Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs. With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas. We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry! ### Contact us Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China # PIC18F2525/2620/4525/4620 Data Sheet 28/40/44-Pin Enhanced Flash Microcontrollers with 10-Bit A/D and nanoWatt Technology #### Note the following details of the code protection feature on Microchip devices: - Microchip products meet the specification contained in their particular Microchip Data Sheet. - Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. - There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. - Microchip is willing to work with the customer who is concerned about the integrity of their code. - Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable." Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act. Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights. #### **Trademarks** The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, rfPIC and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. FilterLab, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM, PICDEM.net, PICtail, PIC³² logo, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total Endurance, UNI/O, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A. All other trademarks mentioned herein are property of their respective companies. © 2008, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved. Printed on recycled paper. QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002 Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified. # 28/40/44-Pin Enhanced Flash Microcontrollers with 10-Bit A/D and nanoWatt Technology #### **Power Management Features:** - · Run: CPU on, Peripherals on - · Idle: CPU off, Peripherals on - · Sleep: CPU off, Peripherals off - · Ultra Low 50nA Input Leakage - Run mode Currents Down to 11 μ A Typical - Idle mode Currents Down to 2.5 μA Typical - · Sleep mode Current Down to 100 nA Typical - · Timer1 Oscillator: 900 nA, 32 kHz, 2V - Watchdog Timer: 1.4 μA, 2V Typical - · Two-Speed Oscillator Start-up #### Flexible Oscillator Structure: - · Four Crystal modes, up to 40 MHz - 4x Phase Lock Loop (PLL) Available for Crystal and Internal Oscillators - Two External RC modes, up to 4 MHz - Two External Clock modes, up to 40 MHz - · Internal Oscillator Block: - Fast wake from Sleep and Idle, 1 µs typical - 8 use-selectable frequencies, from 31 kHz to 8 MHz - Provides a complete range of clock speeds from 31 kHz to 32 MHz when used with PLL - User-tunable to compensate for frequency drift - · Secondary Oscillator using Timer1 @ 32 kHz - · Fail-Safe Clock Monitor: - Allows for safe shutdown if peripheral clock stops #### **Peripheral Highlights:** - · High-Current Sink/Source 25 mA/25 mA - · Three Programmable External Interrupts - · Four Input Change Interrupts - Up to 2 Capture/Compare/PWM (CCP) modules, one with Auto-Shutdown (28-pin devices) - Enhanced Capture/Compare/PWM (ECCP) module (40/44-pin devices only): - One, two or four PWM outputs - Selectable polarity - Programmable dead time - Auto-shutdown and auto-restart #### Peripheral Highlights (Continued): - Master Synchronous Serial Port (MSSP) module Supporting 3-Wire SPI (all 4 modes) and I²C™ Master and Slave modes - · Enhanced Addressable USART module: - Supports RS-485, RS-232 and LIN/J2602 - RS-232 operation using internal oscillator block (no external crystal required) - Auto-wake-up on Start bit - Auto-Baud Detect - 10-Bit, up to 13-Channel Analog-to-Digital (A/D) Converter module: - Auto-acquisition capability - Conversion available during Sleep - · Dual Analog Comparators with Input Multiplexing - Programmable 16-Level High/Low-Voltage Detection (HLVD) module: - Supports interrupt on High/Low-Voltage Detection #### **Special Microcontroller Features:** - · C Compiler Optimized Architecture: - Optional extended instruction set designed to optimize re-entrant code - 100,000 Erase/Write Cycle Enhanced Flash Program Memory Typical - 1,000,000 Erase/Write Cycle Data EEPROM Memory Typical - Flash/Data EEPROM Retention: 100 Years Typical - Self-Programmable under Software Control - · Priority Levels for Interrupts - 8 x 8 Single-Cycle Hardware Multiplier - Extended Watchdog Timer (WDT): - Programmable period from 4 ms to 131s - Single-Supply 5V In-Circuit Serial Programming[™] (ICSP[™]) via Two Pins - In-Circuit Debug (ICD) via Two Pins - · Wide Operating Voltage Range: 2.0V to 5.5V - Programmable Brown-out Reset (BOR) with Software Enable Option | | Progi | ram Memory | Data | Data Memory | | 10-Bit | CCP/ | MS | SSP | RT | | Timers | |------------|------------------|----------------------------|-----------------|----------------|-----|----------|---------------|-----|-----------------------------|------|-------|----------| | Device | Flash
(bytes) | # Single-Word Instructions | SRAM
(bytes) | EEPROM (bytes) | I/O | A/D (ch) | ECCP
(PWM) | SPI | Master
