

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

PIC18(L)F25/26K83

28-Pin, Low-Power, High-Performance Microcontrollers with CAN Technology

Description

The PIC18(L)FXXK83 is a full-featured CAN product family that can be used in automotive and industrial applications. The multitude of communication peripherals found on the product family, such as CAN, SPI, two I²Cs, two UARTs, LIN, DMX, and DALI can handle a wide range of wired and wireless (using external modules) communication protocols for intelligent applications. This family includes a 12-bit ADC with Computation (ADC²) extensions for automated signal analysis to reduce the complexity of the application. This, combined with the Core Independent Peripherals integration capabilities, enables functions for motor control, power supply, sensor, signal and user interface applications.

Core Features

- · C Compiler Optimized RISC Architecture
- · Operating Speed:
 - Up to 64 MHz clock operation
 - 62.5 ns minimum instruction cycle
- · Two Direct Memory Access (DMA) Controllers:
 - Data transfers to SFR/GPR spaces from either Program Flash Memory, Data EEPROM or SFR/GPR spaces
 - User-programmable source and destination sizes
 - Hardware and software-triggered data transfers
- System Bus Arbiter with User-Configurable Priorities for Scanner and DMA1/DMA2 with respect to the main line and interrupt execution
- · Vectored Interrupt Capability:
 - Selectable high/low priority
 - Fixed interrupt latency
 - Programmable vector table base address
- · 31-Level Deep Hardware Stack
- · Low-Current Power-on Reset (POR)
- Configurable Power-up Timer (PWRT)
- Brown-Out Reset (BOR)
- · Low-Power BOR (LPBOR) Option
- Windowed Watchdog Timer (WWDT):
 - Variable prescaler selection
 - Variable window size selection
 - Configurable in hardware or software

Memory

- · Up to 64 KB Flash Program Memory
- Up to 4 KB Data SRAM Memory
- Up to 1 KB Data EEPROM
- · Memory Access Partition (MAP):
 - Configurable boot and app region sizes with individual write-protections
- · Programmable Code Protection
- · Device Information Area (DIA) stores:
 - Unique IDs and Device IDs
 - Temp Sensor factory-calibrated data
 - Fixed Voltage Reference calibrated data
- · Device Configuration Information (DCI) stores:
 - Erase row size
 - Number of write latches per row
 - Number of user rows
 - Data EEPROM memory size
 - Pin count

Operating Characteristics

- · Operating Voltage Range:
 - 1.8V to 3.6V (PIC18LF25/26K83)
 - 2.3V to 5.5V (PIC18F25/26K83)
- · Temperature Range:
 - Industrial: -40°C to 85°C
 - Extended: -40°C to 125°C

Power-Saving Functionality

- DOZE mode: Ability to run CPU core slower than the system clock
- IDLE mode: Ability to halt CPU core while internal peripherals continue operating
- · SLEEP mode: Lowest power consumption
- · Peripheral Module Disable (PMD):
 - Ability to disable unused peripherals to minimize power consumption

eXtreme Low-Power (XLP) Features

- Sleep mode: 60 nA @ 1.8V, typical
- Windowed Watchdog Timer: 720 nA @ 1.8V, typical
- Secondary Oscillator: 580 nA @ 32 kHz
- Operating Current:
 - 4 uA @ 32 kHz, 1.8V, typical
 - 45 uA/MHz @ 1.8V, typical

Digital Peripherals

- Three 8-Bit Timers (TMR2/4/6) with Hardware Limit Timer (HLT):
 - Hardware monitoring and Fault detection
- Four 16-Bit Timers (TMR0/1/3/5)
- · Four Configurable Logic Cell (CLC):
 - Integrated combinational and sequential logic
- Three Complementary Waveform Generators (CWGs):
 - Rising and falling edge dead-band control
 - Full-bridge, half-bridge, 1-channel drive
 - Multiple signal sources
 - Programmable dead band
 - Fault-shutdown input
- · Four Capture/Compare/PWM (CCP) modules
- Four 10-bit Pulse-Width Modulators (PWMs)
- Numerically Controlled Oscillator (NCO):
 - Generates true linear frequency control
 - High resolution using 20-bit accumulator and 20-bit increment values
- DSM: Data Signal Modulator:
 - Multiplex two carrier clocks, with glitch prevention feature
 - Multiple sources for each carrier
- · Programmable CRC with Memory Scan:
 - Reliable data/program memory monitoring for fail-safe operation (e.g., Class B)
 - Calculate CRC over any portion of program memory
- Two UART Modules:
 - Modules are Asynchronous, RS-232, RS-485 compatibility.
 - One of the UART modules supports LIN Master and Slave, DMX mode, DALI Gear and Device protocols
 - Automatic and user-timed BREAK period generation
 - DMA Compatible
 - Automatic checksums
 - Programmable 1, 1.5, and two Stop bits
 - Wake-up on BREAK reception

- · One SPI module:
 - Configurable length bytes
 - Configurable length data packets
 - Receive-without-transmit option
 - Transmit-without-receive option
 - Transfer byte counter
 - Separate Transmit and Receive Buffers with 2-byte FIFO and DMA capabilities
- · CAN module:
 - Conforms to CAN 2.0B Active Specification
 - Three operating modes: Legacy (compatible with existing PIC18CXX8/FXX8 CAN modules), Enhanced mode, and FIFO mode.
 - Message bit rates up to 1 Mbps
 - DeviceNet[™] data byte filter support
 - Six programmable receive/transmit buffers
 - Three dedicated transmit buffers
 - Two dedicated receive buffers
 - 16 Full, 29-bit acceptance filters with dynamic association
 - Three full, 29-bit acceptance masks
 - Automatic remote frame handling
 - Advanced error management features.
- Two I²C modules, SMBus, PMBus™ compatible:
 - Dedicated Address, Transmit and Receive buffers
 - Bus Collision Detection with arbitration
 - Bus time-out detection and handling
 - Multi-Master mode
 - Separate Transmit and Receive Buffers with 2-byte FIFO and DMA capabilities
 - I²C, SMBus 2.0 and SMBus 3.0, and 1.8V input level selections
- · Device I/O Port Features:
 - 25 I/O pins (PIC18(L)F25K83)
 - One input-only pin
 - Individually programmable I/O direction, open-drain, slew rate, weak pull-up control
 - Interrupt-on-change
 - Three External Interrupt Pins
- Peripheral Pin Select (PPS):
 - Enables pin mapping of digital I/O
- Two Signal Measurement Timer (SMT):
 - 24-bit timer/counter with prescaler

