM and 22 I/O pins. In addition, several peripheral features are available, including: three timer/counters, one Capture/Compare/PWM module and one serial port. The Synchronous Serial Port can be configured as either a 3-wire Serial Peripheral Interface (SPI™) or the two-wire Inter-Integrated Circuit (I²C) bus. The PIC16C63/R63 devices have 192 bytes of RAM, while the PIC16C66 has 368 bytes. All three devices have 22 I/O pins. In addition, several peripheral features are available, including: three timer/counters, two Capture/Compare/PWM modules and two serial ports. The Synchronous Serial Port can be configured as either a 3-wire Serial Peripheral Interface (SPI) or the two-wire Inter-Integrated Circuit (I²C) bus. The Universal Synchronous Asynchronous Receiver Transmitter (USART) is also know as a Serial Communications Interface or SCI. The PIC16C64/64A/R64 devices have 128 bytes of RAM and 33 I/O pins. In addition, several peripheral features are available, including: three timer/counters, one Capture/Compare/PWM module and one serial port. The Synchronous Serial Port can be configured as either a 3-wire Serial Peripheral Interface (SPI) or the two-wire Inter-Integrated Circuit (I²C) bus. An 8-bit Parallel Slave Port is also provided. The PIC16C65/65A/R65 devices have 192 bytes of RAM, while the PIC16C67 has 368 bytes. All four devices have 33 I/O pins. In addition, several peripheral features are available, including: three timer/counters, two Capture/Compare/PWM modules and two serial ports. The Synchronous Serial Port can be configured as either a 3-wire Serial Peripheral Interface (SPI) or the two-wire Inter-Integrated Circuit (I²C) bus. The Universal Synchronous Asynchronous Receiver Transmit- ter (USART) is also known as a Serial Communications Interface or SCI. An 8-bit Parallel Slave Port is also provided The PIC16C6X device family has special features to reduce external components, thus reducing cost, enhancing system reliability and reducing power consumption. There are four oscillator options, of which the single pin RC oscillator provides a low-cost solution, the LP oscillator minimizes power consumption, XT is a standard crystal, and the HS is for High Speed crystals. The SLEEP (power-down) mode offers a power saving mode. The user can wake the chip from SLEEP through several external and internal interrupts, and resets. A highly reliable Watchdog Timer with its own on-chip RC oscillator provides protection against software lock-up. A UV erasable CERDIP packaged version is ideal for code development, while the cost-effective One-Time-Programmable (OTP) version is suitable for production in any volume. The PIC16C6X family fits perfectly in applications ranging from high-speed automotive and appliance control to low-power remote sensors, keyboards and telecom processors. The EPROM technology makes customization of application programs (transmitter codes, motor speeds, receiver frequencies, etc.) extremely fast and convenient. The small footprint packages make this microcontroller series perfect for all applications with space limitations. Low-cost, low-power, high performance, ease-of-use, and I/O flexibility make the PIC16C6X very versatile even in areas where no microcontroller use has been considered before (e.g. timer functions, serial communication, capture and compare, PWM functions, and co-processor applications). #### 1.1 Family and Upward Compatibility Those users familiar with the PIC16C5X family of microcontrollers will realize that this is an enhanced version of the PIC16C5X architecture. Please refer to Appendix A for a detailed list of enhancements. Code written for PIC16C5X can be easily ported to PIC16CXX family of devices (Appendix B). #### 1.2 <u>Development Support</u> PIC16C6X devices are supported by the complete line of Microchip Development tools. Please refer to Section 15.0 for more details about Microchip's development tools. TABLE 1-1: PIC16C6X FAMILY OF DEVICES | | | PIC16C61 | PIC16C62A | PIC16CR62 | PIC16C63 | PIC16CR63 | |-------------|---|----------------|----------------------------|----------------------------|--------------------------------|-------------------------------| | Clock | Maximum Frequency of Operation (MHz) | 20 | 20 | 20 | 20 | 20 | | | EPROM Program Memory (x14 words) | 1K | 2K | _ | 4K | _ | | Memory | ROM Program Memory (x14 words) | _ | _ | 2K | | 4K | | | Data Memory (bytes) | 36 | 128 | 128 | 192 | 192 | | | Timer Module(s) | TMR0 | TMR0,
TMR1,
TMR2 | TMR0,
TMR1,
TMR2 | TMR0,
TMR1,
TMR2 | TMR0,
TMR1,
TMR2 | | Peripherals | Capture/Compare/
PWM Module(s) | _ | 1 | 1 | 2 | 2 | | | Serial Port(s)
(SPI/I ² C, USART) | _ | SPI/I ² C | SPI/I ² C | SPI/I ² C,
USART | SPI/I ² C
USART | | | Parallel Slave Port | _ | _ | _ | _ | _ | | | Interrupt Sources | 3 | 7 | 7 | 10 | 10 | | | I/O Pins | 13 | 22 | 22 | 22 | 22 | | | Voltage Range (Volts) | 3.0-6.0 | 2.5-6.0 | 2.5-6.0 | 2.5-6.0 | 2.5-6.0 | | Features | In-Circuit Serial Programming | Yes | Yes | Yes | Yes | Yes | | | Brown-out Reset | _ | Yes | Yes | Yes | Yes | | | Packages | 18-pin DIP, SO | 28-pin SDIP,
SOIC, SSOP | 28-pin SDIP,
SOIC, SSOP | 28-pin SDIP,
SOIC | 28-pin SDIP,
SOIC | | | | PIC16C64A | PIC16CR64 | PIC16C65A | PIC16CR65 | PIC16C66 | PIC16C67 | |-------------|--|------------------------|---|--------------------------------|---|--------------------------------|---| | Clock | Maximum Frequency of Operation (MHz) | 20 | 20 | 20 | 20 | 20 | 20 | | | EPROM Program Memory (x14 words) | 2K | _ | 4K | _ | 8K | 8K | | Memory | ROM Program Memory (x14 words) | _ | 2K | _ | 4K | _ | _ | | | Data Memory (bytes) | 128 | 128 | 192 | 192 | 368 | 368 | | | Timer Module(s) | TMR0,
TMR1,
TMR2 | TMR0,
TMR1,
TMR2 | TMR0,
TMR1,
TMR2 | TMR0,
TMR1,
TMR2 | TMR0,
TMR1,
TMR2 | TMR0,
TMR1,
TMR2 | | Peripherals | Capture/Compare/PWM Mod-
ule(s) | 1 | 1 | 2 | 2 | 2 | 2 | | | Serial Port(s) (SPI/I ² C, USART) | SPI/I ² C | SPI/I ² C | SPI/I ² C,
USART | SPI/I ² C,
USART | SPI/I ² C,
USART | SPI/I ² C,
USART | | | Parallel Slave Port | Yes | Yes | Yes | Yes | _ | Yes | | | Interrupt Sources | 8 | 8 | 11 | 11 | 10 | 11 | | | I/O Pins | 33 | 33 | 33 | 33 | 22 | 33 | | | Voltage Range (Volts) | 2.5-6.0 | 2.5-6.0 | 2.5-6.0 | 2.5-6.0 | 2.5-6.0 | 2.5-6.0 | | | In-Circuit Serial Programming | Yes | Yes | Yes | Yes | Yes | Yes | | Features | Brown-out Reset | Yes | Yes | Yes | Yes | Yes | Yes | | | Packages | 44-pin PLCC, | 40-pin DIP;
44-pin PLCC,
MQFP, TQFP | | 40-pin DIP;
44-pin
PLCC,
MQFP,
TQFP | 28-pin SDIP,
SOIC | 40-pin DIP;
44-pin
PLCC,
MQFP,
