
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution

of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business

relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components

to meet their specific needs.

With the principle of “Quality Parts,Customers Priority,Honest Operation,and Considerate Service”,our business

mainly focus on the distribution of electronic components. Line cards we deal with include

Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise

IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial,

and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service

and solution. Let us make a better world for our industry!

Contact us
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

  

www.keil.com

Getting Started

For 8-bit, 16-bit, and 32-bit Microcontrollers

Creating Applications with µVision®4

2 Preface

Information in this document is subject to change without notice and does not

represent a commitment on the part of the manufacturer. The software described

in this document is furnished under license agreement or nondisclosure

agreement and may be used or copied only in accordance with the terms of the

agreement. It is against the law to copy the software on any medium except as

specifically allowed in the license or nondisclosure agreement. The purchaser

may make one copy of the software for backup purposes. No part of this manual

may be reproduced or transmitted in any form or by any means, electronic or

mechanical, including photocopying, recording, or information storage and

retrieval systems, for any purpose other than for the purchaser’s personal use,

without written permission.

Copyright © 1997-2009 Keil, Tools by ARM, and ARM Ltd.

All rights reserved.

Keil Software and Design
®
, the Keil Software Logo, µVision

®
, RealView

®
,

C51™, C166™, MDK™, RL-ARM™, ULINK
®
, Device Database

®
, and

ARTX™ are trademarks or registered trademarks of Keil, Tools by ARM, and

ARM Ltd.

Microsoft
®
 and Windows™ are trademarks or registered trademarks of Microsoft

Corporation.

PC
®
 is a registered trademark of International Business Machines Corporation.

NOTE
This manual assumes that you are familiar with Microsoft Windows and the

hardware and instruction set of the ARM7, ARM9, Cortex-Mx, C166, XE166,

XC2000, or 8051 microcontroller.

Every effort was made to ensure accuracy in this manual and to give appropriate

credit to persons, companies, and trademarks referenced herein.

Getting Started: Creating Applications with µVision 3

Preface

This manual is an introduction to the Keil development tools designed for

Cortex-Mx, ARM7, ARM9, C166, XE166, XC2000, and 8051 microcontrollers.

It introduces the µVision Integrated Development Environment, Simulator, and

Debugger and presents a step-by-step guided tour of the numerous features and

capabilities the Keil embedded development tools offer.

Who should Read this Book

This book is useful for students, beginners, advanced and experienced developers

alike.

Developers are considered experienced or advanced if they have used µVision

extensively in the past and knowledge exists of how the µVision IDE works and

interacts with the debugger, simulator, and target hardware. Preferably, these

developers already have a deep understanding of microcontrollers. We

encourage this group of engineers to get familiar with the enhancements

introduced and to explore the latest features in µVision.

Developers are considered students or beginners if they have no working

experience with µVision. We encourage this group of developers to start by

reading the chapters related to the µVision IDE and to work through the

examples to get familiar with the interface and configuration options described.

They should make use of the ample possibilities the simulator offers. Later on,

they should continue with the chapters describing the RTOS and microcontroller

architectures.

However, it is assumed that you have a basic knowledge of how to use

microcontrollers and that you are familiar with a few instructions or with the

instruction set of your preferred microcontroller.

The chapters of this book can be studied individually, since they do not strictly

depend on each other.

4 Preface

Chapter Overview

“Chapter 1. Introduction”, provides an overview of product installation and

licensing and shows how to get support for the Keil development tools.

“Chapter 2. Microcontroller Architectures”, discusses various microcontroller

architectures supported by the Keil development tools and assists you in

choosing the microcontroller best suited for your application.

“Chapter 3. Development Tools”, discusses the major features of the µVision

IDE and Debugger, Assembler, Compiler, Linker, and other development tools.

“Chapter 4. RTX RTOS Kernel”, discusses the benefits of using a Real-Time

Operating System (RTOS) and introduces the features available in Keil RTX

Kernels.

“Chapter 5. Using µVision”, describes specific features of the µVision user

interface and how to interact with them.

“Chapter 6. Creating Embedded Programs”, describes how to create projects,

edit source files, compile, fix syntax errors, and generate executable code.

“Chapter 7. Debugging”, describes how to use the µVision Simulator and Target

Debugger to test and validate your embedded programs.

“Chapter 8. Using Target Hardware”, describes how to configure and use

third-party Flash programming utilities and target drivers.