I ² C™ | EUSA | Comp. | 8/16-Bit | | PIC18F2525 | 48K | 24576 | 3968 | 1024 | 25 | 10 | 2/0 | Υ | Υ | 1 | 2 | 1/3 | | PIC18F2620 | 64K | 32768 | 3968 | 1024 | 25 | 10 | 2/0 | Υ | Υ | 1 | 2 | 1/3 | | PIC18F4525 | 48K | 24576 | 3968 | 1024 | 36 | 13 | 1/1 | Υ | Υ | 1 | 2 | 1/3 | | PIC18F4620 | 64K | 32768 | 3968 | 1024 | 36 | 13 | 1/1 | Υ | Υ | 1 | 2 | 1/3 | #### **Pin Diagrams** #### 28-Pin SPDIP, SOIC #### 40-Pin PDIP Note 1: RB3 is the alternate pin for CCP2 multiplexing. #### Pin Diagrams (Cont.'d) #### **Table of Contents** | 1.0 | Device Overview | 7 | |------|--|-----| | 2.0 | Oscillator Configurations | 23 | | 3.0 | Power-Managed Modes | 33 | | 4.0 | Reset | 41 | | 5.0 | Memory Organization | 53 | | 6.0 | Data EEPROM Memory | 73 | | 7.0 | Flash Program Memory | 79 | | 8.0 | 8 x 8 Hardware Multiplier | 89 | | 9.0 | I/O Ports | 91 | | 10.0 | Interrupts | 109 | | 11.0 | Timer0 Module | 123 | | 12.0 | Timer1 Module | 127 | | 13.0 | Timer2 Module | 133 | | - | Timer3 Module | | | 15.0 | Capture/Compare/PWM (CCP) Modules | 139 | | | Enhanced Capture/Compare/PWM (ECCP) Module | | | | Master Synchronous Serial Port (MSSP) Module | | | | Enhanced Universal Synchronous Receiver Transmitter (EUSART) | | | 19.0 | 10-Bit Analog-to-Digital Converter (A/D) Module | 223 | | 20.0 | | | | 21.0 | p | | | | | | | 23.0 | Special Features of the CPU | 249 | | 24.0 | Instruction Set Summary | 267 | | 25.0 | | | | | Electrical Characteristics | | | 27.0 | DC and AC Characteristics Graphs and Tables | 361 | | | Packaging Information | | | | ndix A: Revision History | | | | ndix B: Device Differences | | | Appe | ndix C: Conversion Considerations | 395 | | | ndix D: Migration from Baseline to Enhanced Devices | | | | ndix E: Migration from Mid-Range TO Enhanced Devices | | | | ndix F: Migration from High-End to Enhanced Devices | | | | (| | | | Microchip Web Site | | | | omer Change Notification Service | | | | omer Support | | | | ler Response | | | PIC1 | 8F2525/2620/4525/4620 Product Identification System | 409 | #### TO OUR VALUED CUSTOMERS It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced. If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback. #### **Most Current Data Sheet** To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at: http://www.microchip.com You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000). #### **Errata** An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies. To determine if an errata sheet exists for a particular device, please check with one of the following: - · Microchip's Worldwide Web site; http://www.microchip.com - · Your local Microchip sales office (see last page) When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using. #### **Customer Notification System** Register on our web site at www.microchip.com to receive the most current information on all of our products. **NOTES:** #### 1.0 DEVICE OVERVIEW This document contains device-specific information for the following devices: PIC18F2525 PIC18F2525 PIC18F2620 PIC18F4525 PIC18F4525 PIC18F4620 PIC18LF4620 This family offers the advantages of all PIC18 microcontrollers – namely, high computational performance at an economical price – with the addition of high-endurance, Enhanced Flash program memory. On top of these features, the PIC18F2525/2620/4525/4620 family introduces design enhancements that make these microcontrollers a logical choice for many high-performance, power sensitive applications. #### 1.1 New Core Features #### 1.1.1 nanoWatt TECHNOLOGY All of the devices in the PIC18F2525/2620/4525/4620 family incorporate a range of features that can significantly reduce power consumption during operation. Key items include: - Alternate Run Modes: By clocking the controller from the Timer1 source or the internal oscillator block, power consumption during code execution can be reduced by as much as 90%. - Multiple Idle Modes: The controller can also run with its CPU core disabled but the peripherals still active. In these states, power consumption can be reduced even further, to as little as 4%, of normal operation requirements. - On-the-Fly Mode Switching: The powermanaged modes are invoked by user code during operation, allowing the user to incorporate power-saving ideas into their application's software design. - Low Consumption in Key Modules: The power requirements for both Timer1 and the Watchdog Timer are minimized. See Section 26.0 "Electrical Characteristics" for values. # 1.1.2 MULTIPLE OSCILLATOR OPTIONS AND FEATURES All of the devices in the PIC18F2525/2620/4525/4620 family offer ten different oscillator options, allowing users a wide range of choices in developing application hardware. These include: - Four Crystal modes, using crystals or ceramic resonators - Two External Clock modes, offering the option of using two pins (oscillator input and a divide-by-4 clock output) or one pin (oscillator input, with the second pin reassigned as general I/O) - Two External RC Oscillator modes with the same pin options as the External