imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

18/20-Pin, 8-Bit CMOS Microcontrollers with 10/12-Bit A/D

Microcontroller Core Features:

- High-performance RISC CPU
- · Only 35 single word instructions to learn
- All single cycle instructions except for program branches which are two cycle
- Operating speed: DC 20 MHz clock input DC - 200 ns instruction cycle

	Memo	ory				
Device	Program x14	Data x8	Pins	Resolution	Channels	
PIC16C717	2K	256	18, 20	10 bits	6	
PIC16C770	2K	256	20	12 bits	6	
PIC16C771	4K	256	20	12 bits	6	

- Interrupt capability (up to 10 internal/external interrupt sources)
- · Eight level deep hardware stack
- · Direct, indirect and relative addressing modes
- Power-on Reset (POR)
- Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Watchdog Timer (WDT) with its own on-chip RC oscillator for reliable operation
- · Selectable oscillator options:
 - INTRC Internal RC, dual speed (4 MHz and 37 kHz nominal) dynamically switchable for power savings
 - ER External resistor, dual speed (user selectable frequency and 37 kHz nominal) dynamically switchable for power savings
 - EC External clock
 - HS High speed crystal/resonator
 - XT Crystal/resonator
 - LP Low power crystal
- Low power, high speed CMOS EPROM technology
- In-Circuit Serial Programming[™] (ICSP[™])
- Wide operating voltage range: 2.5V to 5.5V
- 15 I/O pins with individual control for:
- Direction (15 pins)
- Digital/Analog input (6 pins)
- PORTB interrupt on change (8 pins)
- PORTB weak pull-up (8 pins)
- High voltage open drain (1 pin)
- · Commercial and Industrial temperature ranges
- · Low power consumption:
 - < 2 mA @ 4V, 4 MHz
 - 11 μA typical @ 2.5V, 37 kHz
 - < 1 μA typical standby current

Pin Diagram

Peripheral Features:

- Timer0: 8-bit timer/counter with 8-bit prescaler
- Timer1: 16-bit timer/counter with prescaler, can be incremented during SLEEP via external crystal/clock
- Timer2: 8-bit timer/counter with 8-bit period register, prescaler and postscaler
- Enhanced Capture, Compare, PWM (ECCP) module
 - Capture is 16-bit, max. resolution is 12.5 ns
 - Compare is 16-bit, max. resolution is 200 ns
 - PWM max. resolution is 10-bit
 - Enhanced PWM:
 - Single, Half-Bridge and Full-Bridge Output modes
 - Digitally programmable deadband delay
- Analog-to-Digital converter:
 - PIC16C770/771 12-bit resolution
 - PIC16C717 10-bit resolution
- On-chip absolute bandgap voltage reference generator
- Programmable Brown-out Reset (PBOR) circuitry
- Programmable Low-Voltage Detection (PLVD) circuitry
- Master Synchronous Serial Port (MSSP) with two modes of operation:
 - 3-wire SPI™ (supports all 4 SPI modes)
 - I²C[™] compatible including Master mode support
- Program Memory Read (PMR) capability for lookup table, character string storage and checksum calculation purposes

Pin Diagrams

Key Features PICmicro [™] Mid-Range MCU Family Reference Manual, (DS33023)	PIC16C717	PIC16C770	PIC16C771
Operating Frequency	DC - 20 MHz	DC - 20 MHz	DC - 20 MHz
RESETS (and Delays)	POR, BOR, MCLR, WDT (PWRT, OST)	POR, BOR, MCLR, WDT (PWRT, OST)	POR, BOR, MCLR, WDT (PWRT, OST)
Program Memory (14-bit words)	2K	2K	4K
Data Memory (bytes)	256	256	256
Interrupts	10	10	10
I/O Ports	Ports A,B	Ports A,B	Ports A,B
Timers	3	3	3
Enhanced Capture/Compare/PWM (ECCP) modules	1	1	1
Serial Communications	MSSP	MSSP	MSSP
12-bit Analog-to-Digital Module	-	6 input channels	6 input channels
10-bit Analog-to-Digital Module	6 input channels	-	-
Instruction Set	35 Instructions	35 Instructions	35 Instructions

Table of Contents

1.0 Device Overview	
2.0 Memory Organization	9
3.0 I/O Ports	
4.0 Program Memory Read (PMR)	
5.0 Timer0 Module	
6.0 Timer1 Module	
7.0 Timer2 Module	51
8.0 Enhanced Capture/Compare/PWM (ECCP) Modules	
9.0 Master Synchronous Serial Port (MSSP) Module	
10.0 Voltage Reference Module and Low-voltage Detect	
11.0 Analog-to-Digital Converter (A/D) Module	
12.0 Special Features of the CPU	
13.0 Instruction Set Summary	
14.0 Development Support	
15.0 Electrical Characteristics	
16.0 DC and AC Characteristics Graphs and Tables	
17.0 Packaging Information	
APPENDIX A: Revision History	
APPENDIX B: Device Differences	
Index	
On-Line Support	
Reader Response	
PIC16C717/770/771 Product Identification System	

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@mail.microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- · Your local Microchip sales office (see last page)
- The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.

NOTES:

1.0 DEVICE OVERVIEW

This document contains device-specific information. Additional information may be found in the PICmicro[™] Mid-Range MCU Family Reference Manual, (DS33023), which may be obtained from your local Microchip Sales Representative or downloaded from the Microchip website. The Reference Manual should be considered a complementary document to this data sheet, and is highly recommended reading for a better understanding of the device architecture and operation of the peripheral modules.