Analog Peripherals

- Analog-to-Digital Converter with Computation (ADC²):
 - 12-bit with up to 24 external channels
 - Automated post-processing
 - Automated math functions on input signals: averaging, filter calculations, oversampling and threshold comparison
 - Operates in Sleep
 - Integrated charge pump for improved lowvoltage operation
- Hardware Capacitive Voltage Divider (CVD):
 - Automates touch sampling and reduces software size and CPU usage when touch or proximity sensing is required
 - Adjustable sample and hold capacitor array
 - Two guard ring output drives
- · Temperature Sensor:
 - Internal connection to ADC
 - Can be calibrated for improved accuracy
- · Two Comparators:
 - Low-Power/High-Speed mode
 - Fixed Voltage Reference at noninverting input(s)
 - Comparator outputs externally accessible
- 5-Bit Digital-to-Analog Converter (DAC):
 - 5-bit resolution, rail-to-rail
 - Positive Reference Selection
 - Unbuffered I/O pin output
 - Internal connections to ADCs and comparators
- · Voltage Reference:
 - Fixed Voltage Reference with 1.024V, 2.048V and 4.096V output levels

Flexible Oscillator Structure

- · High-Precision Internal Oscillator:
 - Selectable frequency range up to 64 MHz
 - ±1% at calibration (nominal)
- Low-Power Internal 32 kHz Oscillator (LFINTOSC)
- External 32 kHz Crystal Oscillator (SOCS)
- · External Oscillator Block with:
 - x4 PLL with external sources
 - Three crystal/resonator modes up to 20 MHz
 - Three external clock modes up to 20 MHz
- · Fail-Safe Clock Monitor
- Oscillator Start-up Timer (OST):
 - Ensures stability of crystal oscillator sources

TABLE 1: PIC18(L)FXXK83 FAMILY TYPES

Device	Data Sheet Index	Program Flash Memory (KB)	Data EEPROM (B)	Data SRAM (bytes)	I/O Pins	12-bit ADC ² (ch)	5-bit DAC	Comparator	8-bit/ (with HLT)/16-bit Timer	Window Watchdog Timer (WWDT)	Signal Measurement Timer (SMT)	CCP/10-bit PWM	CWG	NCO	CLC	Zero-Cross Detect	Direct Memory Access (DMA)	Memory Access Partition	Vectored Interrupts	CAN	UART with Protocols	l²C/SPI	Peripheral Pin Select	Peripheral Module Disable	Debug ⁽¹⁾
PIC18(L)F25K83	(A)	32	1024	2048	25	24	1	2	3/3	Υ	Υ	4/4	1	1	4	Υ	2	Υ	Υ	Υ	2	1/1	Υ	Υ	-1
PIC18(L)F26K83			1024	4096	25				3/3		~	4/4									2	1/1		V	

Note 1: I - Debugging integrated on chip.

Data Sheet Index:

A:DS40001943 PIC18(L)F25/26K83 Data Sheet, 28-Pin

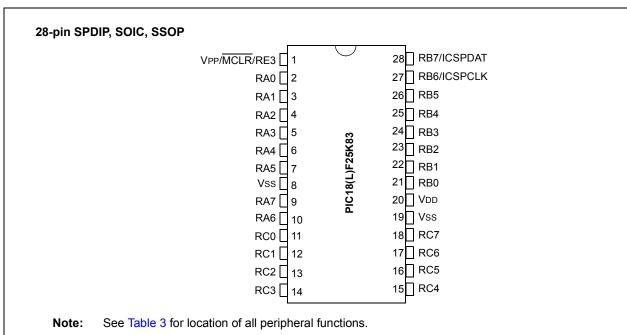
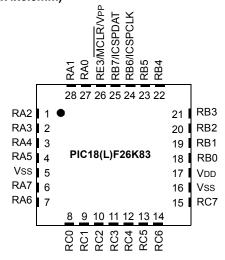

Note: For other small form-factor package availability and marking information, visit http://www.microchip.com/packaging or contact your local sales office.

TABLE 2: PACKAGES


Device	SPDIP	SOIC	SSOP	UQFN	QFN
PIC18(L)F25K83	•	•	•	•	•
PIC18(L)F26K83	•	•	•	•	•

Note 1: Pin details are subject to change.

Pin Diagrams

Note 1: See Table 3 for location of all peripheral functions.

2: It is recommended that the exposed bottom pad be connected to Vss, however it must not be the only Vss connection to the device.

Pin Allocation Tables

TABLE 3: 28-PIN ALLOCATION TABLE (PIC18(L)F25/26K83)