Clock modes - An internal oscillator block which provides an 8 MHz clock and an INTRC source (approximately 31 kHz), as well as a range of 6 user-selectable clock frequencies, between 125 kHz to 4 MHz, for a total of 8 clock frequencies. This option frees the two oscillator pins for use as additional general purpose I/O. - A Phase Lock Loop (PLL) frequency multiplier, available to both the High-Speed Crystal and Internal Oscillator modes, which allows clock speeds of up to 40 MHz. Used with the internal oscillator, the PLL gives users a complete selection of clock speeds, from 31 kHz to 32 MHz – all without using an external crystal or clock circuit. Besides its availability as a clock source, the internal oscillator block provides a stable reference source that gives the family additional features for robust operation: - Fail-Safe Clock Monitor: This option constantly monitors the main clock source against a reference signal provided by the internal oscillator. If a clock failure occurs, the controller is switched to the internal oscillator block, allowing for continued low-speed operation or a safe application shutdown. - Two-Speed Start-up: This option allows the internal oscillator to serve as the clock source from Power-on Reset, or wake-up from Sleep mode, until the primary clock source is available. #### 1.2 Other Special Features - Memory Endurance: The Enhanced Flash cells for both program memory and data EEPROM are rated to last for many thousands of erase/write cycles – up to 100,000 for program memory and 1,000,000 for EEPROM. Data retention without refresh is conservatively estimated to be greater than 40 years. - Self-Programmability: These devices can write to their own program memory spaces under internal software control. By using a bootloader routine located in the protected Boot Block at the top of program memory, it becomes possible to create an application that can update itself in the field. - Extended Instruction Set: The PIC18F2525/ 2620/4525/4620 family introduces an optional extension to the PIC18 instruction set, which adds 8 new instructions and an Indexed Addressing mode. This extension, enabled as a device configuration option, has been specifically designed to optimize re-entrant application code originally developed in high-level languages, such as C. - Enhanced CCP Module: In PWM mode, this module provides 1, 2 or 4 modulated outputs for controlling half-bridge and full-bridge drivers. Other features include auto-shutdown, for disabling PWM outputs on interrupt or other select conditions and auto-restart, to reactivate outputs once the condition has cleared. - Enhanced Addressable USART: This serial communication module is capable of standard RS-232 operation and provides support for the LIN bus protocol. Other enhancements include automatic baud rate detection and a 16-bit Baud Rate Generator for improved resolution. When the microcontroller is using the internal oscillator block, the EUSART provides stable operation for applications that talk to the outside world without using an external crystal (or its accompanying power requirement). - 10-Bit A/D Converter: This module incorporates programmable acquisition time, allowing for a channel to be selected and a conversion to be initiated without waiting for a sampling period and thus, reducing code overhead. - Extended Watchdog Timer (WDT): This enhanced version incorporates a 16-bit prescaler, allowing an extended time-out range that is stable across operating voltage and temperature. See Section 26.0 "Electrical Characteristics" for time-out periods. # 1.3 Details on Individual Family Members Devices in the PIC18F2525/2620/4525/4620 family are available in 28-pin and 40/44-pin packages. Block diagrams for the two groups are shown in Figure 1-1 and Figure 1-2. The devices are differentiated from each other in five ways: - Flash program memory (48 Kbytes for PIC18FX525 devices, 64 Kbytes for PIC18FX620 devices). - A/D channels (10 for 28-pin devices, 13 for 40/44-pin devices). - 3. I/O ports (3 bidirectional ports on 28-pin devices, 5 bidirectional ports on 40/44-pin devices). - 4. CCP and Enhanced CCP implementation (28-pin devices have 2 standard CCP modules, 40/44-pin devices have one standard CCP module and one ECCP module). - 5. Parallel Slave Port (present only on 40/44-pin devices). All other features for devices in this family are identical. These are summarized in Table 1-1. The pinouts for all devices are listed in Table 1-2 and Table 1-3. Like all Microchip PIC18 devices, members of the PIC18F2525/2620/4525/4620 family are available as both standard and low-voltage devices. Standard devices with Enhanced Flash memory, designated with an "F" in the part number (such as PIC18F2620), accommodate an operating VDD range of 4.2V to 5.5V. Low-voltage parts, designated by "LF" (such as PIC18LF2620), function over an extended VDD range of 2.0V to 5.5V. TABLE 1-1: DEVICE FEATURES | Features | PIC18F2525 | PIC18F2620 | PIC18F4525 | PIC18F4620 | |--|--|--|--|--| | Operating Frequency | DC – 40 MHz | | Program Memory (Bytes) | 49152 | 65536 | 49152 | 65536 | | Program Memory (Instructions) | 24576 | 32768 | 24576 | 32768 | | Data Memory (Bytes) | 3968 | 3968 | 3968 | 3968 | | Data EEPROM Memory (Bytes) | 1024 | 1024 | 1024 | 1024 | | Interrupt Sources | 19 | 19 | 20 | 20 | | I/O Ports | Ports A, B, C, (E) | Ports A, B, C, (E) | Ports A, B, C, D, E | Ports A, B, C, D, E | | Timers | 4 | 4 | 4 | 4 | | Capture/Compare/PWM Modules | 2 | 2 | 1 | 1 | | Enhanced Capture/Compare/