TQFP | All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability. All PIC16C6X Family devices use serial programming with clock pin RB6 and data pin RB7. #### 2.0 PIC16C6X DEVICE VARIETIES A variety of frequency ranges and packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in the PIC16C6X Product Identification System section at the end of this data sheet. When placing orders, please use that page of the data sheet to specify the correct part number. For the PIC16C6X family of devices, there are four device "types" as indicated in the device number: - C, as in PIC16C64. These devices have EPROM type memory and operate over the standard voltage range. - LC, as in PIC16LC64. These devices have EPROM type memory and operate over an extended voltage range. - CR, as in PIC16CR64. These devices have ROM program memory and operate over the standard voltage range. - LCR, as in PIC16LCR64. These devices have ROM program memory and operate over an extended voltage range. #### 2.1 UV Erasable Devices The UV erasable version, offered in CERDIP package is optimal for prototype development and pilot programs. This version can be erased and reprogrammed to any of the oscillator modes. Microchip's PICSTART® Plus and PRO MATE® II programmers both support programming of the PIC16C6X. #### 2.2 <u>One-Time-Programmable (OTP)</u> Devices The availability of OTP devices is especially useful for customers who need the flexibility for frequent code updates and small volume applications. The OTP devices, packaged in plastic packages, permit the user to program them once. In addition to the program memory, the configuration bits must also be programmed. ### 2.3 Quick-Turnaround-Production (QTP) Devices Microchip offers a QTP Programming Service for factory production orders. This service is made available for users who choose not to program a medium to high quantity of units and whose code patterns have stabilized. The devices are identical to the OTP devices but with all EPROM locations and configuration options already programmed by the factory. Certain code and prototype verification procedures apply before production shipments are available. Please contact your local Microchip Technology sales office for more details. #### 2.4 <u>Serialized Quick-Turnaround</u> Production (SQTPSM) Devices Microchip offers a unique programming service where a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random, or sequential. Serial programming allows each device to have a unique number which can serve as an entry-code, password, or ID number. ROM devices do not allow
serialization information in the program memory space. The user may have this information programmed in the data memory space. For information on submitting ROM code, please contact your regional sales office. #### 2.5 Read Only Memory (ROM) Devices Microchip offers masked ROM versions of several of the highest volume parts, thus giving customers a low cost option for high volume, mature products. For information on submitting ROM code, please contact your regional sales office. ## PIC16C6X NOTES: #### 3.0 ARCHITECTURAL OVERVIEW The high performance of the PIC16CXX family can be attributed to a number of architectural features commonly found in RISC microprocessors. To begin with, the PIC16CXX uses a Harvard architecture, in which, program and data are accessed from separate memories using separate buses. This improves bandwidth over traditional von Neumann architecture where program and data may be fetched from the same memory using the same bus. Separating program and data busses further allows instructions to be sized differently than 8-bit wide data words. Instruction opcodes are 14-bits wide making it possible to have all single word instructions. A 14-bit wide program memory access bus fetches a 14-bit instruction in a single cycle. A twostage pipeline overlaps fetch and execution of instructions (Example 3-1). Consequently, all instructions execute in a single cycle (200 ns @ 20 MHz) except for program branches. The PIC16C61 addresses 1K x 14 of program memory. The PIC16C62/62A/R62/64/64A/R64 address 2K x 14 of program memory, and the PIC16C63/R63/65/65A/R65 devices address 4K x 14 of program memory. The PIC16C66/67 address 8K x 14 program memory. All program memory is internal. The PIC16CXX can directly or indirectly address its register files or data memory. All special function registers including the program counter are mapped in the data memory. The PIC16CXX has an orthogonal (symmetrical) instruction set that makes it possible to carry out any operation on any register using any addressing mode. This symmetrical nature and lack of "special optimal situations" makes programming with the PIC16CXX simple yet efficient, thus significantly reducing the learning curve. The PIC16CXX device contains an 8-bit ALU and working register (W). The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between data in the working register and any register file The ALU is 8-bits wide and capable of addition, subtraction, shift, and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. In two-operand instructions, typically one operand is the working register (W register), the other operand is a file register or an immediate constant. In single operand instructions, the operand is either the W register or a file register. The W register is an 8-bit working register used for ALU operations. It is not an addressable register. Depending upon the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC), and Zero (Z) bits in the STATUS register. Bits C and DC operate as a borrow and digit borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples. FIGURE 3-1: PIC16C61 BLOCK DIAGRAM FIGURE 3-2: PIC16C62/62A/R62/64/64A/R64 BLOCK DIAGRAM FIGURE 3-3: PIC16C63/R63/65/65A/R65 BLOCK DIAGRAM FIGURE 3-4: PIC16C66/67 BLOCK DIAGRAM **PIC16C61 PINOUT DESCRIPTION TABLE 3-1:** | Pin Name | DIP
Pin# | SOIC
Pin# | Pin Type | Buffer
Type | Description | |-------------|-------------|--------------|----------|------------------------|---| | OSC1/CLKIN | 16 | 16 | I | ST/CMOS ⁽¹⁾ | Oscillator crystal input/external clock source input. | | OSC2/CLKOUT | 15 | 15 | 0 | _ | Oscillator crystal output. Connects to crystal or resonator in crystal oscillator mode. In RC mode, the pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate. | | MCLR/VPP | 4 | 4 | I/P | ST | Master clear reset input or programming voltage input. This pin is an active low reset to the device. | | | | | | | PORTA is a bi-directional I/O port. | | RA0 | 17 | 17 | I/O | TTL | | | RA1 | 18 | 18 | I/O | TTL | | | RA2 | 1 | 1 | I/O | TTL | | | RA3 | 2 | 2 | I/O | TTL | | | RA4/T0CKI | 3 | 3 | I/O | ST | RA4 can also be the clock input to the Timer0 timer/counter.