There are three devices (PIC16C717, PIC16C770 and PIC16C771) covered by this data sheet. The PIC16C717 device comes in 18/20-pin packages and the PIC16C770/771 devices come in 20-pin packages.

The following two figures are device block diagrams of the PIC16C717 and the PIC16C770/771.

FIGURE 1-1: PIC16C717 BLOCK DIAGRAM

Name	Function	Input Type	Output Type	Description
	RA0	ST	CMOS	Bi-directional I/O
RAU/ANU	AN0	AN		A/D input
	RA1	ST	CMOS	Bi-directional I/O
RA1/AN1/LVDIN	AN1	AN		A/D input
	LVDIN	AN		LVD input reference
	RA2	ST	CMOS	Bi-directional I/O
	AN2	AN		A/D input
RAZ/ANZ/VREF-/VRL	VREF-	AN		Negative analog reference input
	VRL		AN	Internal voltage reference low output
	RA3	ST	CMOS	Bi-directional I/O
	AN3	AN		A/D input
RA3/AN3/VREF+/VRH	VREF+	AN		Positive analog reference input
	VRH		AN	Internal voltage reference high output
	RA4	ST	OD	Bi-directional I/O
RA4/TUCKI	T0CKI	ST		TMR0 clock input
	RA5	ST		Input port
RA5/MCLR/VPP	MCLR	ST		Master clear
	Vpp	Power		Programming voltage
	RA6	ST	CMOS	Bi-directional I/O
RA6/OSC2/CLKOUT	OSC2		XTAL	Crystal/resonator
	CLKOUT		CMOS	Fosc/4 output
	RA7	ST	CMOS	Bi-directional I/O
RA7/OSC1/CLKIN	OSC1	XTAL		Crystal/resonator
	CLKIN	ST		External clock input/ER resistor connection
	RB0	TTL	CMOS	Bi-directional I/O ⁽¹⁾
RB0/AN4/INT	AN4	AN		A/D input
	INT	ST		Interrupt input
	RB1	TTL	CMOS	Bi-directional I/O ⁽¹⁾
RB1/AN5/SS	AN5	AN		A/D input
	SS	ST		SSP slave select input
	RB2	TTL	CMOS	Bi-directional I/O ⁽¹⁾
RB2/SCK/SCL	SCK	ST	CMOS	Serial clock I/O for SPI
	SCL	ST	OD	Serial clock I/O for I ² C
	RB3	TTL	CMOS	Bi-directional I/O ⁽¹⁾
RB3/CCP1/P1A	CCP1	ST	CMOS	Capture 1 input/Compare 1 output
	P1A		CMOS	PWM P1A output
	RB4	TTL	CMOS	Bi-directional I/O ⁽¹⁾
RB4/SDI/SDA	SDI	ST		Serial data in for SPI
	SDA	ST	OD	Serial data I/O for I ² C
	RB5	TTL	CMOS	Bi-directional I/O ⁽¹⁾
RB5/SDO/P1B	SDO		CMOS	Serial data out for SPI
	P1B		CMOS	PWM P1B output

TABLE 1-1: PIC16C717/770/771 PINOUT DESCRIPTION

Note 1: Bit programmable pull-ups.

2: Only in PIC16C770/771 devices.

TABLE 1-1: PIC16C717/770/771 PINOUT DESCRIPTION (CONTINUED)

Name	Function	Input Type	Output Type	Description			
	RB6	TTL	CMOS	Bi-directional I/O ⁽¹⁾			
RB6/T1OSO/T1CKI/P1C	T1OSO		XTAL	Crystal/Resonator			
	T1CKI	CMOS		TMR1 clock input			
	P1C		CMOS	PWM P1C output			
	RB7	TTL	CMOS	Bi-directional I/O ⁽¹⁾			
RB7/T1OSI/P1D	T1OSI	XTAL		TMR1 crystal/resonator			
	P1D		CMOS	PWM P1D output			
Vss	Vss	Power		Ground reference for logic and I/O pins			
Vdd	VDD VDD Power Positive supply for logic and I/O pins		Positive supply for logic and I/O pins				
AVss ⁽²⁾	AVss	Power		Ground reference for analog			
AVDD ⁽²⁾	AVDD	Power		Positive supply for analog			

Note 1: Bit programmable pull-ups.

2: Only in PIC16C770/771 devices.

PROGRAM MEMORY MAP

FIGURE 2-2:

2.0 MEMORY ORGANIZATION

There are two memory blocks in each of these PIC[®] microcontrollers. Each block (Program Memory and Data Memory) has its own bus, so that concurrent access can occur.

Additional information on device memory may be found in the PICmicro[™] Mid-Range MCU Family Reference Manual, (DS33023).

2.1 Program Memory Organization

The PIC16C717/770/771 devices have a 13-bit program counter capable of addressing an 8K x 14 program memory space. The PIC16C717 and the PIC16C770 have 2K x 14 words of program memory. The PIC16C771 has 4K x 14 words of program memory. Accessing a location above the physically implemented address will cause a wrap-around.

The RESET vector is at 0000h and the interrupt vector is at 0004h.

FIGURE 2-1: PROGRAM MEMORY MAP AND STACK OF THE PIC16C717 AND PIC16C770

2.2 Data Memory Organization

The data memory is partitioned into multiple banks, which contain the General Purpose Registers and the Special Function Registers. Bits RP1 and RP0 are the bank select bits.