O/I	28-Pin SPDIP/SOIC/SSOP	28-Pin (U)QFN	ADC	Voltage Reference	DAC	Comparators	Zero Cross Detect	1 ² C	SPI	UART	WSQ	Timers/SMT	CCP and PWM	ЭМЭ	CLC	NCO	Clock Reference (CLKR)	ECAN	Interrupt-on Change	Basic
RA0	2	27	ANA0	_	_	C1IN0- C2IN0-	-	_	_	_	_	_	_	_	CLCIN0 ⁽¹⁾	-	_	_	IOCA0	_
RA1	3	28	ANA1	_	_	C1IN1- C2IN1-	_	_	_	_	_	_	_	_	CLCIN1 ⁽¹⁾	-	_	_	IOCA1	-
RA2	4	1	ANA2	VREF-	DAC1OUT1	C1IN0+ C2IN0+	-	_	_	_	_	_	_	_	_	-	_	_	IOCA2	-
RA3	5	2	ANA3	VREF+	_	C1IN1+	_	_	_	_	MD1CARL ⁽¹⁾	-				_	_	_	IOCA3	_
RA4	6	3	ANA4	_	_	_	_	_	_	_	MD1CARH ⁽¹⁾	T0CKI ⁽¹⁾	_	_	_	_	_	_	IOCA4	_
RA5	7	4	ANA5	_	_	_		_	SS1 ^(1,3)	_	MD1SRC ⁽¹⁾	_	_	_	-	-	_	_	IOCA5	_
RA6	10	7	ANA6	_	_	-	_	_	_	_	_	_	_	_	1	-	_	_	IOCA6	OSC2 CLKOUT
RA7	9	6	ANA7	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	IOCA7	OSC1 CLKIN
RB0	21	18	ANB0	_	_	C2IN1+	ZCD	_	_	_	_	_	CCP4 ⁽¹⁾	CWG1 ⁽¹⁾	_	-	_	_	IOCB0 INT0 ⁽¹⁾	_
RB1	22	19	ANB1	_	_	C1IN3- C2IN3-	_	SCL2 ^(1,3,4)	_	_	_	_	_	CWG2 ⁽¹⁾	-		_	_	IOCB1 INT1 ⁽¹⁾	_
RB2	23	20	ANB2	_	_	-	-	SDA2 ^(1,3,4)	_	_	_	_	_	CWG3 ⁽¹⁾	_	-	_	_	IOCB2 INT2 ⁽¹⁾	_
RB3	24	21	ANB3	_	_	C1IN2- C2IN2-	_	_	_	_	_	_	_	_	_	-	_	CANRX ⁽	IOCB3	-
RB4	25	22	ANB4 ADACT ⁽¹⁾	_	_	-	_	_	_	_	_	T5G ⁽¹⁾ SMT2WIN ⁽¹⁾	_	_	CLCIN2(1)	1	_	_	IOCB4	_
RB5	26	23	ANB5	_	_	_	_	_	_	_	_	T1G ⁽¹⁾ SMT2SIG ⁽¹⁾	CCP3 ⁽¹⁾	_	CLCIN3 ⁽¹⁾	-	_	_	IOCB5	-
RB6	27	24	ANB6	-	_	_	_	_	_	CTS2 ⁽¹⁾	_	_	_	_	1	_	_	_	IOCB6	ICSPCLK
RB7	28	25	ANB7	_	DAC1OUT2	_	_	1	_	RX2 ⁽¹⁾	-	T6IN ⁽¹⁾	-	-	-	_	_	_	IOCB7	ICSPDAT
RC0	11	8	ANC0	_	_		ı	_	_	_	-	T1CKI ⁽¹⁾ T3CKI ⁽¹⁾ T3G ⁽¹⁾ SMT1WIN ⁽¹⁾	-	_		ı	_	_	IOCC0	sosco
RC1	12	9	ANC1	_	_	_	_	_	_	_	_	SMT1SIG ⁽¹⁾	CCP2 ⁽¹⁾	_	_	_	_	_	IOCC1	SOSCI
RC2	13	10	ANC2	1	_	_	_	_	_	_	_	T5CKI ⁽¹⁾	CCP1 ⁽¹⁾	_	-	_	-	_	IOCC2	_
RC3	14	11	ANC3	_	_	_	_	SCL1 ⁽¹⁾	SCK1 ^(1,3)	_	_	T2IN ⁽¹⁾	_	_	_	_	_	_	IOCC3	_

- This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins.

- All output signals shown in this row are PPS remappable.
 This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.
 These pins can be configured for I²C and SMBTM 3.0/2.0 logic levels; the SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST as selected by the INLVL register, instead of the I²C specific or SMBUS input buffer thresholds.

28-PIN ALLOCATION TABLE (PIC18(L)F25/26K83) (CONTINUED) TABLE 3:

I/O	28-Pin SPDIP/SOIC/SSOP	28-Pin (U)QFN	ADC	Voltage Reference	DAC	Comparators	Zero Cross Detect	1,50	SPI	UART	MSO	Timers/SMT	CCP and PWM	cwe	פרכ	NCO	Clock Reference (CLKR)	ECAN	Interrupt-on Change	Basic
RC4	15	12	ANC4	_	_	_	_	SDA1 ⁽¹⁾	SDI1 ⁽¹⁾	_	I	_	_	1	_	_	_	_	IOCC4	_
RC5	16	13	ANC5	_	_	_	_	_	_	_	_	T4IN ⁽¹⁾	_	_	_	_	_	_	IOCC5	_
RC6	17	14	ANC6	_	_	_	_	_	_	CTS1 ⁽¹⁾	_	_	_	_	_	_	_	_	IOCC6	_
RC7	18	15	ANC7	_	_	_		_	_	RX1 ⁽¹⁾		_		_		_		_	IOCC7	_
RE3	1	26	_	_	_	_	-	_	_	_	-	_	_	_	_	_	_	_	IOCE3	MCLR VPP
VDD	20	17	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_
Vss	8, 19	5, 16	_	_	_	_	I	_	_	_	1	_	_	ı	_	_	_	_	ı	_
OUT ⁽²⁾	_		ADGRDA ADGRDB	_	_	C1OUT C2OUT	ı	SDA1 SCL1 SDA2 SCL2	SS1 SCK1 SDO1	DTR1 RTS1 TX1 DTR2 RTS2 TX2	DSM	TMR0	CCP1 CCP2 CCP3 CCP4 PWM5OUT PWM6OUT PWM7OUT PWM8OUT	CWG1A CWG1B CWG1D CWG1D CWG2A CWG2B CWG2C CWG2D CWG3A CWG3B CWG3C CWG3D	CLC10UT CLC2OUT CLC3OUT CLC4OUT	NCO	CLKR	CANTX	1	_

- This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins.
- All output signals shown in this row are PPS remappable.
- 3:
- This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

 These pins can be configured for I²C and SMBTM 3.0/2.0 logic levels; the SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST as selected by the INLVL register, instead of the I²C specific or SMBUS input buffer thresholds.