Output is open drain type. | | | | | | | PORTB is a bi-directional I/O port. PORTB can be software programmed for internal weak pull-up on all inputs. | | RB0/INT | 6 | 6 | I/O | TTL/ST ⁽²⁾ | RB0 can also be the external interrupt pin. | | RB1 | 7 | 7 | I/O | TTL | | | RB2 | 8 | 8 | I/O | TTL | | | RB3 | 9 | 9 | I/O | TTL | | | RB4 | 10 | 10 | I/O | TTL | Interrupt on change pin. | | RB5 | 11 | 11 | I/O | TTL | Interrupt on change pin. | | RB6 | 12 | 12 | I/O | TTL/ST(3) | Interrupt on change pin. Serial programming clock. | | RB7 | 13 | 13 | I/O | TTL/ST(3) | Interrupt on change pin. Serial programming data. | | Vss | 5 | 5 | Р | _ | Ground reference for logic and I/O pins. | | VDD | 14 | 14 | Р | _ | Positive supply for logic and I/O pins. | Legend: I = input O = output Note 1: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise. 2: This buffer is a Schmitt Trigger input when configured as the external interrupt. ^{- =} Not used I/O = input/output TTL = TTL input P = power ST = Schmitt Trigger input ^{3:} This buffer is a Schmitt Trigger input when used in serial programming mode. **TABLE 3-2:** PIC16C62/62A/R62/63/R63/66 PINOUT DESCRIPTION | Pin Name | Pin# | Pin Type | Buffer
Type | Description | |---|--------|----------|------------------------|---| | OSC1/CLKIN | 9 | I | ST/CMOS ⁽³⁾ | Oscillator crystal input/external clock source input. | | OSC2/CLKOUT | 10 | 0 | _ | Oscillator crystal output. Connects to crystal or resonator in crystal oscillator mode. In RC mode, the pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate. | | MCLR/VPP | 1 | I/P | ST | Master clear reset input or programming voltage input. This pin is an active low reset to the device. | | | | | | PORTA is a bi-directional I/O port. | | RA0 | 2 | I/O | TTL | | | RA1 | 3 | I/O | TTL | | | RA2 | 4 | I/O | TTL | | | RA3 | 5 | I/O | TTL | | | RA4/T0CKI | 6 | I/O | ST | RA4 can also be the clock input to the Timer0 timer/counter. Output is open drain type. | | RA5/SS | 7 | I/O | TTL | RA5 can also be the slave select for the synchronous serial port. | | | | | | PORTB is a bi-directional I/O port. PORTB can be software programmed for internal weak pull-up on all inputs. | | RB0/INT | 21 | I/O | TTL/ST(4) | RB0 can also be the external interrupt pin. | | RB1 | 22 | I/O | TTL | | | RB2 | 23 | I/O | TTL | | | RB3 | 24 | I/O | TTL | | | RB4 | 25 | I/O | TTL | Interrupt on change pin. | | RB5 | 26 | I/O | TTL | Interrupt on change pin. | | RB6 | 27 | I/O | TTL/ST ⁽⁵⁾ | Interrupt on change pin. Serial programming clock. | | RB7 | 28 | I/O | TTL/ST ⁽⁵⁾ | Interrupt on change pin. Serial programming data. | | | | | | PORTC is a bi-directional I/O port. | | RC0/T1OSO ⁽¹⁾ /T1CKI | 11 | I/O | ST | RC0 can also be the Timer1 oscillator output ⁽¹⁾ or Timer1 clock input. | | RC1/T1OSI ⁽¹⁾ /CCP2 ⁽²⁾ | 12 | I/O | ST | RC1 can also be the Timer1 oscillator input ⁽¹⁾ or Capture2 input/Compare2 output/PWM2 output ⁽²⁾ . | | RC2/CCP1 | 13 | I/O | ST | RC2 can also be the Capture1 input/Compare1 out-
put/PWM1 output. | | RC3/SCK/SCL | 14 | I/O | ST | RC3 can also be the synchronous serial clock input/output for both SPI and I ² C modes. | | RC4/SDI/SDA | 15 | I/O | ST | RC4 can also be the SPI Data In (SPI mode) or data I/O (I ² C mode). | | RC5/SDO | 16 | I/O | ST | RC5 can also be the SPI Data Out (SPI mode). | | RC6/TX/CK ⁽²⁾ | 17 | I/O | ST | RC6 can also be the USART Asynchronous Transmit ⁽²⁾ or Synchronous Clock ⁽²⁾ . | | RC7/RX/DT ⁽²⁾ | 18 | I/O | ST | RC7 can also be the USART Asynchronous Receive ⁽²⁾ or Synchronous Data ⁽²⁾ . | | Vss | 8,19 | Р | _ | Ground reference for logic and I/O pins. | | VDD | 20 | Р | _ | Positive supply for logic and I/O pins. | | Legend: I = input O = | output | I/ | O = input/outpu | | - = Not used TTL = TTL input P = power ST = Schmitt Trigger input Note 1: Pin functions T10SO and T10SI are reversed on the PIC16C62. - 2: The USART and CCP2 are not available on the PIC16C62/62A/R62. - 3: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise. - 4: This buffer is a Schmitt Trigger input when configured as the external interrupt. - 5: This buffer is a Schmitt Trigger input when used in serial programming mode. **TABLE 3-3:** PIC16C64/64A/R64/65/65A/R65/67 PINOUT DESCRIPTION | | DIP
Pin# | PLCC
Pin# | TQFP
MQFP
Pin# | Pin
Type | Buffer
Type | Description | |---|-------------|--------------|----------------------|-------------|------------------------|--| | OSC1/CLKIN | 13 | 14 | 30 | ı | ST/CMOS ⁽³⁾ | Oscillator crystal input/external clock source input. | | OSC2/CLKOUT | 14 | 15 | 31 | 0 | _ | Oscillator crystal output. Connects to crystal or resonator in crystal oscillator mode. In RC mode, the pin outputs CLK-OUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate. | | MCLR/VPP | 1