	RP1	RP0	(STATUS<6:5>
	$= 00 \rightarrow$ $= 01 \rightarrow$ $= 10 \rightarrow$ $= 11 \rightarrow$	 Bank0 Bank1 Bank2 Bank3 	

Each bank extends up to 7Fh (128 bytes). The lower locations of each bank are reserved for the Special Function Registers. Above the Special Function Registers are General Purpose Registers, implemented as static RAM. All implemented banks contain special function registers. Some frequently used special function registers from one bank are mirrored in another bank for code reduction and quicker access.

2.2.1 GENERAL PURPOSE REGISTER FILE

The register file can be accessed either directly, or indirectly, through the File Select Register FSR.

FIGURE 2-3: REGISTER FILE MAP

A	File ddress	A	File ddress		File Address	A	File Address
Indirect addr.(*)	00h	Indirect addr.(*)	80h	Indirect addr.(*)	100h	Indirect addr.(*)	180h
TMR0	01h	OPTION REG	81h	TMR0	101h	OPTION REG	181h
PCL	02h	PCL	82h	PCI	102h	PCI	182h
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183h
FSR	04h	FSB	84h	ESB	104h	ESB	184h
PORTA	05h	TRISA	85h		105h		185h
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186h
	07h		87h		107h		187h
	08h	-	88h		108h		188h
	09h		89h		109h		189h
PCLATH	0Ah	PCLATH	8Ah	PCI ATH	10Ah	PCI ATH	18Ah
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18Bh
PIR1	0Ch	PIE1	8Ch	PMDATL	10Ch	PMCON1	18Ch
PIR2	0Dh	PIE2	8Dh	PMADRL	10Dh		18Dh
TMR1L	0Eh	PCON	8Eh	PMDATH	10Eh		18Eh
TMR1H	0Fh	-	8Fh	PMADBH	10Fh		18Fh
T1CON	10h		90h		110h		190h
TMR2	11h	SSPCON2	91h		111h		191h
T2CON	12h	PR2	92h		112h		192h
SSPBUF	13h	SSPADD	93h		113h		193h
SSPCON	14h	SSPSTAT	94h		114h		194h
CCPR1L	15h	WPUB	95h		115h		195h
CCPR1H	16h	IOCB	96h		116h		196h
CCP1CON	17h	P1DEL	97h		117h		197h
	18h		98h		118h		198h
	19h		99h		119h		199h
	1Ah		9Ah		11Ah		19Ah
	1Bh	REFCON	9Bh		11Bh		19Bh
	1Ch	LVDCON	9Ch		11Ch		19Ch
	1Dh	ANSEL	9Dh		11Dh		19Dh
ADRESH	1Eh	ADRESL	9Eh		11Eh		19Eh
ADCON0	1Fh	ADCON1	9Fh		11Fh		19Fh
	20h		A0h		120h		1A0h
		General		Conorol			
Gonaral		Purpose		Purpose			
Purpose		Register		Register			
Register		ou bytes		80 Bytes			
96 Bytes			EFh		16Fh		1EFh
		accesses	F0h	accesses	170h	accesses	1F0h
		70h-7Fh		70h - 7Fh		70h - 7Fh	
Bank 0	7Fh	Bank 1	FFh	Bank 2	17Fh	Bank 0	1FFh

Unimplemented data memory locations, read as '0'. * Not a physical register.

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and Peripheral Modules for controlling the desired operation of the device. These registers are implemented as static RAM. A list of these registers is given in Table 2-1. The special function registers can be classified into two sets; core (CPU) and peripheral. Those registers associated with the core functions are described in detail in this section. Those related to the operation of the peripheral features are described in detail in that peripheral feature section.

TABLE 2-1:	PIC16C717/770/771 SPECIAL FUNCTION REGISTER SUMMARY
------------	---

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Details on Page:	
Bank 0												
00h ⁽³⁾	INDF	Addressing	ddressing this location uses contents of FSR to address data memory (not a physical register)								23	
01h	TMR0	Timer0 mod	lule's registe	r						xxxx xxxx	45	
02h ⁽³⁾	PCL	Program Co	ounter's (PC)	Least Signifi	cant Byte					0000 0000	22	
03h ⁽³⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	14	
04h ⁽³⁾	FSR	Indirect data	a memory ad	ldress pointer						xxxx xxxx	23	
05h	PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx 0000	25	
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xx11	33	
07h	—	Unimpleme	nted							—	—	
08h	—	Unimpleme	nted							—	—	
09h	—	Unimpleme	nted							—	—	
0Ah ^(1,3)	PCLATH	—	—	—	Write Buffer f	or the upper	5 bits of the I	Program Cou	unter	0 0000	22	
0Bh ⁽³⁾	INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	16	
0Ch	PIR1	—	ADIF	—	—	SSPIF	CCP1IF	TMR2IF	TMR1IF	-00000	18	
0Dh	PIR2	LVDIF	—	—	—	BCLIF	—	—	—	0 0	20	
0Eh	TMR1L	Holding reg	ister for the l	_east Significa	ant Byte of the	16-bit TMR1	register			xxxx xxxx	47	
0Fh	TMR1H	Holding reg	ister for the I	Most Significa	nt Byte of the	16-bit TMR1	register	I	I	XXXX XXXX	47	
10h	T1CON	—	—	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	47	
11h	TMR2	Timer2 mod	lule's registe	r		I		I	I	0000 0000	51	
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	51	
13h	SSPBUF	Synchronou	is Serial Port	t Receive Buf	fer/Transmit R	egister		r	T	xxxx xxxx	70	
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	67	
15h	CCPR1L	Capture/Co	mpare/PWM	Register1 (L	SB)					xxxx xxxx	54	
16h	CCPR1H	Capture/Co	mpare/PWM	Register1 (M	SB)			r	T	xxxx xxxx	54	
17h	CCP1CON	PWM1M1	PWM1M0	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	0000 0000	53	
18h	_	Unimpleme	nted							—	—	
19h	—	Unimpleme	nted							—	_	
1Ah	—	Unimpleme	nted							—	_	
1Bh	—	Unimpleme	Unimplemented —							—	—	
1Ch	—	Unimpleme	nted							—	—	
1Dh	—	Unimpleme	nted							—	—	
1Eh	ADRESH	A/D High By	te Result Re	egister		1		1	1	xxxx xxxx	107	
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	CHS3	ADON	0000 0000	107	