PIC18(L)F25/26K83

PIC18(L)F25/26K83

Table of Contents

1.0	Device Overview	
2.0	Guidelines for Getting Started with PIC18(L)F25/26K83 Microcontrollers	13
3.0	PIC18 CPU	16
4.0	Memory Organization	23
5.0	Device Configuration	55
6.0	Resets	71
7.0	Oscillator Module (with Fail-Safe Clock Monitor)	
8.0	Reference Clock Output Module	
9.0	Interrupt Controller	
10.0	Power-Saving Operation Modes	161
11.0	Windowed Watchdog Timer (WWDT)	168
	8x8 Hardware Multiplier	
	Nonvolatile Memory (NVM) Control	
14.0	Cyclic Redundancy Check (CRC) Module with Memory Scanner	203
15.0	Direct Memory Access (DMA)	218
16.0	I/O Ports	249
17.0	Peripheral Pin Select (PPS) Module	262
18.0	Interrupt-on-Change	270
19.0	Peripheral Module Disable (PMD)	274
20.0	Timer0 Module	283
21.0	Timer1/3/5 Module with Gate Control	289
	Timer2/4/6 Module	
	Capture/Compare/PWM Module	
	Pulse-Width Modulation (PWM)	
25.0	Signal Measurement Timer (SMTX)	347
	Complementary Waveform Generator (CWG) Module	
	Configurable Logic Cell (CLC)	
	Numerically Controlled Oscillator (NCO) Module	
	Zero-Cross Detection (ZCD) Module	
	Data Signal Modulator (DSM) Module	
31.0	Universal Asynchronous Receiver Transmitter (UART) With Protocol Support	460
	Serial Peripheral Interface (SPI) Module	
	I2C Module	
	CAN Module	
	Fixed Voltage Reference (FVR)	
	Temperature Indicator Module	
	Analog-to-Digital Converter with Computation (ADC2) Module	
	5-Bit Digital-to-Analog Converter (DAC) Module	
	Comparator Module	
	High/Low-Voltage Detect (HLVD)	
	In-Circuit Serial Programming™ (ICSP™)	
	Instruction Set Summary	
	Register Summary	
	Development Support	
	Electrical Specifications	
	DC and AC Characteristics Graphs and Tables	
47 N	Packaging Information	822

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@microchip.com. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Website at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Website; http://www.microchip.com
- · Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our website at www.microchip.com to receive the most current information on all of our products.

1.0 DEVICE OVERVIEW

This document contains device specific information for the following devices:

- PIC18F25K83
- PIC18LF25K83
- PIC18F26K83
- PIC18LF26K83

This family offers the advantages of all PIC18 microcontrollers – namely, high computational performance at an economical price – with the addition of high-endurance Program Flash Memory, Universal Asynchronous Receiver Transmitter (UART), Serial Peripheral Interface (SPI), Inter-integrated Circuit (I²C), Direct Memory Access (DMA), Configurable Logic Cells (CLC), Signal Measurement Timer (SMT), Numerically Controlled Oscillator (NCO), and Analog-to-Digital Converter with Computation (ADC²).

1.1 New Features

- Direct Memory Access Controller: The Direct Memory Access (DMA) Controller is designed to service data transfers between different memory regions directly without intervention from the CPU. By eliminating the need for CPU-intensive management of handling interrupts intended for data transfers, the CPU now can spend more time on other tasks.
- Vectored Interrupt Controller: The Vectored Interrupt Controller module reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the CPU. It assembles all of the interrupt request signals and resolves the interrupts based on both a fixed natural order priority and a user-assigned priority, thereby eliminating scanning of interrupt sources.
- Universal Asynchronous Receiver Transmitter: The Universal Asynchronous Receiver Transmitter (UART) module is a serial I/O communications peripheral. It contains all the clock generators, shift registers and data buffers necessary to perform an input or output serial data transfer, independent of device program execution. The UART, also known as a Serial Communications Interface (SCI), can be configured as a full-duplex asynchronous system or one of several automated protocols. Full-Duplex mode is useful for communications with peripheral systems, with DMA/DALI/LIN support.

- Serial Peripheral Interface: The Serial Peripheral Interface (SPI) module is a synchronous serial data communication bus that operates in Full-Duplex mode. Devices communicate in a master/slave environment where the master device initiates the communication. A slave device is controlled through a Chip Select known as Slave Select. Example slave devices include serial EEPROMs, shift registers, display drivers, A/D converters, or another PIC.
- I²C Module: The I²C module provides a synchronous interface between the microcontroller and other I²C-compatible devices using the two-wire I²C serial bus. Devices communicate in a master/slave environment. The I²C bus specifies two signal connections Serial Clock (SCL) and Serial Data (SDA). Both the SCL and SDA connections are bidirectional open-drain lines, each requiring pull-up resistors to the supply voltage.
- 12-bit A/D Converter with Computation: This
 module incorporates programmable acquisition
 time, allowing for a channel to be selected and a
 conversion to be initiated without waiting for a
 sampling period and thus, reduce code overhead.
 It has a new module called ADC² with
 computation features, which provides a digital
 filter and threshold interrupt functions.

1.2 Details on Individual Family Members

Devices in the PIC18(L)F25/26K83 family are available in 28-pin packages. The block diagram for this device is shown in Figure 3-1.

The similarities and differences among the devices are listed in the PIC18(L)F25/26K83 Family Types Table (page 4). The pinouts for all devices are listed in Table 3.

TABLE 1-1: DEVICE FEATURES

Features	PIC18(L)F25K83	PIC18(L)F26K83		
Program Memory (Bytes)	32768	65536		
Program Memory (Instructions)	16384	32768		
Data Memory (Bytes)	2048	4096		
Data EEPROM Memory (Bytes)	1024	1024		
Packages	28-pin SPDIP 28-pin SOIC 28-pin SSOP 28-pin QFN 28-pin UQFN	28-pin SPDIP 28-pin SOIC 28-pin SSOP 28-pin QFN 28-pin UQFN		
I/O Ports	A,B,C,E ⁽¹⁾	A,B,C,E ⁽¹⁾		
12-Bit Analog-to-Digital Conversion Module (ADC ²) with Computation Accelerator	5 internal 24 external	5 internal 24 external		
Capture/Compare/PWM Modules (CCP)		4		
10-Bit Pulse-Width Modulator (PWM)		4		
Timers (16-/8-bit)	4	/3		
Serial Communications	2 UARTs with DMX/E	DALI/LIN, 2 I ² C, 1 SPI		
Complementary Waveform Generator (CWG)		3		
Zero-Cross Detect (ZCD)		1		
Data Signal Modulator (DSM)		1		
Signal Measurement Timer (SMT)		2		
5-bit Digital to Analog Converter (DAC)		1		
Numerically Controlled Oscillator (NCO)		1		
Comparator Module		2		
Direct Memory Access (DMA)		2		
Configurable Logic Cell (CLC)	,	4		
Control Area Network (CAN)	Y	es		
Peripheral Module Disable (PMD)	Y	es		
16-bit CRC with Scanner	Y	es		
Programmable High/Low-Voltage Detect (HLVD)	Y	es		
Resets (and Delays)	RESET Ir Stack C Stack U (PWR)	mmable BOR, nstruction, overflow, nderflow T, OST), DT, MEMV		
Instruction Set	81 Instructions; 87 with Extended Instruction Set enabled			
Maximum Operating Frequency	64	MHz		

Note 1: PORTE contains the single RE3 input-only pin.