 2 | 18 | I/P | ST | Master clear reset input or programming voltage input. This pin is an active low reset to the device. | | | | | | | | PORTA is a bi-directional I/O port. | | RA0 | 2 | 3 | 19 | I/O | TTL | | | RA1 | 3 | 4 | 20 | I/O | TTL | | | RA2 | 4 | 5 | 21 | I/O | TTL | | | RA3 | 5 | 6 | 22 | I/O | TTL | | | RA4/T0CKI | 6 | 7 | 23 | I/O | ST | RA4 can also be the clock input to the Timer0 timer/counter. Output is open drain type. | | RA5/SS | 7 | 8 | 24 | I/O | TTL | RA5 can also be the slave select for the synchronous serial port. | | | | | | | | PORTB is a bi-directional I/O port. PORTB can be software programmed for internal weak pull-up on all inputs. | | RB0/INT | 33 | 36 | 8 | I/O | TTL/ST ⁽⁴⁾ | RB0 can also be the external interrupt pin. | | RB1 | 34 | 37 | 9 | I/O | TTL | | | RB2 | 35 | 38 | 10 | I/O | TTL | | | RB3 | 36 | 39 | 11 | I/O | TTL | | | RB4 | 37 | 41 | 14 | I/O | TTL | Interrupt on change pin. | | RB5 | 38 | 42 | 15 | I/O | TTL | Interrupt on change pin. | | RB6 | 39 | 43 | 16 | I/O | TTL/ST ⁽⁵⁾ | Interrupt on change pin. Serial programming clock. | | RB7 | 40 | 44 | 17 | I/O | TTL/ST ⁽⁵⁾ | Interrupt on change pin. Serial programming data. | | | | | | | | PORTC is a bi-directional I/O port. | | RC0/T10SO ⁽¹⁾ /T1CKI | 15 | 16 | 32 | I/O | ST | RC0 can also be the Timer1 oscillator output ⁽¹⁾ or Timer1 clock input. | | RC1/T1OSI ⁽¹⁾ /CCP2 ⁽²⁾ | 16 | 18 | 35 | I/O | ST | RC1 can also be the Timer1 oscillator input ⁽¹⁾ or Capture2 input/Compare2 output/PWM2 output ⁽²⁾ . | | RC2/CCP1 | 17 | 19 | 36 | I/O | ST | RC2 can also be the Capture1 input/Compare1 out-
put/PWM1 output. | | RC3/SCK/SCL | 18 | 20 | 37 | I/O | ST | RC3 can also be the synchronous serial clock input/out-
put for both SPI and I ² C modes. | | RC4/SDI/SDA | 23 | 25 | 42 | I/O | ST | RC4 can also be the SPI Data In (SPI mode) or data I/O (I ² C mode). | | RC5/SDO | 24 | 26 | 43 | I/O | ST | RC5 can also be the SPI Data Out (SPI mode). | | RC6/TX/CK ⁽²⁾ | 25 | 27 | 44 | I/O | ST | RC6 can also be the USART Asynchronous Transmit ⁽²⁾ or Synchronous Clock ⁽²⁾ . | | RC7/RX/DT ⁽²⁾ | 26 | 29 | 1 | I/O | ST | RC7 can also be the USART Asynchronous Receive ⁽²⁾ or Synchronous Data ⁽²⁾ . | Legend: I = input O = output - = Not used TTL = TTL input ST = Schmitt Trigger input Note 1: Pin functions T1OSO and T1OSI are reversed on the PIC16C64. - 2: CCP2 and the USART are not available on the PIC16C64/64A/R64. - 3: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise. - 4: This buffer is a Schmitt Trigger input when configured as the external interrupt. - 5: This buffer is a Schmitt Trigger input when used in serial programming mode. - 6: This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel Slave Port mode (for interfacing to a microprocessor bus). **TABLE 3-3:** PIC16C64/64A/R64/65/65A/R65/67 PINOUT DESCRIPTION (Cont.'d) | Pin Name | DIP
Pin# | PLCC
Pin# | TQFP
MQFP
Pin# | Pin
Type | Buffer
Type | Description | |-------------------|-------------|--------------|----------------------|-------------|-----------------------|--| | | | | | | | PORTD can be a bi-directional I/O port or parallel slave port for interfacing to a microprocessor bus. | | RD0/PSP0 | 19 | 21 | 38 | I/O | ST/TTL ⁽⁶⁾ | | | RD1/PSP1 | 20 | 22 | 39 | I/O | ST/TTL ⁽⁶⁾ | | | RD2/PSP2 | 21 | 23 | 40 | I/O | ST/TTL ⁽⁶⁾ | | | RD3/PSP3 | 22 | 24 | 41 | I/O | ST/TTL(6) | | | RD4/PSP4 | 27 | 30 | 2 | I/O | ST/TTL ⁽⁶⁾ | | | RD5/PSP5 | 28 | 31 | 3 | I/O | ST/TTL ⁽⁶⁾ | | | RD6/PSP6 | 29 | 32 | 4 | I/O | ST/TTL ⁽⁶⁾ | | | RD7/PSP7 | 30 | 33 | 5 | I/O | ST/TTL(6) | | | | | | | | | PORTE is a bi-directional I/O port. | | RE0/RD | 8 | 9 | 25 | I/O | ST/TTL ⁽⁶⁾ | RE0 can also be read control for the parallel slave port. | | RE1/WR | 9 | 10 | 26 | I/O | ST/TTL ⁽⁶⁾ | RE1 can also be write control for the parallel slave port. | | RE2/CS | 10 | 11 | 27 | I/O | ST/TTL(6) | RE2 can also be select control for the parallel slave port. | | Vss | 12,31 | 13,34 | 6,29 | Р | _ | Ground reference for logic and I/O pins. | | VDD | 11,32 | 12,35 | 7,28 | Р | _ | Positive supply for logic and I/O pins. | | NC | _ | 1,17, | 12,13, | _ | _ | These pins are not internally connected. These pins should | | | | 28,40 | 33,34 | | | be left unconnected. | | Legend: I = input | ut | 1/0 | 0 = input/ | output | P = power | | Legend: I = input ST = Schmitt Trigger input - 2: CCP2 and the USART are not available on the PIC16C64/64A/R64. - 3: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise. - 4: This buffer is a Schmitt Trigger input when configured as the external interrupt. - 5: This buffer is a Schmitt Trigger input when used in serial programming mode. - 6: This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel Slave Port mode (for interfacing to a microprocessor bus). ^{- =} Not used TTL = TTL input P = power Note 1: Pin functions T1OSO and T1OSI are reversed on the PIC16C64. #### 3.1 Clocking Scheme/Instruction Cycle The clock input (from OSC1) is internally divided by four to generate four non-overlapping quadrature clocks namely Q1, Q2, Q3, and Q4. Internally, the program counter (PC) is incremented every Q1, the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clock and instruction execution flow is shown in Figure 3-5. #### 3.2 <u>Instruction Flow/Pipelining</u> An "Instruction Cycle" consists of four Q cycles (Q1, Q2, Q3, and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g. GOTO) then two cycles are required to complete the instruction (Example 3-1). A fetch cycle begins with the