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0'. Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

2: Other (non Power-up) Resets include external RESET through MCLR and Watchdog Timer Reset.

3: These registers can be addressed from any bank.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Details on Page:	
Bank 1												
80h ⁽³⁾	INDF	Addressing	Addressing this location uses contents of FSR to address data memory (not a physical register)								23	
81h	OPTION_REG	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	15	
82h ⁽³⁾	PCL	Program Co	ounter's (PC)	Least Signifi	cant Byte					0000 0000	22	
83h ⁽³⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	14	
84h ⁽³⁾	FSR	Indirect data	a memory ac	dress pointer						xxxx xxxx	23	
85h	TRISA	PORTA Dat	a Direction F	Register						1111 1111	25	
86h	TRISB	PORTB Dat	ta Direction I	Register						1111 1111	33	
87h	—	Unimpleme	nted							—	—	
88h	—	Unimpleme	nted							—	—	
89h	—	Unimpleme	nted							—	—	
8Ah ^(1,3)	PCLATH		_	—	Write Buffer fo	or the upper	5 bits of the	Program Cou	Inter	0 0000	22	
8Bh ⁽³⁾	INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	16	
8Ch	PIE1	—	ADIE	_	—	SSPIE	CCP1IE	TMR2IE	TMR1IE	-0 0000	17	
8Dh	PIE2	LVDIE	—	—	—	BCLIE	—	—	—	0 0	19	
8Eh	PCON	—	—	—	—	OSCF	—	POR	BOR	1-qq	21	
8Fh	—	Unimpleme	nted							—	—	
90h	—	Unimpleme	nted		1		1	1		—	—	
91h	SSPCON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000 0000	69	
92h	PR2	Timer2 Peri	od Register							1111 1111	52	
93h	SSPADD	Synchronou	us Serial Por	(I ² C mode) /	Address Regist	er	1	1	r	0000 0000	76	
94h	SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	66	
95h	WPUB	PORTB We	ak Pull-up C	ontrol						1111 1111	34	
96h	IOCB	PORTB Inte	errupt on Cha	ange Control						1111 0000	34	
97h	P1DEL	PWM 1 Del	ay value							0000 0000	62	
98h	—	Unimpleme	nted							—	_	
99h	—	Unimpleme	nted							—	—	
9Ah	—	Unimpleme	nted		1					—	—	
9Bh	REFCON	VRHEN	VRLEN	VRHOEN	VRLOEN	—	—	—	—	0000	102	
9Ch	LVDCON	—	—	BGST	LVDEN	LVV3	LVV2	LVV1	LVV0	00 0101	101	
9Dh	ANSEL	—	—	Analog Char	nnel Select					11 1111	25	
9Eh	ADRESL	A/D Low By	te Result Re	gister	1					xxxx xxxx	107	
9Fh	ADCON1	ADFM	VCFG2	VCFG1	VCFG0	—	—	—	—	0000	107	

TABLE 2-1: PIC16C717/770/771 SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0'.

Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

2: Other (non Power-up) Resets include external RESET through MCLR and Watchdog Timer Reset.

3: These registers can be addressed from any bank.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	, Value on: POR.	Details on	
					_					BOR	Page:	
Bank 2	-	-								-		
100h ⁽³⁾	INDF	Addressing	this location	uses content	s of FSR to ad	dress data m	emory (not a	a physical reg	gister)	0000 0000	23	
101h	TMR0	Timer0 mod	Fimer0 module's register									
102h ⁽³⁾	PCL	Program Co	ounter's (PC)	Least Signifi	cant Byte					0000 0000	22	
103h ⁽³⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	14	
104h ⁽³⁾	FSR	Indirect data	Indirect data memory address pointer									
105h	—	Unimpleme	Jnimplemented									
106h	PORTB	PORTB Dat	ta Latch whe	n written: PO	RTB pins whe	n read				xxxx xx11	33	
107h	_	Unimpleme	nted							_	—	
108h	—	Unimpleme	nted							—	—	
109h	—	Unimpleme	nted							—	_	
10Ah ^(1,3)	PCLATH	—		—	Write Buffer f	or the upper	5 bits of the	Program Cou	Inter	0 0000	22	
10Bh ⁽³⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	16	
10Ch	PMDATL	Program me	Program memory read data low									
10Dh	PMADRL	Program me	Program memory read address low									
10Eh	PMDATH	—	—	Program me	mory read dat	a high				xx xxxx		
10Fh	PMADRH	—	—	—	-	Program m	emory read a	ddress high		xxxx		
110h- 11Fh	—	Unimpleme	nted							—	_	
Bank 3												
180h ⁽³⁾	INDF	Addressing	this location	uses content	s of FSR to ad	dress data m	emory (not a	a physical reg	gister)	0000 0000	23	
181h	OPTION_REG	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	15	
182h ⁽³⁾	PCL	Program Co	ounter's (PC)	Least Signifi	cant Byte					0000 0000	22	
183h ⁽³⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	14	
184h ⁽³⁾	FSR	Indirect data	a memory ac	Idress pointer						xxxx xxxx	23	
185h	_	Unimpleme	nted							_	_	
186h	TRISB	PORTB Dat	ta Direction I	Register						1111 1111	33	
187h	_	Unimpleme	nted							_	_	
188h	_	Unimpleme	nted							_	_	
189h	_	Unimpleme	nted							_	—	
18Ah ^(1,3)	PCLATH	—	_	_	Write Buffer f	or the upper	5 bits of the	Program Cou	Inter	0 0000	22	
18Bh ⁽³⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	16	
18Ch	PMCON1	Reserved	—	_	_	—	—	—	RD	10		
18Dh- 18Fh	_	Unimpleme	nimplemented									