1.3 Register and Bit naming conventions

1.3.1 REGISTER NAMES

When there are multiple instances of the same peripheral in a device, the peripheral control registers will be depicted as the concatenation of a peripheral identifier, peripheral instance, and control identifier. The control registers section will show just one instance of all the register names with an 'x' in the place of the peripheral instance number. This naming convention may also be applied to peripherals when there is only one instance of that peripheral in the device to maintain compatibility with other devices in the family that contain more than one.

1.3.2 BIT NAMES

There are two variants for bit names:

- · Short name: Bit function abbreviation
- · Long name: Peripheral abbreviation + short name

1.3.2.1 Short Bit Names

Short bit names are an abbreviation for the bit function. For example, some peripherals are enabled with the EN bit. The bit names shown in the registers are the short name variant.

Short bit names are useful when accessing bits in C programs. The general format for accessing bits by the short name is *RegisterName*bits. *ShortName*. For example, the enable bit, EN, in the TOCON0 register can be set in C programs with the instruction TOCON0bits.EN = 1.

Short names are generally not useful in assembly programs because the same name may be used by different peripherals in different bit positions. When this occurs, during the include file generation, all instances of that short bit name are appended with an underscore plus the name of the register in which the bit resides to avoid naming contentions.

1.3.2.2 Long Bit Names

Long bit names are constructed by adding a peripheral abbreviation prefix to the short name. The prefix is unique to the peripheral thereby making every long bit name unique. The long bit name for the Timer0 enable bit is the Timer0 prefix, T0, appended with the enable bit short name, EN, resulting in the unique bit name T0FN.

Long bit names are useful in both C and assembly programs. For example, in C the T0CON0 enable bit can be set with the $\mathtt{T0EN} = 1$ instruction. In assembly, this bit can be set with the BSF $\mathtt{T0CON0}$, $\mathtt{T0EN}$ instruction.

1.3.2.3 Bit Fields

Bit fields are two or more adjacent bits in the same register. For example, the four Least Significant bits of the T0CON0 register contain the output prescaler select bits. The short name for this field is OUTPS and the long name is T0OUTPS. Bit field access is only possible in C programs. The following example demonstrates a C program instruction for setting the Timer0 output prescaler to the 1:6 Postscaler:

```
TOCONObits.OUTPS = 0x5;
```

Individual bits in a bit field can also be accessed with long and short bit names. Each bit is the field name appended with the number of the bit position within the field. For example, the Most Significant mode bit has the short bit name OUTPS3. The following two examples demonstrate assembly program sequences for setting the Timer0 output prescaler to 1:6 Postscaler:

Example 1:

```
MOVLW ~(1<<OUTPS3 | 1<<OUTPS1)
ANDWF TOCONO,F

MOVLW 1<<OUTPS2 | 1<<OUTPS0
IORWF TOCONO,F
```

Example 2:

BCF	TOCONO, OUTPS3
BSF	TOCONO, OUTPS2
BCF	TOCONO, OUTPS1
BSF	TOCONO, OUTPSO

1.3.3 REGISTER AND BIT NAMING EXCEPTIONS

1.3.3.1 Status, Interrupt, and Mirror Bits

Status, interrupt enables, interrupt flags, and mirror bits are contained in registers that span more than one peripheral. In these cases, the bit name shown is unique so there is no prefix or short name variant.

2.0 GUIDELINES FOR GETTING STARTED WITH PIC18(L)F25/ 26K83 MICROCONTROLLERS

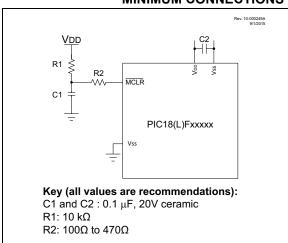
2.1 Basic Connection Requirements

Getting started with the PIC18(L)F25/26K83 family of 8-bit microcontrollers requires attention to a minimal set of device pin connections before proceeding with development.

The following pins must always be connected:

- All VDD and VSS pins (see Section 2.2 "Power Supply Pins")
- MCLR pin (see Section 2.3 "Master Clear (MCLR) Pin")

These pins must also be connected if they are being used in the end application:


- ICSPCLK/ICSPDAT pins used for In-Circuit Serial Programming™ (ICSP™) and debugging purposes (see Section 2.4 "ICSP™ Pins")
- OSCI and OSCO pins when an external oscillator source is used (see Section 2.5 "External Oscillator Pins")

Additionally, the following pins may be required:

 VREF+/VREF- pins are used when external voltage reference for analog modules is implemented

The minimum mandatory connections are shown in Figure 2-1.

FIGURE 2-1: RECOMMENDED MINIMUM CONNECTIONS

2.2 Power Supply Pins

2.2.1 DECOUPLING CAPACITORS

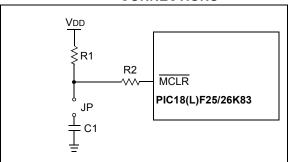
The use of decoupling capacitors on every pair of power supply pins (VDD and Vss) is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: A 0.1 μ F (100 nF), 10-20V capacitor is recommended. The capacitor should be a low-ESR device, with a resonance frequency in the range of 200 MHz and higher. Ceramic capacitors are recommended.
- Placement on the printed circuit board: The
 decoupling capacitors should be placed as close
 to the pins as possible. It is recommended to
 place the capacitors on the same side of the
 board as the device. If space is constricted, the
 capacitor can be placed on another layer on the
 PCB using a via; however, ensure that the trace
 length from the pin to the capacitor is no greater
 than 0.25 inch (6 mm).
- Handling high-frequency noise: If the board is experiencing high-frequency noise (upward of tens of MHz), add a second ceramic type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μF to 0.001 μF. Place this second capacitor next to each primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible (e.g., 0.1 μF in parallel with 0.001 μF).
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB trace inductance.