“Chapter 9. Example Programs”, describes four example programs and shows

the relevant features of µVision by means of these examples.

Getting Started: Creating Applications with µVision 5

Document Conventions

Examples Description

README.TXT
1
 Bold capital text is used to highlight the names of executable programs,

data files, source files, environment variables, and commands that you
can enter at the command prompt. This text usually represents
commands that you must type in literally. For example:

 ARMCC.EXE DIR LX51.EXE

Courier Text in this typeface is used to represent information that is displayed on
the screen or is printed out on the printer

This typeface is also used within the text when discussing or describing
command line items.

Variables Text in italics represents required information that you must provide. For
example, projectfile in a syntax string means that you must supply the
actual project file name

Occasionally, italics are also used to emphasize words in the text.

Elements that repeat… Ellipses (…) are used to indicate an item that may be repeated

Omitted code
 .
 .
 .

Vertical ellipses are used in source code listings to indicate that a
fragment of the program has been omitted. For example:
void main (void) {
.
.
.
while (1);

 «Optional Items» Double brackets indicate optional items in command lines and input
fields. For example:

C51 TEST.C PRINT «filename»

{ opt1 | opt2 } Text contained within braces, separated by a vertical bar represents a
selection of items. The braces enclose all of the choices and the vertical
bars separate the choices. Exactly one item in the list must be selected.

Keys Text in this sans serif typeface represents actual keys on the keyboard.
For example, “Press Enter to continue

1It is not required to enter commands using all capital letters.

6 Contents

Contents

Preface ... 3

Document Conventions .. 5

Contents .. 6

Chapter 1. Introduction.. 9

Last-Minute Changes ... 11

Licensing .. 11

Installation ... 11

Requesting Assistance ... 13

Chapter 2. Microcontroller Architectures .. 14

Selecting an Architecture ... 15

Classic and Extended 8051 Devices .. 17

Infineon C166, XE166, XC2000 ... 20

ARM7 and ARM9 based Microcontrollers .. 21

Cortex-Mx based Microcontrollers .. 23

Code Comparison .. 26

Generating Optimum Code .. 28

Chapter 3. Development Tools ... 33

Software Development Cycle .. 33

µVision IDE ... 34

µVision Device Database .. 35

µVision Debugger .. 35

Assembler .. 37

C/C++ Compiler .. 38

Object-HEX Converter .. 38

Linker/Locator ... 39

Library Manager .. 39

Chapter 4. RTX RTOS Kernel .. 40

Software Concepts ... 40

RTX Introduction ... 43

Chapter 5. Using µVision ... 55

Menus .. 59

Toolbars and Toolbar Icons ... 63

Project Windows .. 69

Getting Started: Creating Applications with µVision 7

Editor Windows ... 71

Output Windows .. 73

Other Windows and Dialogs .. 74

On-line Help .. 74

Chapter 6. Creating Embedded Programs ... 75

Creating a Project File ... 75

Using the Project Windows ... 77

Creating Source Files ... 78

Adding Source Files to the Project .. 79

Using Targets, Groups, and Files ... 79

Setting Target Options ... 81

Setting Group and File Options ... 82

Configuring the Startup Code .. 83

Building the Project ... 84

Creating a HEX File .. 85

Working with Multiple Projects .. 86

Chapter 7. Debugging ... 89

Simulation .. 91

Starting a Debug Session ... 91

Debug Mode .. 93

Using the Command Window .. 94

Using the Disassembly Window .. 94

Executing Code .. 95

Examining and Modifying Memory .. 96

Breakpoints and Bookmarks .. 98

Watchpoints and Watch Window .. 100

Serial I/O and UARTs.. 102

Execution Profiler .. 103

Code Coverage ... 104

Performance Analyzer ... 105

Logic Analyzer .. 106

System Viewer ... 107

Symbols Window ... 108

Browse Window .. 109

Toolbox .. 110

Instruction Trace Window ... 111

Defining Debug Restore Views ... 111

8 Contents

Chapter 8. Using Target Hardware... 112

Configuring the Debugger ... 113

Programming Flash Devices .. 114

Configuring External Tools ... 115

Using ULINK Adapters ... 116

Using an Init File ... 121

Chapter 9. Example Programs .. 122

“Hello” Example Program ... 123

“Measure” Example Program .. 127

“Traffic” Example Program ... 138

“Blinky” Example Program ... 142

Glossary .. 146

Index .. 151

Getting Started: Creating Applications with µVision 9

Chapter 1. Introduction

Thank you for allowing Keil to provide you with software development tools for

your embedded microcontroller applications.