TABLE 2-1: PIC16C717/770/771 SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0'.

Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

2: Other (non Power-up) Resets include external RESET through MCLR and Watchdog Timer Reset.

3: These registers can be addressed from any bank.

2.2.2.1 STATUS REGISTER

The STATUS register, shown in Register 2-1, contains the arithmetic status of the ALU, the RESET status and the bank select bits for data memory.

The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper-three bits and set the Z bit. This leaves the STATUS register as $000u \ u1uu$ (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect the Z, C or DC bits from the STATUS register. For other instructions not affecting any status bits, see the "Instruction Set Summary."

Note:	The C and DC bits operate as a borrow
	and digit borrow bit, respectively, in sub-
	traction. See the SUBLW and SUBWF
	instructions for examples.

REGISTER 2-1: STATUS REGISTER (STATUS: 03h, 83h, 103h, 183h)

	R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x
	IRP	RP1	RP0	TO	PD	Z	DC	С
	bit 7	·						bit 0
bit 7	IRP: Regis	ter Bank Sel	lect bit (used	d for indirect	addressing)		
	1 = Bank 2	2, 3 (100h - 1 1 1 (00h - EE	FFh) =h)					
bit 6-5	BP<1:0>: Register Bank Select bits (used for direct addressing)							
11 = Bank 3 (180h - 1FFh)								
	10 = Bank	2 (100h - 17	′Fh)					
	01 = Bank	1 (80h - FFh 0 (00h - 7Fh	ר) ו)					
	Each bank	is 128 bytes	5					
bit 4	TO: Time-o	out bit						
	1 = After p	ower-up, CLI	RWDT instruc	tion, or SLE	EP instruction	on		
L:1 0	0 = A WDI	time-out oc	curred					
DIT 3	PD: Power	-down dit	w the grad	minatruatio	2			
	1 = Alter p 0 = By exe	cution of the	SLEEP inst	ruction	1			
bit 2	Z: Zero bit							
	1 = The res	sult of an ari	thmetic or lo	gic operatio	n is zero n is not zero	.		
bit 1	DC: Digit c	arry/borrow	bit (ADDWF, 2	ADDLW, SUB	LW, SUBWF i	instructions)	(for borrow	the polarity
	1 = A carry 0 = No car	-out from the ry-out from t	e 4th low ord he 4th low o	der bit of the rder bit of th	result occu e result	rred		
bit 0	C: Carry/b	orrow bit (AD	DWF, ADDLW	, SUBLW, SU	JBWF instru	ctions)		
	1 = A carry	-out from the	e Most Signi	ficant bit of	the result or	curred		
	0 = No car	ry-out from t	he Most Sigi	nificant bit o	f the result of	occurred		
	Note:	For borrow,	the polarity	is reversed.	A subtraction	on is execut	ed by addin	g the two's
		complement loaded with (of the seco either the hig	nd operand gh or low or	For rotate der bit of the	(RRF, RLF source reg) instructions ister.	s, this bit is
	Legend:]
	R = Reada	ble bit	W = W	ritable bit	U = Unin	plemented	bit, read as '	0'
	- n = Value	at POR	'1' = Bi	t is set	'0' = Bit i	s cleared	x = Bit is u	nknown

2.2.2.2 OPTION_REG REGISTER

The OPTION_REG register is a readable and writable register, which contains various control bits to configure the TMR0 prescaler/WDT postscaler (single assignable register known also as the prescaler), the External INT Interrupt, TMR0 and the weak pull-ups on PORTB.

Note: To achieve a 1:1 prescaler assignment for the TMR0 register, assign the prescaler to the Watchdog Timer.

REGISTER 2-2: OPTION REGISTER (OPTION_REG: 81h, 181h)

110

111

	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0
	bit 7		-					bit 0
bit 7	RBPU: PC	RTB Pull-up	o Enable bit	(1)				
	1 = PORTE	3 weak pull-	ups are dis	abled				
	0 = PORTE	3 weak pull-	ups are ena	abled by the	WPUB register			
bit 6	INTEDG: I	nterrupt Edg	ge Select bi	t				
	1 = Interru	pt on rising	edge of RB	0/INT pin				
	0 = Interru	pt on falling	edge of RB	0/INT pin				
bit 5	TOCS: TM	R0 Clock So	ource Selec	t bit				
	1 = Transit	ion on RA4/	T0CKI pin					
	0 = Interna	l instruction	cycle clock	(CLKOUT)				
bit 4	TOSE: TMI	R0 Source E	Edge Select	bit				
	1 = Increm	ent on high-	-to-low trans	sition on RA	4/T0CKI pin			
	0 = Increm	ent on low-t	o-high trans	sition on RA	4/T0CKI pin			
bit 3	PSA: Pres	caler Assigr	nment bit					
	1 = Prescaler is assigned to the WDT							
	0 = Presca	ler is assigr	ned to the T	imer0 modu	le			
bit 2-0	PS<2:0>:	Prescaler R	ate Select b	oits				
	E	Bit Value T	MR0 Rate	WDT Rate				
	_	000	1:2	1:1				
		001	1:4	1:2				
		010	1:8	1:4				
		100	1:16	1:0				
		101	1:32	1:32				
			1.04	1.02				