2.2.2 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits, including microcontrollers, to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μF to 47 μF


2.3 Master Clear (MCLR) Pin

The MCLR pin provides two specific device functions: Device Reset, and Device Programming and Debugging. If programming and debugging are not required in the end application, a direct connection to VDD may be all that is required. The addition of other components, to help increase the application's resistance to spurious Resets from voltage sags, may be beneficial. A typical configuration is shown in Figure 2-1. Other circuit designs may be implemented, depending on the application requirements.

During programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R1 and C1 will need to be adjusted based on the application and PCB requirements. For example, it is recommended that the capacitor, C1, be isolated from the MCLR pin during programming and debugging operations by using a jumper (Figure 2-2). The jumper is replaced for normal run-time operations.

Any components associated with the MCLR pin should be placed within 0.25 inch (6 mm) of the pin.

FIGURE 2-2: EXAMPLE OF MCLR PIN CONNECTIONS

- Note 1: R1 \leq 10 k Ω is recommended. A suggested starting value is 10 k Ω . Ensure that the MCLR pin VIH and VIL specifications are met.
 - 2: $R2 \le 470\Omega$ will limit any current flowing into \overline{MCLR} from the external capacitor, C1, in the event of \overline{MCLR} pin breakdown, due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS). Ensure that the \overline{MCLR} pin VIH and VIL specifications are met.

2.4 ICSP™ Pins

The ICSPCLK and ICSPDAT pins are used for In-Circuit Serial Programming $^{\text{TM}}$ (ICSP $^{\text{TM}}$) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of ohms, not to exceed 100Ω .

Pull-up resistors, series diodes and capacitors on the ICSPCLK and ICSPDAT pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits, and pin input voltage high (VIH) and input low (VIL) requirements.

For device emulation, ensure that the "Communication Channel Select" (i.e., ICSPCLK/ICSPDAT pins), programmed into the device, matches the physical connections for the ICSP to the Microchip debugger/emulator tool.

For more information on available Microchip development tools connection requirements, refer to **Section 44.0 "Development Support"**.

2.5 External Oscillator Pins

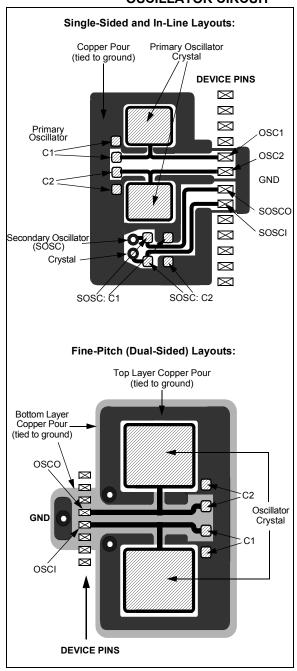
Many microcontrollers have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to Section 7.0 "Oscillator Module (with Fail-Safe Clock Monitor)" for details).

The oscillator circuit should be placed on the same side of the board as the device. Place the oscillator circuit close to the respective oscillator pins with no more than 0.5 inch (12 mm) between the circuit components and the pins. The load capacitors should be placed next to the oscillator itself, on the same side of the board.

Use a grounded copper pour around the oscillator circuit to isolate it from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed.

Layout suggestions are shown in Figure 2-3. In-line packages may be handled with a single-sided layout that completely encompasses the oscillator pins. With fine-pitch packages, it is not always possible to completely surround the pins and components. A suitable solution is to tie the broken guard sections to a mirrored ground layer. In all cases, the guard trace(s) must be returned to ground.

In planning the application's routing and I/O assignments, ensure that adjacent port pins, and other signals in close proximity to the oscillator, are benign (i.e., free of high frequencies, short rise and fall times, and other similar noise).


For additional information and design guidance on oscillator circuits, refer to these Microchip Application Notes, available at the corporate website (www.microchip.com):

- AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC™ and PICmicro® Devices"
- AN849, "Basic PICmicro® Oscillator Design"
- AN943, "Practical PICmicro® Oscillator Analysis and Design"
- · AN949, "Making Your Oscillator Work"

2.6 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state. Alternatively, connect a 1 k Ω to 10 k Ω resistor to Vss on unused pins and drive the output to logic low.

FIGURE 2-3: SUGGESTED
PLACEMENT OF THE
OSCILLATOR CIRCUIT

3.0 PIC18 CPU

This family of devices contains a PIC18 8-bit CPU core based on the modified Harvard architecture. The PIC18 CPU supports:

- System Arbitration which decides memory access allocation depending on user priorities
- Vectored Interrupt capability with automatic two level deep context saving
- 31-level deep hardware stack with overflow and underflow reset capabilities
- Support Direct, Indirect, and Relative Addressing modes
- 8x8 Hardware Multiplier

Data Bus<8> Table Pointer<21> Data Latch 8 inc/dec logic Data Memory PCLATU PCLATH 21 Ports Address Latch 20 PCU PCH PCL Program Counter Data Address<12> 31-Level Stack Address Latch BSR Access FSR0 Program Memory (8/16/32/64 Kbytes STKPTR Bank FSR1 FSR2 Peripherals Data Latch 12 inc/dec logic Table Latch Address ROM Latch Instruction Bus <16> Data **EEPROM** IR State machine Instruction control signals Control PRODH PRODL 8x8 Multiply BITOP OSC1(2) Power-up Oscillator **8** Timer Block OSC2⁽²⁾ Oscillator ALU'<8> **LFINTOSC** Start-up Time Oscillator Power-on 8 SOSCI Reset 64 MHz sosco Oscillator WWT Precision Brown-out Single-Supply MCLR⁽¹⁾ Band Gap Reset Reference Programming Fail-Safe In-Circuit Clock Monito Debugger Note 1: RE3 is only available when MCLR functionality is disabled.