This book, Getting Started, describes the µVision IDE, µVision Debugger and

Analysis Tools, the simulation, and debugging and tracing capabilities. In

addition to describing the basic behavior and basic screens of µVision, this book

provides a comprehensive overview of the supported microcontroller architecture

types, their advantages and highlights, and supports you in selecting the

appropriate target device. This book incorporates hints to help you to write better

code. As with any Getting Started book, it does not cover every aspect and the

many available configuration options in detail. We encourage you to work

through the examples to get familiar with µVision and the components delivered.

The Keil Development Tools are designed for the professional software

developer, however programmers of all levels can use them to get the most out of

the embedded microcontroller architectures that are supported.

Tools developed by Keil endorse the most popular microcontrollers and are

distributed in several packages and configurations, dependent on the architecture.

� MDK-ARM: Microcontroller Development Kit, for several ARM7, ARM9,

and Cortex-Mx based devices

� PK166: Keil Professional Developer’s Kit, for C166, XE166, and XC2000

devices

� DK251: Keil 251 Development Tools, for 251 devices

� PK51: Keil 8051 Development Tools, for Classic & Extended 8051 devices

In addition to the software packages, Keil offers a variety of evaluation boards,

USB-JTAG adapters, emulators, and third-party tools, which completes the range

of products.

The following illustrations show the generic component blocks of µVision in

conjunction with tools provided by Keil, or tools from other vendors, and the

way the components relate.

10 Chapter 1. Introduction

C/C++ Compiler

RTX RTOS Kernel Library

�Vision

IDE & Device Database

�Vision

Debugger & Analysis Tools

Complete Device Simulation

��������	
�����
����	�����

RTX RTOS Source Code

TCPnet Networking Suite

Flash File System

USB Device Interface

CAN Interface

����	���	����������	

���
������

Software Development Tools

Like all software based on Keil’s µVision IDE,

the toolsets provide a powerful, easy to use and

easy to learn environment for developing

embedded applications.

They include the components you need to create,

debug, and assemble your C/C++ source files,

and incorporate simulation for microcontrollers

and related peripherals.

The RTX RTOS Kernel helps you to implement

complex and time-critical software.

RTOS and Middleware Components

These components are designed to solve

communication and real-time challenges of

embedded systems. While it is possible to

implement embedded applications without using

a real-time kernel, a proven kernel saves time and

shortens the development cycle.

This component also includes the source code

files for the operating system.

Hardware Debug Adapters

The µVision Debugger fully supports several

emulators provided by Keil, and other vendors.

The Keil ULINK USB-JTAG family of adapters

con nect the USB port of a PC to the target

hardware. They enable you to download, test,

and debug your embedded application on real

hardware.

Getting Started: Creating Applications with µVision 11

Last-Minute Changes

As with any high-tech product, last minute changes might not be included into

the printed manuals. These last-minute changes and enhancements to the

software and manuals are listed in the Release Notes shipped with the product.

Licensing

Each Keil product requires activation through a license code. This code is

obtained via e-mail during the registration process. There are two types of

product licenses:

� Single-User License is available for all Keil products. A Single-User

License grants the right to use a product on a maximum of two computers to

one user. Each installation requires a license code that is personalized for the

computer on which the product is installed. A Single-User license may be

uninstalled and moved to another computer.

� Floating-User License is available for many Keil products. The Floating-

User license grants the right to use that product on several computers by

several different developers at the same time. Each installation of the

product requires an individual license code for each computer on which the

product is installed.

Installation

Please check the minimum hardware and software requirements that must be

satisfied to ensure that your Keil development tools are installed and will

function properly. Before attempting installation, verify that you have:

� A standard PC running Microsoft Windows XP, or Windows Vista

� 1GB RAM and 500 MB of available hard-disk space is recommended

� 1024x768 or higher screen resolution; a mouse or other pointing device

� A CD-ROM drive

Keil products are available on CD-ROM and via download from www.keil.com.

Updates to the related products are regularly available at www.keil.com/update.