PWM Modules | 0 | 0 | 1 | 1 | | Serial Communications | MSSP,
Enhanced USART | MSSP,
Enhanced USART | MSSP,
Enhanced USART | MSSP,
Enhanced USART | | Parallel Communications (PSP) | No | No | Yes | Yes | | 10-Bit Analog-to-Digital Module | 10 Input Channels | 10 Input Channels | 13 Input Channels | 13 Input Channels | | Resets (and Delays) | POR, BOR, RESET Instruction, Stack Full, Stack Underflow (PWRT, OST), MCLR (optional), WDT | POR, BOR, RESET Instruction, Stack Full, Stack Underflow (PWRT, OST), MCLR (optional), WDT | POR, BOR, RESET Instruction, Stack Full, Stack Underflow (PWRT, OST), MCLR (optional), WDT | POR, BOR, RESET Instruction, Stack Full, Stack Underflow (PWRT, OST), MCLR (optional), WDT | | Programmable Low-Voltage
Detect | Yes | Yes | Yes | Yes | | Programmable Brown-out Reset | Yes | Yes | Yes | Yes | | Instruction Set | 75 Instructions;
83 with Extended
Instruction Set
Enabled | | Packages | 28-Pin SPDIP
28-Pin SOIC | 28-Pin SPDIP
28-Pin SOIC | 40-Pin PDIP
44-Pin QFN
44-Pin TQFP | 40-Pin PDIP
44-Pin QFN
44-Pin TQFP | TABLE 1-2: PIC18F2525/2620 PINOUT I/O DESCRIPTIONS | Pin Name | Pin
Number | Pin
Type | Buffer
Type | Description | |---------------|----------------|-------------|----------------|--| | | SPDIP,
SOIC | - 7,60 | 1,60 | | | MCLR/VPP/RE3 | 1 | | | Master Clear (input) or programming voltage (input). | | MCLR | | I | ST | Master Clear (Reset) input. This pin is an active-low Reset to the device. | | VPP | | Р | | Programming voltage input. | | RE3 | | I | ST | Digital input. | | OSC1/CLKI/RA7 | 9 | | | Oscillator crystal or external clock input. | | OSC1 | | I | ST | Oscillator crystal input or external clock source input. | | CLKI | | ı | CMOS | ST buffer when configured in RC mode; CMOS otherwise. External clock source input. Always associated with | | | | - | | pin function OSC1. (See related OSC1/CLKI, | | | | | | OSC2/CLKO pins.) | | RA7 | | I/O | TTL | General purpose I/O pin. | | OSC2/CLKO/RA6 | 10 | | | Oscillator crystal or clock output. | | OSC2 | | 0 | | Oscillator crystal output. Connects to crystal or resonator | | CLKO | | 0 | _ | in Crystal Oscillator mode. In RC mode, OSC2 pin outputs CLKO which has 1/4 the | | OLINO | | J | | frequency of OSC1 and denotes the instruction cycle rate. | | RA6 | | I/O | TTL | General purpose I/O pin. | **Legend:** TTL = TTL compatible input CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels I = Input O = Output P = Power Note 1: Default assignment for CCP2 when the CCP2MX Configuration bit is set. TABLE 1-2: PIC18F2525/2620 PINOUT I/O DESCRIPTIONS (CONTINUED) | Pin Name | Pin
Number | Pin | Buffer | Description | |--|----------------|-------------------------|-------------------------------------|--| | Fill Name | SPDIP,
SOIC | Туре | Туре | Description | | | | | | PORTA is a bidirectional I/O port. | | RA0/AN0
RA0
AN0 | 2 | I/O
I | TTL
Analog | Digital I/O.
Analog input 0. | | RA1/AN1
RA1
AN1 | 3 | I/O
I | TTL
Analog | Digital I/O.
Analog input 1. | | RA2/AN2/VREF-/CVREF
RA2
AN2
VREF-
CVREF | 4 | I/O
I
I
O | TTL
Analog
Analog
Analog | Digital I/O. Analog input 2. A/D reference voltage (low) input. Comparator reference voltage output. | | RA3/AN3/VREF+
RA3
AN3
VREF+ | 5 | I/O
I
I | TTL
Analog
Analog | Digital I/O. Analog input 3. A/D reference voltage (high) input. | | RA4/T0CKI/C1OUT
RA4
T0CKI
C1OUT | 6 | I/O
I
O | ST
ST
— | Digital I/O.
Timer0 external clock input.
Comparator 1 output. | | RA5/AN4/SS/HLVDIN/
C2OUT
RA5
AN4
SS
HLVDIN
C2OUT | 7 | I/O
I
I
I
O | TTL
Analog
TTL
Analog
— | SPI slave select input.
High/Low-Voltage Detect input.
Comparator 2 output. | | RA6
RA7 | | | | See the OSC2/CLKO/RA6 pin. See the OSC1/CLKI/RA7 pin. | **Legend:** TTL = TTL compatible input CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels O = Output I = Input P = Power Note 1: Default assignment for CCP2 when the CCP2MX Configuration bit is set. TABLE 1-2: PIC18F2525/2620 PINOUT I/O DESCRIPTIONS (CONTINUED) | Pin Name | Pin
Number | Pin | Buffer | Description | |---|----------------|-------------------|---------------------------|---| | Pili Name | SPDIP,
SOIC | Туре | Туре | Description | | | | | | PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-ups on all inputs. | | RB0/INT0/FLT0/AN12
RB0
INT0
FLT0
AN12 | 21 | I/O

 | TTL
ST
ST
Analog | Digital I/O. External interrupt 0. PWM Fault input for CCP1. Analog input 12. | | RB1/INT1/AN10
RB1
INT1
AN10 | 22 | I/O
I
I | TTL
ST
Analog | Digital I/O.