FIGURE 3-1: PIC18(L)F25/26K83 FAMILY BLOCK DIAGRAM

2: OSC1/CLKIN and OSC2/CLKOUT are only available in select oscillator modes and when these pins are not being used as digital I/O. Refer to Section 7.0 "Oscillator Module (with Fail-Safe Clock Monitor)" for additional information.

3.1 System Arbitration

The System Arbiter resolves memory access between the System Level Selections (i.e., Main, Interrupt Service Routine) and Peripheral Selection (i.e., DMA and Scanner) based on user-assigned priorities. Each of the system level and peripheral selections has its own priority selection registers. Memory access priority is resolved using the number written to the corresponding Priority registers, 0 being the highest priority and 4 the lowest. The default priorities are listed in Table 3-1.

In case the user wants to change priorities, ensure each Priority register is written with a unique value from 0 to 4.

TABLE 3-1: DEFAULT PRIORITIES

Sele	Selection					
System Level	ISR	0				
	MAIN	1				
Peripheral	DMA1	2				
	DMA2	3				
	SCANNER	4				

3.1.1 PRIORITY LOCK

The System arbiter grants memory access to the peripheral selections (DMAx, Scanner) when the PRLOCKED bit (PRLOCK Register) is set.

Priority selections are locked by setting the PRLOCKED bit of the PRLOCK register. Setting and clearing this bit requires a special sequence as an extra precaution against inadvertent changes. Examples of setting and clearing the PRLOCKED bit are shown in Example 3-1 and Example 3-2.

EXAMPLE 3-1: PRIORITY LOCK SEQUENCE

; Disable interrupts
BCF INTCONO, GIE

; Bank to PRLOCK register
BANKSEL PRLOCK
MOVLW 55h

; Required sequence, next 4
instructions
MOVWF PRLOCK
MOVLW AAh
MOVWF PRLOCK
; Set PRLOCKED bit to grant memory
access to peripherals
BSF PRLOCK, 0

; Enable Interrupts
BSF INTCONO, GIE

EXAMPLE 3-2: PRIORITY UNLOCK SEQUENCE

```
; Disable interrupts
BCF INTCONO,GIE

; Bank to PRLOCK register
BANKSEL PRLOCK
MOVLW 55h

; Required sequence, next 4
instructions
MOVWF PRLOCK
MOVLW AAh
MOVWF PRLOCK
; Clear PRLOCKED bit to allow changing
priority settings
BCF PRLOCK,0
```

; Enable Interrupts BSF INTCON0,GIE

3.2 Memory Access Scheme

The user can assign priorities to both system level and peripheral selections based on which the system arbiter grants memory access. Let us consider the following priority scenarios between ISR, MAIN, and Peripherals.

Note:	It is always required that the ISR priority
	be higher than Main priority.

3.2.1 ISR PRIORITY > MAIN PRIORITY > PERIPHERAL PRIORITY

When the Peripheral Priority (DMAx, Scanner) is lower than ISR and MAIN Priority, and the peripheral requires:

- Access to the Program Flash Memory, then the peripheral waits for an instruction cycle in which the CPU does not need to access the PFM (such as a branch instruction) and uses that cycle to do its own Program Flash Memory access, unless a PFM Read/Write operation is in progress.
- Access to the SFR/GPR, then the peripheral waits for an instruction cycle in which the CPU does not need to access the SFR/GPR (such as MOVLW, CALL, NOP) and uses that cycle to do its own SFR/GPR access.
- Access to the Data EEPROM, then the peripheral has access to Data EEPROM unless a Data EEPROM Read/Write operation is being performed.

This results in the lowest throughput for the peripheral to access the memory, and does so without any impact on execution times.

3.2.2 PERIPHERAL PRIORITY > ISR PRIORITY > MAIN PRIORITY

When the Peripheral Priority (DMAx, Scanner) is higher than ISR and MAIN Priority, the CPU operation is stalled when the peripheral requests memory.

The CPU is held in its current state until the peripheral completes its operation. Since the peripheral requests access to the bus, the peripheral cannot be disabled until it completes its operation.

This results in the highest throughput for the peripheral to access the memory, but has the cost of stalling other execution while it occurs.

3.2.3 ISR PRIORITY > PERIPHERAL PRIORITY > MAIN PRIORITY

In this case, interrupt routines and peripheral operation (DMAx, Scanner) will stall the CPU. Interrupt will preempt peripheral operation. This results in lowest interrupt latency and highest throughput for the peripheral to access the memory.

3.2.4 PERIPHERAL 1 PRIORITY > ISR PRIORITY > MAIN PRIORITY > PERIPHERAL 2 PRIORITY

In this case, the Peripheral 1 will stall the execution of the CPU. However, Peripheral 2 can access the memory in cycles unused by Peripheral 1.

The operation of the System Arbiter is controlled through the following registers:

REGISTER 3-1: ISRPR: INTERRUPT SERVICE ROUTINE PRIORITY REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
_	_	_	_	_		ISRPR<2:0>	
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

1 = bit is set 0 = bit is cleared HS = Hardware set

bit 7-3 **Unimplemented:** Read as '0'

bit 2-0 ISRPR<2:0>: Interrupt Service Routine Priority Selection bits

REGISTER 3-2: MAINPR: MAIN ROUTINE PRIORITY REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-1/1
_	_	_	_	_	ı	MAINPR<2:0>	
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

1 = bit is set 0 = bit is cleared HS = Hardware set

bit 7-3 **Unimplemented:** Read as '0'

bit 2-0 MAINPR<2:0>: Main Routine Priority Selection bits

REGISTER 3-3: DMA1PR: DMA1 PRIORITY REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-1/1	R/W-0/0
_	_	_	_	_	Ι	DMA1PR<2:0>	
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

1 = bit is set 0 = bit is cleared HS = Hardware set

bit 7-3 **Unimplemented:** Read as '0'

bit 2-0 DMA1PR<2:0>: DMA1 Priority Selection bits

REGISTER 3-4: DMA2PR: DMA2 PRIORITY REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-1/1	R/W-1/1
_	_	_	_	_	DMA2PR<2:0>		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