12 Chapter 1. Introduction

Installation using the web download

1. Download the product from www.keil.com/demo

2. Run the downloaded executable

3. Follow the instructions displayed by the SETUP program

Installation from CD-ROM

1. Insert the CD-ROM into your CD-ROM drive. The CD-ROM browser

should start automatically. If it does not, you can run SETUP.EXE from the

CD-ROM.

2. Select Install Products & Updates from the CD Browser menu

3. Follow the instructions displayed by the SETUP program

Product Folder Structure

The SETUP program copies the development tools into subfolders. The base

folder defaults to C:\KEIL\. The following table lists the default folders for each

microcontroller architecture installation. Adjust the examples used in this

manual to your preferred installation directory accordingly.

Microcontroller Architecture Folder

MDK-ARM Toolset C:\KEIL\ARM\

C166/XE166/XC2000 Toolset C:\KEIL\C166\

8051 Toolset C:\KEIL\C51\

C251 Toolset C:\KEIL\C251\

µVision Common Files C:\KEIL\UV4\

Each toolset contains several subfolders:

Contents Subfolder

Executable Program Files \BIN\

C Include/Header Files \INC\

On-line Help Files and Release Notes \HLP\

Common/Generic Example Programs \EXAMPLES\

Example Programs for Evaluation Boards \BOARDS\

Getting Started: Creating Applications with µVision 13

Requesting Assistance

At Keil, we are committed to providing you with the best embedded development

tools, documentation, and support. If you have suggestions and comments

regarding any of our products, or you have discovered a problem with the

software, please report them to us, and where applicable make sure to:

1. Read the section in this manual that pertains to the task you are attempting

2. Check the update section of the Keil web site to make sure you have the latest

software and utility version

3. Isolate software problems by reducing your code to as few lines as possible

If you are still having difficulties, please report them to our technical support

group. Make sure to include your license code and product version number. See

the Help – About Menu. In addition, we offer the following support and

information channels, all accessible at www.keil.com/support
1
.

1. The Support Knowledgebase is updated daily and includes the latest

questions and answers from the support department

2. The Application Notes can help you in mastering complex issues, like

interrupts and memory utilization

3. Check the on-line Discussion Forum

4. Request assistance through Contact Technical Support (web-based E-Mail)

5. Finally, you can reach the support department directly via

support.intl@keil.com or support.us@keil.com

1 You can always get technical support, product updates, application notes, and sample programs

at www.keil.com/support.

14 Chapter 2. Microcontroller Architectures

Chapter 2. Microcontroller Architectures

The Keil µVision Integrated Development Environment (µVision IDE) supports

three major microcontroller architectures and sustains the development of a wide

range of applications.

� 8-bit (classic and extended 8051) devices include an efficient interrupt

system designed for real-time performance and are found in more than 65%

of all 8-bit applications. Over 1000 variants are available, with peripherals

that include analog I/O, timer/counters, PWM, serial interfaces like UART,

I
2
C, LIN, SPI, USB, CAN, and on-chip RF transmitter supporting low-power

wireless applications. Some architecture extensions provide up to 16MB

memory with an enriched 16/32-bit instruction set.

The µVision IDE supports the latest trends, like custom chip designs based

on IP cores, which integrate application-specific peripherals on a single chip.

� 16-bit (Infineon C166, XE166, XC2000) devices are tuned for optimum

real-time and interrupt performance and provide a rich set of on-chip

peripherals closely coupled with the microcontroller core. They include a

Peripheral Event Controller (similar to memory-to-memory DMA) for high-

speed data collection with little or no microcontroller overhead.

These devices are the best choice for applications requiring extremely fast

responses to external events.

� 32-bit (ARM7 and ARM9 based) devices support complex applications,

which require greater processing power. These cores provide high-speed 32-

bit arithmetic within a 4GB address space. The RISC instruction set has

been extended with a Thumb mode for high code density.

ARM7 and ARM9 devices provide separate stack spaces for high-speed

context switching enabling efficient multi-tasking operating systems. Bit-

addressing and dedicated peripheral address spaces are not supported. Only

two interrupt priority levels, - Interrupt Request (IRQ) and Fast Interrupt

Request (FIQ), are available.

Getting Started: Creating Applications with µVision 15

� 32-bit (Cortex-Mx based) devices combine the cost benefits of 8-bit and

16-bit devices with the flexibility and performance of 32-bit devices at

extremely low power consumption. The architecture delivers state of the art

implementations for FPGAs and SoCs. With the improved Thumb2

instruction set, Cortex-Mx
1
 based microcontrollers support a 4GB address

space, provide bit-addressing (bit-banding), and several interrupts with at

least 8 interrupt priority levels.