External interrupt 1.
Analog input 10. | | RB2/INT2/AN8
RB2
INT2
AN8 | 23 | I/O

 | TTL
ST
Analog | Digital I/O.
External interrupt 2.
Analog input 8. | | RB3/AN9/CCP2
RB3
AN9
CCP2 ⁽¹⁾ | 24 | I/O
I
I/O | TTL
Analog
ST | Digital I/O. Analog input 9. Capture 2 input/Compare 2 output/PWM2 output. | | RB4/KBI0/AN11
RB4
KBI0
AN11 | 25 | I/O

 | TTL
TTL
Analog | Digital I/O.
Interrupt-on-change pin.
Analog input 11. | | RB5/KBI1/PGM
RB5
KBI1
PGM | 26 | I/O
I
I/O | TTL
TTL
ST | Digital I/O.
Interrupt-on-change pin.
Low-Voltage ICSP™ Programming enable pin. | | RB6/KBI2/PGC
RB6
KBI2
PGC | 27 | I/O
I
I/O | TTL
TTL
ST | Digital I/O.
Interrupt-on-change pin.
In-Circuit Debugger and ICSP programming clock pin. | | RB7/KBI3/PGD
RB7
KBI3
PGD | 28 | I/O
I
I/O | TTL
TTL
ST | Digital I/O.
Interrupt-on-change pin.
In-Circuit Debugger and ICSP programming data pin. | **Legend:** TTL = TTL compatible input CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels I = Input O = Output P = Power Note 1: Default assignment for CCP2 when the CCP2MX Configuration bit is set. TABLE 1-2: PIC18F2525/2620 PINOUT I/O DESCRIPTIONS (CONTINUED) | Pin Name | Pin
Number | Pin | Buffer | Description | |---|----------------|-------------------|--------------------|--| | Fill Name | SPDIP,
SOIC | Type | Туре | Description | | | | | | PORTC is a bidirectional I/O port. | | RC0/T1OSO/T13CKI
RC0
T1OSO
T13CKI | 11 | I/O
O
I | ST
—
ST | Digital I/O.
Timer1 oscillator output.
Timer1/Timer3 external clock input. | | RC1/T1OSI/CCP2
RC1
T1OSI
CCP2 ⁽²⁾ | 12 | I/O
I
I/O | ST
Analog
ST | Digital I/O.
Timer1 oscillator input.
Capture 2 input/Compare 2 output/PWM2 output. | | RC2/CCP1
RC2
CCP1 | 13 | I/O
I/O | ST
ST | Digital I/O.
Capture 1 input/Compare 1 output/PWM1 output. | | RC3/SCK/SCL
RC3
SCK
SCL | 14 | I/O
I/O
I/O | ST
ST
ST | Digital I/O.
Synchronous serial clock input/output for SPI mode.
Synchronous serial clock input/output for I ² C™ mode. | | RC4/SDI/SDA
RC4
SDI
SDA | 15 | I/O
I
I/O | ST
ST
ST | Digital I/O.
SPI data in.
I ² C data I/O. | | RC5/SDO
RC5
SDO | 16 | I/O
O | ST
— | Digital I/O.
SPI data out. | | RC6/TX/CK
RC6
TX
CK | 17 | I/O
O
I/O | ST
—
ST | Digital I/O.
EUSART asynchronous transmit.
EUSART synchronous clock (see related RX/DT). | | RC7/RX/DT
RC7
RX
DT | 18 | I/O
I
I/O | ST
ST
ST | Digital I/O.
EUSART asynchronous receive.
EUSART synchronous data (see related TX/CK). | | RE3 | _ | _ | _ | See MCLR/VPP/RE3 pin. | | Vss | 8, 19 | Р | _ | Ground reference for logic and I/O pins. | | VDD | 20 | Р | _ | Positive supply for logic and I/O pins. | **Legend:** TTL = TTL compatible input CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels O = Output I = Input P = Power Note 1: Default assignment for CCP2 when the CCP2MX Configuration bit is set. TABLE 1-3: PIC18F4525/4620 PINOUT I/O DESCRIPTIONS | Pin Name | Pin Number | | Pin | Buffer | Description | | |-----------------------|------------|-----|------|--------|-------------|--| | Pin Name | PDIP | QFN | TQFP | Туре | Туре | Description | | MCLR/VPP/RE3
MCLR | 1 | 18 | 18 | I | ST | Master Clear (input) or programming voltage (input). Master Clear (Reset) input. This pin is an active-low Reset to the device. | | VPP
RE3 | | | | P
I | ST | Programming voltage input.