1:64

1:128

1:128

1:256

Note 1: Individual weak pull-up on RB pins can be enabled/disabled from the weak pull-up PORTB Register (WPUB).

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented b	oit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

2.2.2.3 INTCON REGISTER

The INTCON Register is a readable and writable register, which contains various enable and flag bits for the TMR0 register overflow, RB Port change and External RB0/INT pin interrupts.

R = Readable bit

- n = Value at POR

Note: Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-3: INTERRUPT CONTROL REGISTER (INTCON: 0Bh, 8Bh, 10Bh, 18Bh)

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x
	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF
	bit 7							bit 0
bit 7	GIE: Globa	al Interrupt E	nable bit					
	1 = Enable	s all un-mas	ked interrup	ots				
hit 6	DEIE · Pori	oboral Intorr	unt Enable k	nit				
	PEIE: Peripheral Interrupt Enable bit							
	0 = Disable	es all periphe	eral interrupt	ts	5			
bit 5	TOIE: TMR	0 Overflow I	nterrupt Ena	able bit				
	1 = Enable	s the TMR0	interrupt					
	0 = Disable	es the TMR0	interrupt					
bit 4	INTE: RB0	/INT Externa	al Interrupt E	Enable bit				
	1 = Enable	s the RB0/IN	NI external i	interrupt				
bit 3	BBIE: BB	Port Change	Interrupt Fi	nable bit ⁽¹⁾				
Sit 0	1 = Enable	s the RB po	rt change in	terrupt				
	0 = Disable	es the RB po	ort change in	iterrupt				
bit 2	TOIF: TMR	0 Overflow I	nterrupt Flag	g bit				
	1 = TMR0 0 = TMR0	register has register did ı	overflowed not overflow	(must be cle	ared in soft	ware)		
bit 1	INTF: RB0	/INT Externa	al Interrupt F	lag bit				
	1 = The RE	B0/INT exter	nal interrupt	occurred (n	nust be clea	red in softwa	are)	
	0 = The RE	30/INT exter	nal interrupt	did not occi	Jr			
bit 0	RBIF: RB I	Port Change	Interrupt FI	ag bit ⁽¹⁾				
	1 = At leas	t one of the	RB<7:0> pir	is changed a	state (must l	be cleared ir	n software)	
			u> pins nave	e changeu s	lale			
	Note 1:	Individual F Interrupt-on	RB pin interr -Change PC	upt-on-chan DRTB registe	ge can be e er (IOCB).	nabled/disal	bled from the)
		-	-	-				
	Legend:							

W = Writable bit

'1' = Bit is set

x = Bit is unknown

U = Unimplemented bit, read as '0'

'0' = Bit is cleared

2.2.2.4 PIE1 REGISTER

This register contains the individual enable bits for the peripheral interrupts.

Note: Bit PEIE (INTCON<6>) must be set to enable any peripheral interrupt.

REGISTER 2-4: PERIPHERAL INTERRUPT ENABLE REGISTER 1 (PIE1: 8Ch)

	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
		ADIE		_	SSPIE	CCP1IE	TMR2IE	TMR1IE
	bit 7							bit 0
bit 7	Unimplem	ented: Read	d as '0'					
bit 6	ADIE: A/D	Converter I	nterrupt Ena	ble bit				
	1 = Enable 0 = Disable	s the A/D in es the A/D ir	terrupt iterrupt					
bit 5-4	Unimplem	ented: Rea	d as '0'					
bit 3	SSPIE: Syr	nchronous S	Serial Port In	iterrupt Enał	ole bit			
	1 = Enable 0 = Disable	s the SSP ir s the SSP i	nterrupt Interrupt					
bit 2	CCP1IE: C	CP1 Interru	pt Enable bi	t				
	1 = Enable 0 = Disabl€	s the CCP1 s the CCP1	interrupt interrupt					
bit 1	TMR2IE: T	MR2 to PR2	2 Match Inter	rrupt Enable	bit			
	1 = Enable 0 = Disable	s the TMR2 s the TMR2	to PR2 mate to PR2 mate	ch interrupt tch interrupt				
bit 0	TMR1IE: T	MR1 Overfl	ow Interrupt	Enable bit				
	1 = Enable 0 = Disable	s the TMR1 es the TMR1	overflow int l overflow in	errupt terrupt				
	. <u>.</u>							
	Legend:							
	R = Reada	ble bit	W = W	ritable bit	U = Unir	nplemented	bit, read as '	'0'
	- n = Value	at POR	'1' = B	it is set	'0' = Bit [;]	is cleared	x = Bit is u	nknown

2.2.2.5 PIR1 REGISTER

This register contains the individual flag bits for the peripheral interrupts.