Selecting an Architecture

Choosing the optimal device for an embedded application is a complex task. The

Keil Device Database (www.keil.com/dd) supports you in selecting the

appropriate architecture and provides three different methods for searching. You

can find your device by architecture, by specifying certain characteristics of the

microcontroller, or by vendor.

The following sections explain the advantages of the different architectures and

provide guidelines for finding the microcontroller that best fits your embedded

application.

8051 Architecture Advantages

� Fast I/O operations and fast access to on-chip RAM in data space

� Efficient and flexible interrupt system

� Low-power operation

8051-based devices are typically used in small and medium sized applications

that require high I/O throughput. Many devices with flexible peripherals are

available, even in the smallest chip packages.

1 Cortex-M0 devices implement the Thumb instruction set.

16 Chapter 2. Microcontroller Architectures

C166, XE166 and XC2000 Architecture Advantages

� Extremely fast I/O operations via the Peripheral Event Controller

� High-speed interrupt system with very well-tuned peripherals

� Efficient arithmetic and fast memory access

These devices are used in medium to large sized applications that require high

I/O throughput. This architecture is well suited to the needs of embedded

systems that involve a mixture of traditional controller code and DSP algorithms.

ARM7 and ARM9 Architecture Advantages

� Huge linear address space

� The 16-bit Thumb instruction set provides high code density

� Efficient support for all C integer data types including pointer addressing

ARM7 and ARM9-based microcontrollers are used for applications with large

memory demands and for applications that use PC-based algorithms.

Cortex-Mx Architecture Advantages

� One instruction set, Thumb2, reduces the complexity of the program code

and eliminates the overhead needed for switching between ARM and Thumb

instruction mode

� The Nested Vector Interrupt Controller (NVIC) removes interrupt prolog and

epilog code, and provides several, configurable priority levels

� Extremely low power consumption with a variety of sleep modes

The Cortex-Mx microcontroller architecture is designed for hard real-time

systems, but can be used for complex System-on-Chip applications as well.

Getting Started: Creating Applications with µVision 17

Classic and Extended 8051 Devices

8051 devices combine cost-efficient hardware with a simple but efficient

programming model that uses various memory regions to maximize code

efficiency and speed-up memory access. The following figure shows the

memory layout of a classic 8051 device.

The 8051 architecture provides three different physical memory regions:

� DATA/IDATA memory includes a 256 Bytes on-chip RAM with register

banks and bit-addressable space that is used for fast variable accessing.

Some devices provide an extended data (EDATA) space with up to 64KB.

� CODE memory consists of 64KB ROM space used for program code and

constants. The Keil linker supports code banking that allows you to expand

the physical memory space. In extended variants, up to 16MB ROM space is

available.

� XDATA memory has a 64KB RAM space for off-chip peripheral and

memory addressing. Today, most devices provide some on-chip RAM that is

mapped into XDATA.

CODE

0xFFFF

0x0000

0xFFFF

0x0000

DATA
128 Bytes

0x80

0 x 0

0x 100

4

Register
Banks

8051

Bitspace

0

20

DATA
128

Bytes
1F

88

0x 80

F8

98

90

2F

80

SFR

SPACE

0x 100

8051

Bit
addressable

XDATA

IDATA
256 Bytes

18 Chapter 2. Microcontroller Architectures

� SFR and IDATA memory are located in the same address space but are

accessed through different assembler instructions

� For extended devices, the memory layout provides a universal memory map

that includes all 8051-memory types in a single 16MByte address region

8051 Highlights

� Fast interrupt service routines with two or four priority levels and up to 32-

vectored interrupts

� Four register banks for minimum interrupt prolog/epilog

� Bit-addressable space for efficient logical operations

� 128 Bytes of Special Function Register (SFR) space for tight integration of

on-chip peripherals. Some devices extend the SFR space using paging.

� Low-power, high-speed devices up to 100 MIPS are available

8051 Development Tool Support

The Keil C51 Compiler and the Keil Linker/Locator provide optimum 8051

architecture support with the following features and C language extensions.