program counter (PC) incrementing in Q1. In the execution cycle, the fetched instruction is latched into the "Instruction Register (IR)" in cycle Q1. This instruction is then decoded and executed during the Q2, Q3, and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write). FIGURE 3-5: CLOCK/INSTRUCTION CYCLE #### **EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW** All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction is "flushed" from the pipeline while the new instruction is being fetched and then executed. #### 4.0 MEMORY ORGANIZATION Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67 #### 4.1 Program Memory Organization The PIC16C6X family has a 13-bit program counter capable of addressing an 8K x 14 program memory space. The amount of program memory available to each device is listed below: | Device | Program
Memory | Address Range | |-----------|-------------------|---------------| | PIC16C61 | 1K x 14 | 0000h-03FFh | | PIC16C62 | 2K x 14 | 0000h-07FFh | | PIC16C62A | 2K x 14 | 0000h-07FFh | | PIC16CR62 | 2K x 14 | 0000h-07FFh | | PIC16C63 | 4K x 14 | 0000h-0FFFh | | PIC16CR63 | 4K x 14 | 0000h-0FFFh | | PIC16C64 | 2K x 14 | 0000h-07FFh | | PIC16C64A | 2K x 14 | 0000h-07FFh | | PIC16CR64 | 2K x 14 | 0000h-07FFh | | PIC16C65 | 4K x 14 | 0000h-0FFFh | | PIC16C65A | 4K x 14 | 0000h-0FFFh | | PIC16CR65 | 4K x 14 | 0000h-0FFFh | | PIC16C66 | 8K x 14 | 0000h-1FFFh | | PIC16C67 | 8K x 14 | 0000h-1FFFh | For those devices with less than 8K program memory, accessing a location above the physically implemented address will cause a wraparound. The reset vector is at 0000h and the interrupt vector is at 0004h. FIGURE 4-1: PIC16C61 PROGRAM MEMORY MAP AND STACK FIGURE 4-2: PIC16C62/62A/R62/64A/64A/ R64 PROGRAM MEMORY MAP AND STACK FIGURE 4-3: PIC16C63/R63/65/65A/R65 PROGRAM MEMORY MAP AND STACK FIGURE 4-4: PIC16C66/67 PROGRAM MEMORY MAP AND STACK #### 4.2 <u>Data Memory Organization</u> | Αį | pli | cable | e Dev | /ice | es | | | | | | | | | |----|-----|-------|-------|------|-----|----|-----|-----|----|-----|-----|----|----| | 61 | 62 | 62A | R62 | 63 | R63 | 64 | 64A | R64 | 65 | 65A | R65 | 66 | 67 | The data memory is partitioned into multiple banks which contain the General Purpose Registers and the Special Function Registers. Bits RP1 and RP0 are the bank select bits. RP1:RP0 (STATUS<6:5>) $= 00 \rightarrow Bank0$ $= 01 \rightarrow Bank1$ = $10 \rightarrow Bank2$ = 11 → Bank3 Each bank extends up to 7Fh (128 bytes). The lower locations of each bank are reserved for the Special Function Registers. Above the Special Function Registers are General Purpose Registers, implemented as static RAM. All implemented banks contain special function registers. Some "high use" special function registers from one bank may be mirrored in another bank for code reduction and quicker access. #### 4.2.1 GENERAL PURPOSE REGISTERS These registers are accessed either directly or indirectly through the File Select Register (FSR) (Section 4.5). For the PIC16C61, general purpose register locations 8Ch-AFh of Bank 1 are not physically implemented. These locations are mapped into 0Ch-2Fh of Bank 0. FIGURE 4-5: PIC16C61 REGISTER FILE MAP | File Address | File Address File Address | | | | | | | | | | |--|--------------------------------|------------------------------------|-----|--|--|--|--|--|--|--| | 00h | INDF ⁽¹⁾ | INDF ⁽¹⁾ | 80h | | | | | | | | | 01h | TMR0 | OPTION | 81h | | | | | | | | | 02h | PCL | PCL | 82h | | | | | | | | | 03h | STATUS | STATUS | 83h | | | | | | | | | 04h | FSR | FSR | 84h | | | | | | | | | 05h | PORTA |
TRISA | 85h | | | | | | | | | 06h | PORTB | TRISB | 86h | | | | | | | | | 07h | | | 87h | | | | | | | | | 08h | | | 88h | | | | | | | | | 09h | | | 89h | | | | | | | | | 0Ah | PCLATH | PCLATH | 8Ah | | | | | | | | | 0Bh | INTCON | INTCON | 8Bh | | | | | | | | | 0Ch | | | 8Ch | | | | | | | | | | General
Purpose
Register | Mapped
in Bank 0 ⁽²⁾ | | | | | | | | | | 2Fh | | | AFh | | | | | | | | | 30h | | | B0h | | | | | | | | | | (| 75. | | | | | | | | | | | | 7Fh | | | FFh | | | | | | | | | | Bank 0 | Bank 1 | | | | | | | | | | Unimplemented data memory location; read as '0'. Note 1: Not a physical register. | | | | | | | | | | | These locations are unimplemented in Bank 1. Any access to these locations will access the corresponding Bank 0 register. FIGURE 4-6: PIC16C62/62A/R62/64/64A/ R64 REGISTER FILE MAP | | no4 ne | GISTER FILE | IWAP | | | | | |------------|--|--------------------------------|--------------|--|--|--|--| | File Addre | ess | | File Address | | | | | | 00h | INDF ⁽¹⁾ | INDF ⁽¹⁾ | 80h | | | | | | 01h | TMR0 | OPTION | 81h | | | | | | 02h | PCL | PCL | 82h | | | | | | 03h | STATUS | STATUS | 83h | | | | | | 04h | FSR | FSR | 84h | | | | | | 05h | PORTA | TRISA | 85h | | | | | | 06h | PORTB | TRISB | 86h | | | | | | 07h | PORTC | TRISC | 87h | | | | | | 08h | PORTD ⁽²⁾ | TRISD ⁽²⁾ | 88h | | | | | | 09h | PORTE ⁽²⁾ | TRISE ⁽²⁾ | 89h | | | | | | 0Ah | PCLATH | PCLATH | 8Ah | | | | | | 0Bh | INTCON | INTCON | 8Bh | | | | | | 0Ch | PIR1 | PIE1 | 8Ch | | | | | | 0Dh | | | 8Dh | | | | | | 0Eh | TMR1L | PCON | 8Eh | | | | | | 0Fh | TMR1H | | 8Fh | | | | | | 10h | T1CON | | 90h | | | | | | 11h | TMR2 | | 91h | | | | | | 12h | T2CON | PR2 | 92h | | | | | | 13h | SSPBUF | SSPADD | 93h | | | | | | 14h | SSPCON | SSPSTAT | 94h | | | | | | 15h | CCPR1L | | 95h | | | | | | 16h | CCPR1H | | 96h | | | | | | 17h | CCP1CON | | 97h | | | | | | 18h | | | 98h | | | | | | | | | | | | | | | 1Fh | | | 9Fh | | | | | | 20h | | 0 | A0h | | | | | | | General | General