Note: Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-5: PERIPHERAL INTERRUPT REGISTER 1 (PIR1: 0Ch)

	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
		ADIF	—		SSPIF	CCP1IF	TMR2IF	TMR1IF
b	oit 7							bit 0

bit 7	Unimplemented: Read as '0'.
bit 6	ADIF: A/D Converter Interrupt Flag bit
	1 = An A/D conversion completed
	0 = The A/D conversion is not complete
bit 5-4	Unimplemented: Read as '0'
bit 3	SSPIF: Synchronous Serial Port (SSP) Interrupt Flag
	 1 = The SSP interrupt condition has occurred, and must be cleared in software before returning from the Interrupt Service Routine. The conditions that will set this bit are: SPI
	A transmission/reception has taken place.
	<u>I²C Slave / Master</u>
	A transmission/reception has taken place.
	The initiated START condition was completed by the SSP module. The initiated STOP condition was completed by the SSP module. The initiated Restart condition was completed by the SSP module. The initiated Acknowledge condition was completed by the SSP module. A START condition occurred while the SSP module was IDLE (Multi-master system).
	0 = No SSP interrupt condition has occurred.
bit 2	CCP1IF: CCP1 Interrupt Flag bit
	Capture Mode
	1 = A TMR1 register capture occurred (must be cleared in software)0 = No TMR1 register capture occurred
	<u>Compare Mode</u> 1 = A TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred <u>PWM Mode</u> Unused in this mode
bit 1	TMR2IF: TMR2 to PR2 Match Interrupt Flag bit
	 1 = TMR2 to PR2 match occurred (must be cleared in software) 0 = No TMR2 to PR2 match occurred
bit 0	TMR1IF: TMR1 Overflow Interrupt Flag bit
	 1 = TMR1 register overflowed (must be cleared in software) 0 = TMR1 register did not overflow

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented b	oit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

2.2.2.6 PIE2 REGISTER

This register contains the individual enable bits for the SSP bus collision and low voltage detect interrupts.

REGISTER 2-6: PERIPHERAL INTERRUPT ENABLE REGISTER 2 (PIE2: 8Dh)

	R/W-0	U-0	U-0	U-0	R/W-0	U-0	U-0	U-0
	LVDIE	—	—	—	BCLIE	—	—	_
	bit 7							bit 0
bit 7	LVDIE: Lov	v Voltage De	etect Interru	pt Enable bit				
	1 = LVD Int 0 = LVD Int	errupt is en errupt is dis	abled abled					
bit 6-4	Unimplem	Unimplemented: Read as '0'						
bit 3	BCLIE: Bus	s Collision li	nterrupt Ena	ble bit				
	1 = Bus Co 0 = Bus Co	Ilision interr	upt is enable upt is disabl	ed ed				
bit 2-0	Unimplem	ented: Read	d as '0'					
	Legend:							
	R = Reada	ble bit	W = W	ritable bit	U = Unim	plemented	bit, read as	0'
	- n = Value	at POR	'1' = Bi	it is set	'0' = Bit is	s cleared	x = Bit is u	nknown

2.2.2.7 PIR2 REGISTER

This register contains the SSP Bus Collision and low-voltage detect interrupt flag bits.

Note: Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-7: PERIPHERAL INTERRUPT REGISTER 2 (PIR2: 0Dh)

R/W-0	U-0	U-0	U-0	R/W-0	U-0	U-0	U-0
LVDIF	—	—	—	BCLIF	—		—
bit 7							bit 0

bit 7	LVDIF: Low Voltage Detect Interrupt Flag bit
	 1 = The supply voltage has fallen below the specified LVD voltage (must be cleared in software) 0 = The supply voltage is greater than the specified LVD voltage
bit 6-4	Unimplemented: Read as '0'
bit 3	BCLIF: Bus Collision Interrupt Flag bit
	 1 = A bus collision has occurred while the SSP module configured in I²C Master was transmitting (must be cleared in software) 0 = No bus collision occurred
bit 2-0	Unimplemented: Read as '0'

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented I	oit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

2.2.2.8 PCON REGISTER

The Power Control (PCON) register contains a flag bit to allow differentiation between a Power-on Reset (POR) to an external MCLR Reset or WDT Reset. Those devices with brown-out detection circuitry contain an additional bit to differentiate a Brown-out Reset condition from a Power-on Reset condition.

The PCON register also contains the frequency select bit of the INTRC or ER oscillator.

Note: BOR is unknown on Power-on Reset. It must then be set by the user and checked on subsequent RESETS to see if BOR is clear, indicating a brown-out has occurred. The BOR status bit is a don't care and is not necessarily predictable if the brown-out circuit is disabled (by clearing the BODEN bit in the Configuration word).

REGISTER 2-8: POWER CONTROL REGISTER (PCON: 8Eh)

- n = Value at POR

U-0	U-0	U-0	U-0	R/W-1	U-0	R/W-q	R/W-q
_	—	-	—	OSCF	_	POR	BOR
bit 7							bit 0

bit 7-4	Unimplemented: Read as '0'						
bit 3	OSCF: Oscillator Speed bit						
	INTRC Mode						
	1 = 4 MHz nominal						
	0 = 37 kHz nominal	= 37 kHz nominal					
	ER Mode	ER Mode					
	1 = Oscillator frequency de $a = 27 kHz pominal$	1 = Oscillator frequency depends on the external resistor value on the OSC1 pin.					
	All other modes						
	x = lgnored						
bit 2	Unimplemented: Read as '0'						
bit 1	POR: Power-on Reset Status bit						
	1 = No Power-on Reset occurred						
	0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)						
bit 0	BOR: Brown-out Reset Status bit (See Section 2.2.2.8 Note)						
	1 = No Brown-out Reset occurred						
	0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)						
	Legend:		q = Value depends on conditions				
	R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

2.3 PCL and PCLATH

The program counter (PC) specifies the address of the instruction to fetch for execution. The PC is 13 bits wide. The low byte is called the PCL register. This register is readable and writable. The high byte is called the PCH register. This register contains the PC<12:8> bits and is not directly readable or writable. All updates to the PCH register occur through the PCLATH register.