Digital input. | | OSC1/CLKI/RA7
OSC1 | 13 | 32 | 30 | ı | ST | Oscillator crystal or external clock input. Oscillator crystal input or external clock source input. ST buffer when configured in RC mode; | | CLKI | | | | I | CMOS | analog otherwise. External clock source input. Always associated with pin function OSC1. (See related OSC1/CLKI, OSC2/CLKO pins.) | | RA7 | | | | I/O | TTL | General purpose I/O pin. | | OSC2/CLKO/RA6
OSC2 | 14 | 33 | 31 | 0 | _ | Oscillator crystal or clock output. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. | | CLKO | | | | 0 | _ | In RC mode, OSC2 pin outputs CLKO which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate. | | RA6 | | | | I/O | TTL | General purpose I/O pin. | **Legend:** TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels O = Output CMOS = CMOS compatible input or output I = Input P = Power Note 1: Default assignment for CCP2 when the CCP2MX Configuration bit is set. **2:** Alternate assignment for CCP2 when the CCP2MX Configuration bit is cleared. TABLE 1-3: PIC18F4525/4620 PINOUT I/O DESCRIPTIONS (CONTINUED) | Pin Name | Pin Number | | | Pin Buffer | | Description | |--|------------|-----|------|----------------------------------|-------------------------------------|--| | Pin Name | PDIP | QFN | TQFP | Туре | Туре | Description | | RA0/AN0 | 2 | 19 | 19 | | | PORTA is a bidirectional I/O port. | | RA0
AN0 | | | | I/O
I | TTL
Analog | Digital I/O.
Analog input 0. | | RA1/AN1
RA1
AN1 | 3 | 20 | 20 | I/O
I | TTL
Analog | Digital I/O.
Analog input 1. | | RA2/AN2/VREF-/CVREF
RA2
AN2
VREF-
CVREF | 4 | 21 | 21 | I/O
I
I
O | TTL
Analog
Analog
Analog | Digital I/O. Analog input 2. A/D reference voltage (low) input. Comparator reference voltage output. | | RA3/AN3/VREF+
RA3
AN3
VREF+ | 5 | 22 | 22 | I/O
I
I | TTL
Analog
Analog | Digital I/O.
Analog input 3.
A/D reference voltage (high) input. | | RA4/T0CKI/C1OUT
RA4
T0CKI
C1OUT | 6 | 23 | 23 | I/O
I
O | ST
ST
— | Digital I/O.
Timer0 external clock input.
Comparator 1 output. | | RA5/AN4/SS/HLVDIN/
C2OUT
RA5
AN4
SS
HLVDIN
C2OUT | 7 | 24 | 24 | I/O

 | TTL
Analog
TTL
Analog
— | Digital I/O. Analog input 4. SPI slave select input. High/Low-Voltage Detect input. Comparator 2 output. | | RA6
RA7 | | | | | | See the OSC2/CLKO/RA6 pin. See the OSC1/CLKI/RA7 pin. | **Legend:** TTL = TTL compatible input CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels O = Output I = Input P = Power Note 1: Default assignment for CCP2 when the CCP2MX Configuration bit is set. 2: Alternate assignment for CCP2 when the CCP2MX Configuration bit is cleared. TABLE 1-3: PIC18F4525/4620 PINOUT I/O DESCRIPTIONS (CONTINUED) | Pin Name | Pin Number | | | Pin | Buffer | Description | |---|------------|-----|------|-----------------|---------------------------|---| | Pin Name | PDIP | QFN | TQFP | Туре | Туре | Description | | | | | | | | PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-ups on all inputs. | | RB0/INT0/FLT0/AN12
RB0
INT0
FLT0
AN12 | 33 | 9 | 8 | I/O
I
I | TTL
ST
ST
Analog | Digital I/O. External interrupt 0. PWM Fault input for Enhanced CCP1. Analog input 12. | | RB1/INT1/AN10
RB1
INT1
AN10 | 34 | 10 | 9 | I/O
I
I | TTL
ST
Analog | Digital I/O.
External interrupt 1.
Analog input 10. | | RB2/INT2/AN8
RB2
INT2
AN8 | 35 | 11 | 10 | I/O
I
I | TTL
ST
Analog | Digital I/O.
External interrupt 2.
Analog input 8. | | RB3/AN9/CCP2
RB3
AN9
CCP2 ⁽¹⁾ | 36 | 12 | 11 | I/O
I
I/O | TTL
Analog
ST | Digital I/O.
Analog input 9.
Capture 2 input/Compare 2 output/PWM2 output. | | RB4/KBI0/AN11
RB4
KBI0
AN11 | 37 | 14 | 14 | I/O
I
I | TTL
TTL
Analog | Digital I/O.
Interrupt-on-change pin.
Analog input 11. | | RB5/KBI1/PGM
RB5
KBI1
PGM | 38 | 15 | 15 | I/O
I
I/O | TTL
TTL
ST | Digital I/O.
Interrupt-on-change pin.
Low-Voltage ICSP™ Programming enable pin. | | RB6/KBI2/PGC
RB6
KBI2
PGC | 39 | 16 | 16 | I/O
I
I/O | TTL
TTL
ST | Digital I/O.
Interrupt-on-change pin.