1 = bit is set 0 = bit is cleared HS = Hardware set

bit 7-3 **Unimplemented:** Read as '0'

bit 2-0 DMA2PR<2:0>: DMA2 Priority Selection bits

REGISTER 3-5: SCANPR: SCANNER PRIORITY REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-1/1	R/W-0/0	R/W-0/0
_	_	_	_	_	SCANPR<2:0>		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

1 = bit is set 0 = bit is cleared HS = Hardware set

bit 7-3 **Unimplemented:** Read as '0'

bit 2-0 **SCANPR<2:0>**: Scanner Priority Selection bits

REGISTER 3-6: PRLOCK: PRIORITY LOCK REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0
_	_	_	_	_	_	_	PRLOCKED
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

1 = bit is set 0 = bit is cleared HS = Hardware set

bit 7-1 **Unimplemented:** Read as '0'

bit 0 **PRLOCKED**: PR Register Lock bit^(1, 2)

- 0 = Priority Registers can be modified by write operations; Peripherals do not have access to the memory
- 1 = Priority Registers are locked and cannot be written; Peripherals do not have access to the memory

Note 1: The PRLOCKED bit can only be set or cleared after the unlock sequence.

2: If PR1WAY = 1, the PRLOCKED bit cannot be cleared after it has been set. A system Reset will clear the bit and allow one more set.

TABLE 3-2: SUMMARY OF REGISTERS ASSOCIATED WITH CPU

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
ISRPR	_	_	_	_	_	ISRPR2	ISRPR1	ISRPR0	20
MAINPR	_	_	_	_	_	MAINPR2	MAINPR1	MAINPR0	20
DMA1PR	_	_	_	_	_	DMA1PR2	DMA1PR1	DMA1PR0	20
DMA2PR	_	_	_	_	_	DMA2PR2	DMA2PR1	DMA2PR0	21
SCANPR	_	_	_	_	_	SCANPR2	SCANPR1	SCANPR0	21
PRLOCK	_	_	_	_	_	_	_	PRLOCKED	21

Legend: — = Unimplemented location, read as '0'.

4.0 MEMORY ORGANIZATION

There are three types of memory in PIC18 enhanced microcontroller devices:

- · Program Flash Memory
- · Data RAM
- Data EEPROM

The Program Memory Flash and data RAM share the same bus, while data EEPROM uses a separate bus. This allows for concurrent access of the memory spaces.

Additional detailed information on the operation of the Program Flash Memory and Data EEPROM Memory is provided in Section 13.0 "Nonvolatile Memory (NVM) Control".

4.1 Program Flash Memory Organization

PIC18 microcontrollers implement a 21-bit Program Counter, which is capable of addressing a 2 Mbyte program memory space. Accessing any unimplemented memory will return all '0's (a NOP instruction).

These devices contains the following:

- PIC18(L)F25K83: 32 Kbytes of Flash memory, up to 16,384 single-word instructions
- PIC18(L)F26K83: 64 Kbytes of Flash memory, up to 32,768 single-word instructions

The Reset vector for the device is at address 000000h. PIC18(L)F25/26K83 devices feature a vectored interrupt controller with a dedicated interrupt vector table in the program memory, see **Section 9.0 "Interrupt Controller**".

Note: For memory information on this family of devices, see Table 4-1 and Table 4-3.

4.2 Memory Access Partition (MAP)

Program Flash Memory is partitioned into:

- Application Block
- · Boot Block, and
- · Storage Area Flash (SAF) Block

4.2.1 APPLICATION BLOCK

Application Block is where the user's program resides by default. Default settings of the Configuration bits (BBEN = 1 and \overline{SAFEN} = 1) assign all memory in the Program Flash Memory area to the Application Block. The \overline{WRTAPP} Configuration bit is used to protect the Application Block.

4.2.2 BOOT BLOCK

Boot Block is an area in program memory that is ideal for storing bootloader code. Code placed in this area can be executed by the CPU. The Boot Block can be write-protected, independent of the main Application Block. The Boot Block is enabled by the BBEN bit and size is based on the value of the BBSIZE bits of Configuration word (Register 5-7), see Table 5-1 for Boot Block sizes.

The WRTB Configuration bit is used to write-protect the Boot Block

4.2.3 STORAGE AREA FLASH

Storage Area Flash (SAF) is the area in program memory that can be used as data storage. SAF is enabled by the SAFEN bit of the Configuration word in Register 5-7. If enabled, the code placed in this area cannot be executed by the CPU. The SAF block is placed at the end of memory and spans 256 bytes. The WRTSAF Configuration bit is used to write-protect the Storage Area Flash.

Note: If write-protected locations are written from NVMCON registers, memory is not changed and the WRERR bit defined in Register 13-1 is set.

TABLE 4-1: PROGRAM AND DATA EEPROM MEMORY MAP

TABLE 4-2: PROGRAM FLASH MEMORY PARTITION

		Partition ⁽³⁾						
Region	Address	BBEN = 1 SAFEN = 1	BBEN = 1 SAFEN = 0	BBEN = 0 SAFEN = 1	BBEN = 0 SAFEN = 0			
Program Flash Memory	00 0000h • • • Last Boot Block Memory Address	APPLICATION BLOCK	APPLICATION BLOCK	BOOT BLOCK	BOOT BLOCK			
	Last Boot Block Memory Address ⁽¹⁾ + 1 • • • Last Program Memory Address ⁽²⁾ - 100h			APPLICATION	APPLICATION BLOCK			
	Last Program Memory Address ⁽²⁾ - FEh ⁽⁴⁾ • • • Last Program Memory Address ⁽²⁾		STORAGE AREA FLASH	BLOCK	STORAGE AREA FLASH			

Note 1: Last Boot Block Memory Address is based on BBSIZE<2:0>, see Table 5-1.

^{2:} For Last Program Memory Address, see Table 5-1.

^{3:} Refer to Register 5-7: Configuration Word 4L for $\overline{\text{BBEN}}$ and $\overline{\text{SAFEN}}$ definitions.

^{4:} Storage Area Flash is implemented as the last 128 Words of User Flash, if present.