2.3.1 PROGRAM MEMORY PAGING

PIC16C717/770/771 devices are capable of addressing a continuous 8K word block of program memory. The CALL and GOTO instructions provide only 11 bits of address to allow branching within any 2K program memory page. When doing a CALL or GOTO instruction, the upper 2 bits of the address are provided by PCLATH<4:3>. When doing a CALL or GOTO instruction, the user must ensure that the page select bits are programmed so that the desired program memory page is addressed. A return instruction pops a PC address off the stack onto the PC register. Therefore, manipulation of the PCLATH<4:3> bits are not required for the return instructions (which POPs the address from the stack).

2.4 Stack

The stack allows a combination of up to 8 program calls and interrupts to occur. The stack contains the return address from this branch in program execution.

Mid-range devices have an 8-level deep x 13-bit wide hardware stack. The stack space is not part of either program or data space and the stack pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not modified when the stack is PUSHed or POPed.

After the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

FIGURE 2-4: LOADING OF PC IN DIFFERENT SITUATIONS

The INDF register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR register (FSR is a *pointer*). This is indirect addressing.

Reading INDF itself indirectly (FSR = 0) will produce 00h. Writing to the INDF register indirectly results in a no-operation (although STATUS bits may be affected).

A simple program to clear RAM locations 20h-2Fh using indirect addressing is shown in Example 2-1.

EXAMPLE 2-1: How to Clear RAM Using Indirect Addressing

		-	··· ·· · · · · · · · · · · · · · · · ·
	movlw	0x20	;initialize pointer
	movwf	FSR	; to RAM
NEXT	clrf	INDF	;clear INDF register
	incf	FSR	;inc pointer
	btfss	FSR,4	;all done?
	goto	NEXT	;NO, clear next
CONTINUE			
:			;YES, continue

An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 2-5.

FIGURE 2-5: DIRECT/INDIRECT ADDRESSING

NOTES:

3.0 I/O PORTS

Some pins for these I/O ports are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

Additional information on I/O ports may be found in the PIC Mid-Range MCU Family Reference Manual, (DS33023).

3.1 I/O Port Analog/Digital Mode

The PIC16C717/770/771 have two I/O ports: PORTA and PORTB. Some of these port pins are mixed-signal (can be digital or analog). When an analog signal is

present on a pin, the pin must be configured as an analog input to prevent unnecessary current draw from the power supply. The Analog Select Register (ANSEL) allows the user to individually select the Digital/Analog mode on these pins. When the Analog mode is active, the port pin will always read 0.

- **Note 1:** On a Power-on Reset, the ANSEL register configures these mixed-signal pins as Analog mode.
 - 2: If a pin is configured as Analog mode, the RA pin will always read '0' and RB pin will always read '1', even if the digital output is active.

REGISTER 3-1: ANALOG SELECT REGISTER (ANSEL: 9Dh)

| R/W-1 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| — | | ANS5 | ANS4 | ANS3 | ANS2 | ANS1 | ANS0 |
| bit 7 | | | | | | | bit 0 |

bit 7-6 **Reserved:** Do not use

1 =Analog Input. Pin is assigned to port or special function 1 = Analog Input.

Note: Setting a pin to an analog input disables the digital input buffer on the

lote: Setting a pin to an analog input disables the digital input buffer on the pin. The corresponding TRIS bit should be set to Input mode when using pins as analog inputs.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented b	oit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

3.2 PORTA and the TRISA Register

PORTA is a 8-bit wide bi-directional port. The corresponding data direction register is TRISA. Setting a TRISA bit (=1) will make the corresponding PORTA pin an input (i.e., put the corresponding output driver in a Hi-impedance mode). Clearing a TRISA bit (=0) will make the corresponding PORTA pin an output (i.e., put the contents of the output latch on the selected pin).

Reading the PORTA register reads the status of the pins, whereas writing to it will write to the port latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified, and then written to the port data latch.

Pins RA<3:0> are multiplexed with analog functions, such as analog inputs to the A/D converter, analog VREF inputs, and the onboard bandgap reference outputs. When the analog peripherals are using any of

these pins as analog input/output, the ANSEL register must have the proper value to individually select the Analog mode of the corresponding pins.

Note:	Upon RESET, the ANSEL register config-
	ures the RA<3:0> pins as analog inputs.
	All RA<3:0> pins will read as '0'.

Pin RA4 is multiplexed with the Timer0 module clock input to become the RA4/T0CKI pin. The RA4/T0CKI pin is a Schmitt Trigger input and an open drain output.

Pin RA5 is multiplexed with the device RESET (MCLR) and programming input (VPP) functions. The RA5/ MCLR/VPP input only pin has a Schmitt Trigger input buffer. All other RA port pins have Schmitt Trigger input buffers and full CMOS output buffers.

Pins RA6 and RA7 are multiplexed with the oscillator input and output functions.

The TRISA register controls the direction of the RA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs.

bit 5-0 **ANS<5:0>:** Analog Select between analog or digital function on pins AN<5:0>, respectively. 0 = Digital I/O. Pin is assigned to port or special function.