In-Circuit Debugger and ICSP programming
clock pin. | | RB7/KBI3/PGD
RB7
KBI3
PGD | 40 | 17 | 17 | I/O
I
I/O | TTL
TTL
ST | Digital I/O.
Interrupt-on-change pin.
In-Circuit Debugger and ICSP programming
data pin. | **Legend:** TTL = TTL compatible input CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels I = Input O = Output P = Power Note 1: Default assignment for CCP2 when the CCP2MX Configuration bit is set. 2: Alternate assignment for CCP2 when the CCP2MX Configuration bit is cleared. TABLE 1-3: PIC18F4525/4620 PINOUT I/O DESCRIPTIONS (CONTINUED) | Din Nome | Piı | n Numb | er | Pin | Buffer | Description | | | | |---|------|--------|------|-----------------|------------------|--|--|--|--| | Pin Name | PDIP | QFN | TQFP | Туре | Туре | Description | | | | | | | | | | | PORTC is a bidirectional I/O port. | | | | | RC0/T1OSO/T13CKI
RC0
T1OSO
T13CKI | 15 | 34 | 32 | I/O
O
I | ST
—
ST | Digital I/O.
Timer1 oscillator output.
Timer1/Timer3 external clock input. | | | | | RC1/T1OSI/CCP2
RC1
T1OSI
CCP2 ⁽²⁾ | 16 | 35 | 35 | I/O
I
I/O | ST
CMOS
ST | Digital I/O.
Timer1 oscillator input.
Capture 2 input/Compare 2 output/PWM2 output. | | | | | RC2/CCP1/P1A
RC2
CCP1
P1A | 17 | 36 | 36 | I/O
I/O
O | ST
ST
— | Digital I/O. Capture 1 input/Compare 1 output/PWM1 output. Enhanced CCP1 output. | | | | | RC3/SCK/SCL
RC3
SCK | 18 | 37 | 37 | I/O
I/O | ST
ST | Digital I/O.
Synchronous serial clock input/output for
SPI mode. | | | | | SCL | | | | I/O | ST | Synchronous serial clock input/output for I ² C™ mode. | | | | | RC4/SDI/SDA
RC4
SDI
SDA | 23 | 42 | 42 | I/O
I
I/O | ST
ST
ST | Digital I/O.
SPI data in.
I ² C data I/O. | | | | | RC5/SDO
RC5
SDO | 24 | 43 | 43 | I/O
O | ST
— | Digital I/O.
SPI data out. | | | | | RC6/TX/CK
RC6
TX
CK | 25 | 44 | 44 | I/O
O
I/O | ST
—
ST | Digital I/O.
EUSART asynchronous transmit.
EUSART synchronous clock (see related RX/DT). | | | | | RC7/RX/DT
RC7
RX
DT | 26 | 1 | 1 | I/O
I
I/O | ST
ST
ST | Digital I/O.
EUSART asynchronous receive.
EUSART synchronous data (see related TX/CK). | | | | **Legend:** TTL = TTL compatible input CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels I = Input O = Output P = Power Note 1: Default assignment for CCP2 when the CCP2MX Configuration bit is set. 2: Alternate assignment for CCP2 when the CCP2MX Configuration bit is cleared. TABLE 1-3: PIC18F4525/4620 PINOUT I/O DESCRIPTIONS (CONTINUED) | Pin Name | Pin Number | | | Pin Buffer | | Description | |------------------------------------|------------|-----|------|-----------------|----------------|--| | Pin Name | PDIP | QFN | TQFP | Туре | Туре | Description | | | | | | | | PORTD is a bidirectional I/O port or a Parallel Slave Port (PSP) for interfacing to a microprocessor port. These pins have TTL input buffers when the PSP module is enabled. | | RD0/PSP0
RD0
PSP0 | 19 | 38 | 38 | I/O
I/O | ST
TTL | Digital I/O.
Parallel Slave Port data. | | RD1/PSP1
RD1
PSP1 | 20 | 39 | 39 | I/O
I/O | ST
TTL | Digital I/O.
Parallel Slave Port data. | | RD2/PSP2
RD2
PSP2 | 21 | 40 | 40 | I/O
I/O | ST
TTL | Digital I/O.
Parallel Slave Port data. | | RD3/PSP3
RD3
PSP3 | 22 | 41 | 41 | I/O
I/O | ST
TTL | Digital I/O.
Parallel Slave Port data. | | RD4/PSP4
RD4
PSP4 | 27 | 2 | 2 | I/O
I/O | ST
TTL | Digital I/O.