� Interrupt functions with register bank support are written directly in C

� Bit and bit-addressable variables for optimal Boolean data type support

� Compile-time stack with data overlaying uses direct memory access and

gives high-speed code with little overhead compared to assembly

programming

� Reentrant functions for usage by multiple interrupt or task threats

� Generic and memory-specific pointers provide flexible memory access

� Linker Code Packing gives utmost code density by reusing identical program

sequences

� Code and Variable Banking expand the physical memory address space

� Absolute Variable Locating enables peripheral access and memory sharing

Getting Started: Creating Applications with µVision 19

8051 Memory Types

A memory type prefix is used to assign a memory type to an expression with a

constant. This is necessary, for example, when an expression is used as an

address for the output command. Normally, symbolic names have an assigned

memory type, so that the specification of the memory type can be omitted. The

following memory types are defined:

Prefix Memory Space

C: Code Memory (CODE)

D: Internal, direct-addressable RAM memory (DATA)

I: Internal, indirect-addressable RAM memory (IDATA)

X: External RAM memory (XDATA)

B: Bit-addressable RAM memory

P: Peripheral memory (VTREGD – 80x51 pins)

The prefix P: is a special case, since it always must be followed by a name. The

name in turn is searched for in a special symbol table that contains the register’s

pin names.

Example:
C:0x100 Address 0x100 in CODE memory

ACC Address 0xE0 in DATA memory, D:

I:100 Address 0x64 in internal RAM

X:0FFFFH Address 0xFFFF in external data memory

B:0x7F Bit address 127 or 2FH.7

C Address 0xD7 (PSW.7), memory type B:

20 Chapter 2. Microcontroller Architectures

Infineon C166, XE166, XC2000

The 16-bit architecture of these devices is designed for high-speed real-time

applications. It provides up to 16MB memory space with fast memory areas

mapped into parts of the address space. High-performance applications benefit

from locating frequently used variables into the fast memory areas. The below

listed memory types address the following memory regions:

Memory Type Description

bdata Bit-addressable part of the idata memory.

huge Complete 16MB memory with fast 16-bit address calculation. Object size
limited to 64KB.

idata High speed RAM providing maximum access speed (part of sdata).

near Efficient variable and constant addressing (max. 64KB) with 16-bit pointer and
16-bit address calculation.

sdata System area includes Peripheral Registers and additional on-chip RAM
space.

xhuge Complete 16MB memory with full address calculation for unlimited object size.

C166, XE166, XC2000 Highlights

� Highest-speed interrupt handling with 16 priority levels and up to 128

vectored interrupts

� Unlimited register banks for minimum interrupt prolog/epilog

� Bit instructions and bit-addressable space for efficient logical operations

� ATOMIC instruction sequences are protected from interrupts without

interrupt enable/disable sequences

� Peripheral Event Controller (PEC) for automatic memory transfers triggered

by peripheral interrupts. Requires no processor interaction and further

improves interrupt response time.

� Multiply-Accumulate Unit (MAC) provided for high-speed DSP algorithms

Getting Started: Creating Applications with µVision 21

C166, XE166, XC2000 Development Tool Support

The Keil C166 Compiler supports all C166, XE166, XC2000 specific features

and provides additional extensions such as:

� Memory type support and flexible digital pattern processing for extremely

fast variable access

� Function inlining eliminating call/return overhead

� Inline assembly for accessing all microcontroller and MAC instructions

ARM7 and ARM9 based Microcontrollers

The ARM7 and ARM9 based microcontrollers run on a load-store RISC

architecture with 32-bit registers and fixed op-code length. The architecture

provides a linear 4GB memory address space. In contrast to the previously

mentioned 8/16-bit devices, no specific memory types are provided, since

memory addressing is performed via 32-bit pointers in microcontroller registers.

Peripheral registers are mapped directly into the linear address space. The

Thumb instruction set improves code density by providing a compressed 16-bit

instruction subset.

The ARM7 and ARM9 cores are easy to use, cost-effective, and support modern

object-oriented programming techniques. They include a 2-level interrupt system

with a normal interrupt (IRQ) and a fast interrupt (FIQ) vector. To minimize

interrupt overhead, typical ARM7/ARM9 microcontrollers provide a vectored

interrupt controller. The microcontroller operating modes, separate stack spaces,

and Software Interrupt (SVC) features produce efficient use of Real-Time

Operating Systems.