Purpose
Register | BFh | | | | | | | Purpose
Register | | C0h | | | | | | | riogistor | | | | | | | | 7Fh | | | FFh | | | | | | | Bank 0 | Bank 1 | | | | | | | | nplemented data m | - | ead as '0'. | | | | | | INOR | Note 1: Not a physical register. 2: PORTD and PORTE are not available on | | | | | | | PORTD and PORTE are not available on the PIC16C62/62A/R62. FIGURE 4-7: PIC16C63/R63/65/65A/R65 REGISTER FILE MAP | | REGIS! | ICK FILE IVIA | 47 | |------------|---------------------------|----------------------|--------------| | File Addre | ess | | File Address | | 00h | INDF ⁽¹⁾ | INDF ⁽¹⁾ | 80h | | 01h | TMR0 | OPTION | 81h | | 02h | PCL | PCL | 82h | | 03h | STATUS | STATUS | 83h | | 04h | FSR | FSR | 84h | | 05h | PORTA | TRISA | 85h | | 06h | PORTB | TRISB | 86h | | 07h | PORTC | TRISC | 87h | | 08h | PORTD ⁽²⁾ | TRISD ⁽²⁾ | 88h | | 09h | PORTE ⁽²⁾ | TRISE ⁽²⁾ | 89h | | 0Ah | PCLATH | PCLATH | 8Ah | | 0Bh | INTCON | INTCON | 8Bh | | 0Ch | PIR1 | PIE1 | 8Ch | | 0Dh | PIR2 | PIE2 | 8Dh | | 0Eh | TMR1L | PCON | 8Eh | | 0Fh | TMR1H | | 8Fh | | 10h | T1CON | | 90h | | 11h | TMR2 | | 91h | | 12h | T2CON | PR2 | 92h | | 13h | SSPBUF | SSPADD | 93h | | 14h | SSPCON | SSPSTAT | 94h | | 15h | CCPR1L | | 95h | | 16h | CCPR1H | | 96h | | 17h | CCP1CON | | 97h | | 18h | RCSTA | TXSTA | 98h | | 19h | TXREG | SPBRG | 99h | | 1Ah | RCREG | | 9Ah | | 1Bh | CCPR2L | | 9Bh | | 1Ch | CCPR2H | | 9Ch | | 1Dh | CCP2CON | | 9Dh | | 1Eh | | | 9Eh | | 1Fh | | | 9Fh | | 20h | General | General | A0h | | | Purpose | Purpose | | | 7Fh | Register | Register | FFh | | Linin | Bank 0 nplemented data me | Bank 1 | road as '0' | | | .p.omomou data III | ory iocalion, | | Unimplemented data memory location; read as '0 Note 1: Not a physical register ^{2:} PORTD and PORTE are not available on the PIC16C63/R63. FIGURE 4-8: PIC16C66/67 DATA MEMORY MAP | | | | | | | | File
Address | |--|-------|--|-------|--|--------|--|-----------------| | Indirect addr.(*) | 00h | Indirect addr.(*) | 80h | Indirect addr.(*) | 100h | Indirect addr.(*) | 180h | | TMR0 | 01h | OPTION | 81h | TMR0 | 101h | OPTION | 181h | | PCL | 02h | PCL | 82h | PCL | 102h | PCL | 182h | | STATUS | 03h | STATUS | 83h | STATUS | 103h | STATUS | 183h | | FSR | 04h | FSR | 84h | FSR | 104h | FSR | 184h | | PORTA | 05h | TRISA | 85h | | 105h | | 185h | | PORTB | 06h | TRISB | 86h | PORTB | 106h | TRISB | 186h | | PORTC | 07h | TRISC | 87h | | 107h | | 187h | | PORTD (1) | 08h | TRISD (1) | 88h | | 108h | | 188h | | PORTE (1) | 09h | TRISE (1) | 89h | | 109h | | 189h | | PCLATH | 0Ah | PCLATH | 8Ah | PCLATH | 10Ah | PCLATH | 18Ah | | INTCON | 0Bh | INTCON | 8Bh | INTCON | 10Bh | INTCON | 18Bh | | PIR1 | 0Ch | PIE1 | 8Ch | | 10Ch | | 18Ch | | PIR2 | 0Dh | PIE2 | 8Dh | | 10Dh | | 18Dh | | TMR1L | 0Eh | PCON | 8Eh | | 10Eh | | 18Eh | | TMR1H | 0Fh | | 8Fh | | 10Fh | | 18Fh | | T1CON | 10h | | 90h | | 110h | | 190h | | TMR2 | 11h | | 91h | | 111h | | 191h | | T2CON | 12h | PR2 | 92h | | 112h | | 192h | | SSPBUF | 13h | SSPADD | 93h | | 113h | | 193h | | SSPCON | 14h | SSPSTAT | 94h | | 114h | | 194h | | CCPR1L | 15h | | 95h | | 115h | | 195h | | CCPR1H | 16h | | 96h | | 116h | | 196h | | CCP1CON | 17h | | 97h | General
Purpose | 117h | General
Purpose | 197h | | RCSTA | 18h | TXSTA | 98h | Register | 118h | Register | 198h | | TXREG | 19h | SPBRG | 99h | 16 Bytes | 119h | 16 Bytes | 199h | | RCREG | 1Ah | | 9Ah | | 11Ah | | 19Ah | | CCPR2L | 1Bh | | 9Bh | | 11Bh | | 19Bh | | CCPR2H | 1Ch | | 9Ch | | 11Ch | | 19Ch | | CCP2CON | 1Dh | | 9Dh | | 11Dh | | 19Dh | | | 1Eh | | 9Eh | | 11Eh | | 19Eh | | | 1Fh | | 9Fh | | 11Fh | | 19Fh | | | 20h | | A0h | | 120h | | 1A0h | | General
Purpose
Register
96 Bytes | | General
Purpose
Register
80 Bytes | EFh | General
Purpose
Register
80 Bytes | 16Fh | General
Purpose
Register
80 Bytes | 1EFh | | | 7Fh | accesses
70h-7Fh
in Bank 0 | F0h | accesses
70h-7Fh
in Bank 0 | 170h | accesses
70h-7Fh
in Bank 0 | 1F0h | | Bank 0 | / FII | Bank 1 | I.EII | Bank 2 | / 1 11 | Bank 3 | _ 11 1 11 | Unimplemented data memory locations, read as '0'. These registers are not implemented on the PIC16C66. **Note:** The upper 16 bytes of data memory in banks 1, 2, and 3 are mapped in Bank 0. This may require relocation of data memory usage in the user application code if upgrading to the PIC16C66/67. ^{*} Not a physical register. #### 4.2.2 SPECIAL FUNCTION REGISTERS: The Special Function Registers are registers used by the CPU and peripheral modules for controlling the desired operation of the device. These registers are implemented as static RAM. The special function registers can be classified into two sets (core and peripheral). The registers associated with the "core" functions are described in this section and those related to the operation of the peripheral features are described in the section of that peripheral feature. TABLE 4-1: SPECIAL FUNCTION REGISTERS FOR THE PIC16C61 | Address | Name | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Value on:
POR | Value on
all other
resets ⁽³⁾ | | | |----------------------|--------|--|---|---------------|--------------|---------------|------------------|---------------|-----------|------------------|--|--|--| | Bank 0 | | | | | | | | | | | | | | | 00h ⁽¹⁾ | INDF | Addressing | ddressing this location uses contents of FSR to address data memory (not a physical register) | | | | | | | | | | | | 01h | TMR0 | Timer0 mod | imer0 module's register xxxx xxxx t | | | | | | | | | | | | 02h ⁽¹⁾ | PCL | Program Co | Program Counter's (PC) Least Significant Byte | | | | | | | | | | | | 03h ⁽¹⁾ | STATUS | IRP ⁽⁴⁾ | RP1 ⁽⁴⁾ | RP0 | TO | PD | Z | DC | С | 0001 1xxx | 000q quuu | | | | 04h ⁽¹⁾ | FSR | Indirect data | a memory ad | dress pointe | r | | | | | xxxx xxxx | uuuu uuuu | | | | 05h | PORTA | _ | _ | _ | PORTA Dat | a Latch whe | n written: PC | RTA pins wh | en read | x xxxx | u uuuu | | | | 06h | PORTB | PORTB Dat | a Latch whe | n written: PC | RTB pins wi | nen read | | | | xxxx xxxx | uuuu uuuu | | | | 07h | _ | Unimpleme | nted | | | | | | | _ | _ | | | | 08h | _ | Unimpleme | nted | | | | | | | _ | _ | | | | 09h | _ | Unimpleme | nted | | | | | | | _ | _ | | | | 0Ah ^(1,2) | PCLATH | _ | _ | _ | Write Buffer | for the uppe | er 5 bits of the | e Program C | ounter | 0 0000 | 0 0000 | | | | 0Bh ⁽¹⁾ | INTCON | GIE | _ | TOIE | INTE | RBIE | TOIF | INTF | RBIF | 0-00 000x | 0-00 000u | | | | Bank 1 | | | | | | | | | | | | | | | 80h ⁽¹⁾ | INDF | Addressing | this location | uses conten | ts of FSR to | address data | a memory (n | ot a physical | register) | 0000 0000 | 0000 0000 | | | | 81h | OPTION | RBPU | INTEDG | T0CS | T0SE | PSA | PS2 | PS1 | PS0 | 1111 1111 | 1111 1111 | | | | 82h ⁽¹⁾ | PCL | Program Co | ounter's (PC) | Least Signif | icant Byte | | | | | 0000 0000 | 0000 0000 | | | | 83h ⁽¹⁾ | STATUS | IRP ⁽⁴⁾ | RP1 ⁽⁴⁾ | RP0 | TO | PD | Z | DC | С | 0001 1xxx | 000q quuu | | | | 84h ⁽¹⁾ | FSR | Indirect data | a memory ad | dress pointe | r | | | | | xxxx xxxx | uuuu uuuu | | | | 85h | TRISA | _ | _ | _ | PORTA Dat | a Direction F | Register | | | 1 1111 | 1 1111 | | | | 86h | TRISB | PORTB Dat | PORTB Data Direction Control Register | | | | | | | | 1111 1111 | | | | 87h | - | Unimpleme | Unimplemented | | | | | | | | _ | | | | 88h | - | Unimpleme | Unimplemented | | |
| | | | | _ | | | | 89h | - | Unimplemented | | | | | | | | | _ | | | | 8Ah ^(1,2) | PCLATH | Write Buffer for the upper 5 bits of the Program Counter0 0000 | | | | | | | | | 0 0000 | | | | 8Bh ⁽¹⁾ | INTCON | GIE | _ | TOIE | INTE | RBIE | TOIF | INTF | RBIF | 0-00 000x | 0-00 000u | | | $\label{eq:localization} \textbf{Legend:} \quad \textbf{x} = \textbf{unknown}, \textbf{u} = \textbf{unchanged}, \textbf{q} = \textbf{value} \ \textbf{depends} \ \textbf{on condition}, \ - = \textbf{unimplemented locations read as '0'}.$ Shaded locations are unimplemented and read as '0' Note 1: These registers can be addressed from either bank. ^{2:} The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose contents are transferred to the upper byte of the program counter. (PC<12:8>) ^{3:} Other (non power-up) resets include external reset through MCLR and the Watchdog Timer Reset. ^{4:} The IRP and RP1 bits are reserved on the PIC16C61, always maintain these bits clear. TABLE 4-2: SPECIAL FUNCTION REGISTERS FOR THE PIC16C62/62A/R62 | Address | Name | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Value on:
POR,
BOR | Value on
all other
resets ⁽³⁾ | | |----------------------|---------|----------------------------|--|----------------|----------------|--------------|-----------------|-------------|---------|--------------------------|--|--| | Bank 0 | • | • | • | | • | • | • | • | • | | | | | 00h ⁽¹⁾ | INDF | Addressing | Addressing this location uses contents of FSR to address data memory (not a physical register) | | | | | | | | | | | 01h | TMR0 | Timer0 mod | lule's registe | r | | | | | | xxxx xxxx | uuuu uuuu | | | 02h ⁽¹⁾ | PCL | Program Co | ounter's (PC) | Least Signi | ficant Byte | | | | | 0000 0000 | 0000 0000 | | | 03h ⁽¹⁾ | STATUS | IRP ⁽⁵⁾ | RP1 ⁽⁵⁾ | RP0 | TO | PD | Z | DC | С | 0001 1xxx | 000q quuu | | | 04h ⁽¹⁾ | FSR | Indirect dat | a memory ac | Idress pointe | er | | | | | xxxx xxxx | uuuu uuuu | | | 05h | PORTA | _ | _ | PORTA Dat | a Latch wher | written: PO | RTA pins wh | en read | | xx xxxx | uu uuuu | | | 06h | PORTB | PORTB Da | ta Latch whe | n written: PC | ORTB pins wh | nen read | | | | xxxx xxxx | uuuu uuuu | | | 07h | PORTC | PORTC Da | ta Latch whe | n written: PO | ORTC pins w | nen read | | | | xxxx xxxx | uuuu uuuu | | | 08h | _ | Unimpleme | nted | | | | | | | _ | _ | | | 09h | _ | Unimplemented | | | | | | | | _ | _ | | | 0Ah ^(1,2) | PCLATH | _ | _ | _ | Write Buffer | for the uppe | r 5 bits of the | e Program C | ounter | 0 0000 | 0 0000 | | | 0Bh ⁽¹⁾ | INTCON | GIE | PEIE | TOIE | INTE | RBIE | TOIF | INTF | RBIF | 0000 000x | 0000 000u | | | 0Ch | PIR1 | (6) | (6) | - | _ | SSPIF | CCP1IF | TMR2IF | TMR1IF | 00 0000 | 00 0000 | | | 0Dh | _ | Unimpleme | nted | | | | | | | _ | _ | | | 0Eh | TMR1L | Holding reg | ister for the I | _east Signific | ant Byte of t | he 16-bit TM | R1 register | | | xxxx xxxx | uuuu uuuu | | | 0Fh | TMR1H | Holding reg | ister for the I | Most Signific | ant Byte of th | e 16-bit TMF | R1 register | | | xxxx xxxx | uuuu uuuu | | | 10h | T1CON | _ | _ | T1CKPS1 | T1CKPS0 | T10SCEN | T1SYNC | TMR1CS | TMR10N | 00 0000 | uu uuuu | | | 11h | TMR2 | Timer2 mod | lule's registe | r | • | • | | | | 0000 0000 | 0000 0000 | | | 12h | T2CON | _ | TOUTPS3 | TOUTPS2 | TOUTPS1 | TOUTPS0 | TMR2ON | T2CKPS1 | T2CKPS0 | -000 0000 | -000 0000 | | | 13h | SSPBUF | Synchronou | ıs Serial Por | t Receive Bu | ffer/Transmit | Register | | | | xxxx xxxx | uuuu uuuu | | | 14h | SSPCON | WCOL | SSPOV | SSPEN | CKP | SSPM3 | SSPM2 | SSPM1 | SSPM0 | 0000 0000 | 0000 0000 | | | 15h | CCPR1L | Capture/Compare/PWM1 (LSB) | | | | | | | | xxxx xxxx | uuuu uuuu | | | 16h | CCPR1H | Capture/Compare/PWM1 (MSB) | | | | | | | | | uuuu uuuu | | | 17h | CCP1CON | _ | _ | CCP1X | CCP1Y | CCP1M3 | CCP1M2 | CCP1M1 | CCP1M0 | 00 0000 | 00 0000 | | | 18h-1Fh | _ | Unimpleme | nted | | | | | | | _ | _ | | $\begin{tabular}{ll} Legend: & $x=$ unknown, $u=$ unchanged, $q=$ value depends on condition, $-=$ unimplemented location read as '0'. \end{tabular}$ - Note 1: These registers can be addressed from either bank. - 2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose contents are transferred to the upper byte of the program counter. (PC<12:8>) - 3: Other (non power-up) resets include external reset through MCLR and the Watchdog Timer reset. - 4: The BOR bit is reserved on the PIC16C62, always maintain this bit set. - 5: The IRP and RP1 bits are reserved on the PIC16C62/62A/R62, always maintain these bits clear. - $\hbox{6:} \quad \hbox{PIE1}<7:6> \hbox{ and PIR1}<7:6> \hbox{ are reserved on the PIC16C62}/62A/R62, always maintain these bits clear. } \\$ Shaded locations are unimplemented, read as '0'. TABLE 4-2: SPECIAL FUNCTION REGISTERS FOR THE PIC16C62/62A/R62 (Cont.'d) | Address | Name | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Value on:
POR,
BOR | Value on
all other
resets ⁽³⁾ | |----------------------|---------|--|--------------------------------------|------------|----------------|--------------|-----------------|-----------|--------------------|--------------------------|--| | Bank 1 | | | | | | | | | | | | | 80h ⁽¹⁾ | INDF | Addressing | this location | register) | 0000 0000 | 0000 0000 | | | | | | | 81h | OPTION | RBPU | INTEDG | T0CS | TOSE | PSA | PS2 | PS1 | PS0 | 1111 1111 | 1111 1111 | | 82h ⁽¹⁾ | PCL | Program Co | ounter's (PC) | Least Sigr | nificant Byte | | | | | 0000 0000 | 0000 0000 | | 83h ⁽¹⁾ | STATUS | IRP ⁽⁵⁾ | RP1 ⁽⁵⁾ | RP0 | TO | PD | Z | DC | С | 0001 1xxx | 000q quuu | | 84h ⁽¹⁾ | FSR | Indirect dat | Indirect data memory address pointer | | | | | | | | uuuu uuuu | | 85h | TRISA | _ | _ | PORTA Dat | ta Direction R | egister | | | | 11 1111 | 11 1111 | | 86h | TRISB | PORTB Da | ta Direction F | Register | | | | | | 1111 1111 | 1111 1111 | | 87h | TRISC | PORTC Da | ta Direction F | Register | | | | | | 1111 1111 | 1111 1111 | | 88h | _ | Unimpleme | Unimplemented | | | | | | | | _ | | 89h | _ | Unimpleme | nted | | | | | | | _ | - | | 8Ah ^(1,2) | PCLATH | _ | _ | - | Write Buffer | for the uppe | r 5 bits of the | Program C | ounter | 0 0000 | 0 0000 | | 8Bh ⁽¹⁾ | INTCON | GIE | PEIE | TOIE | INTE | RBIE | TOIF | INTF | RBIF | 0000 000x | 0000 000u | | 8Ch | PIE1 | (6) | (6) | _ | _ | SSPIE | CCP1IE | TMR2IE | TMR1IE | 00 0000 | 00 0000 | | 8Dh | _ | Unimpleme | nted | | | | | | | _ | _ | | 8Eh | PCON | _ | _ | _ | _ | _ | _ | POR | BOR ⁽⁴⁾ | qq | uu | | 8Fh | _ | Unimpleme | nted | | | | | | | _ | _ | | 90h | _ | Unimpleme | nted | | | | | | | _ | _ | | 91h | _ | Unimpleme | Unimplemented – | | | | | | | | _ | | 92h | PR2 | Timer2 Peri | iod Register | | | | | | | 1111 1111 | 1111 1111 | | 93h | SSPADD | Synchronous Serial Port (I ² C mode) Address Register | | | | | | | | | 0000 0000 | | 94h | SSPSTAT | D/Ā P S R/₩ UA BF | | | | | | | 00 0000 | 00 0000 | | | 95h-9Fh | _ | Unimpleme | nted | | | | | _ | - | | | $\begin{tabular}{ll} Legend: & $x=$ unknown, $u=$ unchanged, $q=$ value depends on condition, $-=$ unimplemented location read as '0'. \\ & Shaded locations are unimplemented, read as '0'. \\ \end{tabular}$ - Note 1: These registers can be addressed from either bank. - 2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose contents are transferred to the upper byte of the program counter. (PC<12:8>) - 3: Other (non power-up) resets include external reset through MCLR and the Watchdog Timer reset. - 4: The BOR bit is reserved on the PIC16C62, always maintain this bit set. - 5: The IRP and RP1 bits are reserved on the PIC16C62/62A/R62, always maintain these bits clear. - 6: PIE1<7:6> and PIR1<7:6> are reserved on the PIC16C62/62A/R62, always maintain these bits clear.