

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China







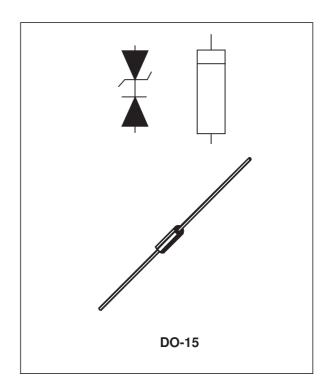


## **PKC-136**

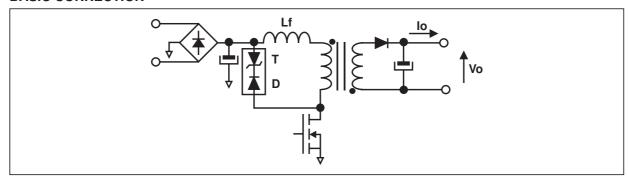
# Application Specific Discretes ASD™

### **PEAK CLAMP**

#### MAIN PRODUCT CHARACTERISTICS


| V <sub>BR</sub> | 160Vdc |
|-----------------|--------|
| $V_{DRM}$       | 700Vdc |
| P               | 1.5W   |

#### **FEATURES**


- Protection of the Mosfet in flyback power supply
- TRANSIL<sup>™</sup> and blocking diode in a single package

#### **BENEFITS**

- Accurate voltage clamping regardless load
- Reduced current loop
- Reduced EMI emission
- High integration
- Fast assembly
- Reduced losses in stand by mode



#### **BASIC CONNECTION**



#### **ABSOLUTE MAXIMUM RATINGS** (limiting values)

| Symbol           | Parameter                               | Value         | Unit |
|------------------|-----------------------------------------|---------------|------|
| T <sub>stg</sub> | Storage temperature                     | - 40 to + 150 | °C   |
| Tj               | Junction temperature                    | 150           | °C   |
| Р                | Maximum power dissipation T°lead = 90°C | 1.5           | W    |

August 2001 - Ed: 2A 1/5

#### **ELECTRICAL CHARACTERISTICS TRANSIL**

| Cumbal           | Dovernator                 | Test conditions                                      |                        | Value |      |      | 11                   |
|------------------|----------------------------|------------------------------------------------------|------------------------|-------|------|------|----------------------|
| Symbol           | Parameter                  |                                                      |                        | Min.  | Тур. | Max. | Unit                 |
| I <sub>RM</sub>  | Leakage current            | V <sub>R</sub> = 136V                                | T <sub>j</sub> = 25°C  |       |      | 1    | μΑ                   |
|                  | ŭ                          |                                                      | T <sub>j</sub> =125°C  |       |      | 10   |                      |
| $V_{BR}$         | Breakdown voltage          | I <sub>R</sub> = 1mA<br>pulse test < 50ms            | T <sub>j</sub> = 25°C  | 150   | 160  | 170  | V                    |
| R <sub>d</sub>   | Dynamical Resistance       | tp < 500ns<br>between I = 0.5Amps<br>and I = 1.5Amps | T <sub>j</sub> = 125°C |       |      | 4    | Ω                    |
| αΤ               | Temperature<br>Coefficient |                                                      |                        |       |      | 10.8 | 10 <sup>-4</sup> /°C |
| V <sub>sCL</sub> | Surge Clamping voltage     | lpp = 2.7Amps<br>10/1000μs                           |                        |       |      | 219  | V                    |

#### **CALCULATION OF THE CLAMPING VOLTAGE:**

In repetitive mode and for low current rating, use the equation (1) and (2) to calculate the breakdown voltage  $V_{BR}$  of the transil versus the operating junction temperature and use the equation (3) to calculate the clamping voltage versus the transil current lpp and the temperature.

$$\Delta V_{BB} = \alpha T(T_i - 25) V_{BB}(25^{\circ}C) \qquad (1)$$

$$V_{BR}(T_j) = V_{BR}(25^{\circ}C) + \Delta V_{BR}$$
 (2)

$$V_{CL}(T_i) = V_{BB}(T_i) + Rd.lpp$$
 (3)

#### **ELECTRICAL CHARACTERISTICS DIODE** (Tj = 25°C unless otherwise specified)

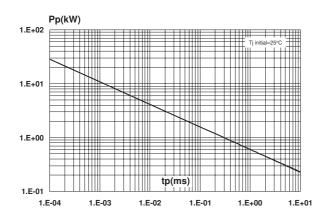
| Cumbal           | Parameter                          | eter Tests conditions                              |                        | Value |      |      | 11:4 |
|------------------|------------------------------------|----------------------------------------------------|------------------------|-------|------|------|------|
| Symbol           | Parameter                          |                                                    |                        | Min.  | Тур. | Max. | Unit |
| I <sub>R</sub>   | Reverse leakage current            | $V_R = V_{RRM}$ $T_i = 25$ °C                      |                        |       |      | 3    | μΑ   |
|                  |                                    |                                                    | T <sub>i</sub> = 125°C |       | 3    | 20   |      |
| V <sub>RRM</sub> | Repetitive Peak Reverse<br>Voltage | T <sub>j</sub> = 25°C                              |                        | 700   |      |      | V    |
| trr              | Reverse Recovery Time              | $I_F = 1A \ dI_F / dt = -50A/\mu s$<br>$V_R = 30V$ |                        |       |      | 45   | ns   |
| V <sub>FP</sub>  | Peak Forward Voltage               | $I_F = 3A$ $T_j = 25$ °C                           |                        |       |      | 12   | V    |
|                  |                                    | dI <sub>F</sub> / dt = 100A/μs                     | T <sub>j</sub> = 125°C |       |      | 18   |      |