The ARM7 and ARM9 core provides thirteen general-purpose registers (R0–

R12), the stack pointer (SP) R13, the link register (LR) R14, which holds return

addresses on function calls, the program counter (PC) R15, and a program status

register (PSR). Shadow registers, available in various operating modes, are

similar to register banks and reduce interrupt latency.

22 Chapter 2. Microcontroller Architectures

R1

R15 = PC

R14 = LR

R13 = SP

R12

R11

R10

R9

R8

R7

R6

R5

R4

R3

R2

CPSR

User

R14 = LR

R13 = SP

R12

R11

R10

R9

R8

SPSR

FIQ

R14 = LR

R13 = SP

SPSR

IRQ

R14 = LR

R13 = SP

SPSR

SVC

R14 = LR

R13 = SP

SPSR

ABT

R14 = LR

R13 = SP

SPSR

UND

ARM7 and ARM9 Operation Modes

User Normal execution state

FIQ Fast Interrupt mode

IRQ Interrupt mode

SVC Supervisor mode (software interrupt)

ABT Memory access failure

UND Undefined instruction execution

ARM7 and ARM9 Highlights

� Linear 4 GB memory space that includes peripherals and eliminates the

need for specific memory types

� Load-store architecture with efficient pointer addressing. Fast task

context switch times are achieved with multiple register load/store.

� Standard (IRQ) and Fast (FIQ) interrupt. Banked microcontroller

registers on FIQ reduce register save/restore overhead.

� Vectored Interrupt Controller (available in most microcontrollers)

optimizes multiple interrupt handling

� Processor modes with separate interrupt stacks for predictable stack

requirements

� Compact 16-bit Instruction Set (Thumb). Compared to ARM mode,

Thumb mode code is about 65% of the code size and 160% faster when

executing from a 16-bit memory system.

Getting Started: Creating Applications with µVision 23

ARM7 and ARM9 Development Tool Support

The ARM compilation tools support all ARM-specific features and provide:

� Function Inlining eliminates call/return overhead and optimizes parameter

passing

� Inline assembly supports special ARM/Thumb instructions in C/C++

programs

� RAM functions enable high-speed interrupt code and In-System Flash

programming

� ARM/Thumb interworking provides outstanding code density and

microcontroller performance

� Task function and RTOS support are built into the C/C++ compiler

Cortex-Mx based Microcontrollers

Designed for the 32-bit microcontroller market, the Cortex-Mx microcontrollers

combine excellent performance at low gate count with features only previously

found in high-end processors.

With 4GB of linear, unified memory space, the Cortex-Mx processors provide

bit-banding features and supports big and little endian configuration. Predefined

memory types are available, while some memory regions have additional

attributes. Code can be located in the SRAM, external RAM, but preferably in

the Code region. Peripheral registers are mapped into the memory space. Code

density is improved by the Thumb or Thumb2 instruction set, depending on the

processor version.

General-purpose registers rank from R0 to R12. R13 (SP) is banked, with only

one copy of the R13 (MSP, PSP) being visible at a time. Special registers are

available, but are not used for normal data processing. Some of the 16-bit

Thumb instructions can access R0-R7 (low) registers only. There is no FIQ;

however, nested interrupts and interrupt priority handling is implemented via the

Nested Vector Interrupt Controller (NVIC), greatly reducing interrupt latency.

24 Chapter 2. Microcontroller Architectures

R15 = PC

R14 = LR

R13 = MSP

R12

R11

R10

R9

R8

CONTROL

BASEPRI

FAULTMASK

PRIMASK

R13 = PSP

Control Registers

Process Stack Pointer (PSP), Main Stack Pointer (MSP): (banked)

Cortex Core Register Set

R1

R7

R6

R5

R4

R3

R2

R0

General-Purpose Registers

Low Registers

High Registers

Link Register

Program Counter

Exception Mask Registers Special Registers

xPSR Program Status Register

Cortex-Mx Highlights

� Nested Vectored Interrupt Controller optimizes multiple external

interrupts (up to 240 + 1 NMI, with at least eight priority levels)

� R0-R3, R12, LR, PSR, and PC are pushed automatically to the stack at

interrupt entry and popped back at interrupt exit points

� Only one instruction set (Thumb2), assuring software upward

compatibility with the entire ARM roadmap

� Several Extreme Low-Power Modes with an attached Wake-Up Interrupt

Controller (WIC)

	Contact us