Parallel Slave Port data. | | RD5/PSP5/P1B
RD5
PSP5
P1B | 28 | 3 | 3 | I/O
I/O
O | ST
TTL
— | Digital I/O. Parallel Slave Port data. Enhanced CCP1 output. | | RD6/PSP6/P1C
RD6
PSP6
P1C | 29 | 4 | 4 | I/O
I/O
O | ST
TTL
— | Digital I/O. Parallel Slave Port data. Enhanced CCP1 output. | | RD7/PSP7/P1D
RD7
PSP7
P1D | 30 | 5 | 5 | I/O
I/O
O | ST
TTL
— | Digital I/O. Parallel Slave Port data. Enhanced CCP1 output. | **Legend:** TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels O = Output Note 1: Default assignment for CCP2 when the CCP2MX Configuration bit is set. 2: Alternate assignment for CCP2 when the CCP2MX Configuration bit is cleared. **3:** For the QFN package, it is recommended that the bottom pad be connected to Vss. CMOS = CMOS compatible input or output InputPower TABLE 1-3: PIC18F4525/4620 PINOUT I/O DESCRIPTIONS (CONTINUED) | Pin Name | Pin Number | | | Pin | Buffer | Description | | |------------|------------|--------|--------|------|--------|---|--| | Fill Name | PDIP | QFN | TQFP | Туре | Type | Description | | | | | | | | | PORTE is a bidirectional I/O port. | | | RE0/RD/AN5 | 8 | 25 | 25 | | | | | | RE0 | | | | I/O | ST | Digital I/O. | | | RD | | | | - 1 | TTL | Read cont <u>rol</u> for Parallel Slave Port | | | | | | | | l | (see also WR and CS pins). | | | AN5 | | | | I | Analog | Analog input 5. | | | RE1/WR/AN6 | 9 | 26 | 26 | | | | | | RE1 | | | | I/O | ST | Digital I/O. | | | WR | | | | - 1 | TTL | Write <u>co</u> ntrol <u>for</u> Parallel Slave Port | | | | | | | | | (see $\overline{\text{CS}}$ and $\overline{\text{RD}}$ pins). | | | AN6 | | | | ı | Analog | Analog input 6. | | | RE2/CS/AN7 | 10 | 27 | 27 | | | | | | RE2 | | | | I/O | ST | Digital I/O. | | | CS | | | | - 1 | TTL | Chip select control for Parallel Slave Port | | | | | | | | | (see related RD and WR). | | | AN7 | | | | ı | Analog | Analog input 7. | | | RE3 | _ | | - | | — | See MCLR/VPP/RE3 pin. | | | Vss | 12, 31 | 6, 30, | 6, 29 | Р | _ | Ground reference for logic and I/O pins. | | | | | 31 | | | | | | | VDD | 11, 32 | 7, 8, | 7, 28 | Р | _ | Positive supply for logic and I/O pins. | | | | | 28, 29 | | | | | | | NC | _ | 13 | 12,13, | _ | _ | No connect. | | | | | | 33, 34 | | | | | **Legend:** TTL = TTL compatible input CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels O = Output I = Input P = Power Note 1: Default assignment for CCP2 when the CCP2MX Configuration bit is set. 2: Alternate assignment for CCP2 when the CCP2MX Configuration bit is cleared. **NOTES:** # 2.0 OSCILLATOR CONFIGURATIONS #### 2.1 Oscillator Types PIC18F2525/2620/4525/4620 devices can be operated in ten different oscillator modes. The user can program the Configuration bits, FOSC3:FOSC0, in Configuration Register 1H to select one of these ten modes: | 1. | LP | Low-Power Crystal | |-----|--------|--| | 2. | XT | Crystal/Resonator | | 3. | HS | High-Speed Crystal/Resonator | | 4. | HSPLL | High-Speed Crystal/Resonator with PLL Enabled | | 5. | RC | External Resistor/Capacitor with Fosc/4 Output on RA6 | | 6. | RCIO | External Resistor/Capacitor with I/O on RA6 | | 7. | INTIO1 | Internal Oscillator with Fosc/4 Output on RA6 and I/O on RA7 | | 8. | INTIO2 | Internal Oscillator with I/O on RA6 and RA7 | | 9. | EC | External Clock with Fosc/4 Output | | 10. | ECIO | External Clock with I/O on RA6 | # 2.2 Crystal Oscillator/Ceramic Resonators In XT, LP, HS or HSPLL Oscillator modes, a crystal or ceramic resonator is connected to the OSC1 and OSC2 pins to establish oscillation. Figure 2-1 shows the pin connections. The oscillator design requires the use of a parallel cut crystal. **Note:** Use of a series cut crystal may give a frequency out of the crystal manufacturer's specifications. # FIGURE 2-1: CRYSTAL/CERAMIC RESONATOR OPERATION (XT, LP, HS OR HSPLL CONFIGURATION) Note 1: See Table 2-1 and Table 2-2 for initial values of C1 and C2. - 2: A series resistor (Rs) may be required for AT strip cut crystals. - 3: RF varies with the oscillator mode chosen. # TABLE 2-1: CAPACITOR SELECTION FOR CERAMIC RESONATORS | Typical Capacitor Values Used: | | | | | | | | | |--------------------------------|----------------------------|-------------------------|-------------------------|--|--|--|--|--| | Mode | Freq | OSC1 | OSC2 | | | | | | | XT | 3.58 MHz | 15 pF | 15 pF | | | | | | | | 4.19 MHz
4 MHz
4 MHz | 15 pF
30 pF
50 pF | 15 pF
30 pF
50 pF | | | | | | #### Capacitor values are for design guidance only. Different capacitor values may be required to produce acceptable oscillator operation. The user should test the performance of the oscillator over the expected VDD and temperature range for the application. See the notes following Table 2-2 for additional information.