#### **CAPACITANCE**

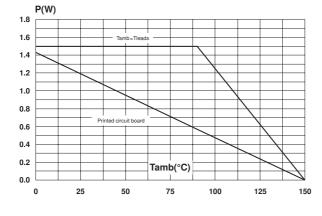
| Symbol | Parameter                             | Typical Value | Unit |
|--------|---------------------------------------|---------------|------|
| С      | Total Parasitic capacitance 1MHz 30mV | 35            | pF   |

#### THERMAL RESISTANCES

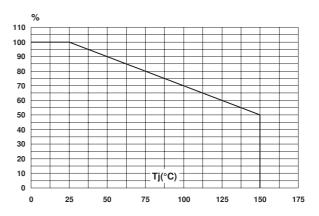
| Symbol               | Parameter                                | Value | Unit |
|----------------------|------------------------------------------|-------|------|
| R <sub>th(j-l)</sub> | Junction to leads L = 10mm               | 40    | °C/W |
| R <sub>th(j-a)</sub> | Junction to ambiant condition see note 1 | 105   | °C/W |


Note 1: Device mounted on a epoxy FR4 board of 35µm thickness

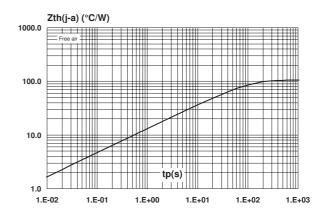
Lead Length: 10mm Pad diameter: 4mm Track width: 1mm Track length: 25mm


The Rth<sub>(j-a)</sub> can be reduced by replacing the Cu track by plan:

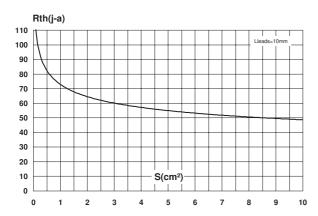
$$\begin{split} S(Cu) &= 1.5 \text{cm}^2/\text{lead} & R_{th(j-a)} = 65^{\circ}\text{C/W} \\ S(Cu) &= 3.5 \text{cm}^2/\text{lead} & R_{th(j-a)} = 60^{\circ}\text{C/W} \end{split}$$


**Fig. 1:** Peak pulse power versus exponential pulse duration.




**Fig. 3:** Average power dissipation versus ambient temperature.




**Fig. 2:** Relative variation of peak pulse power versus initial junction temperature.



**Fig. 4:** Variation of thermal impedance junction to ambient versus pulse duration (printed circuit board epoxy FR4)



**Fig. 5:** Thermal resistance junction to ambient versus copper surface under each lead.



**Fig. 6-2:** Reverse leakage current versus reverse voltage applied (typical values, for diode).

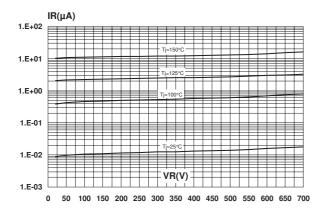
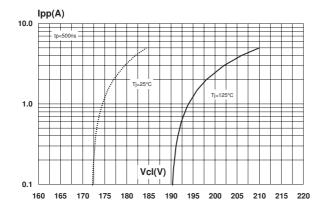




Fig. 8: Clamping voltage versus peak pulse current (maximum values).



**Fig. 6-1:** Reverse leakage current versus reverse voltage applied (typical values, for Transil).

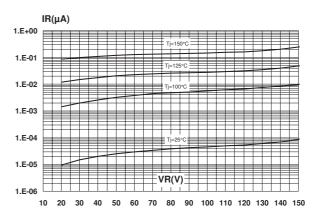
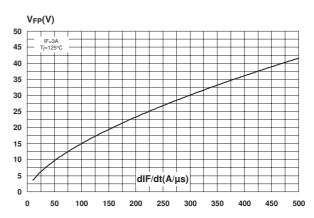
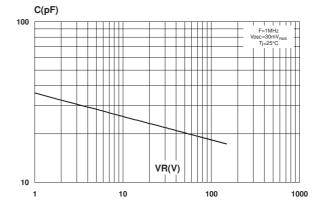
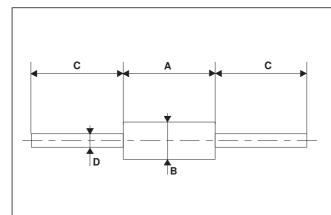





Fig. 7: Transient peak forward voltage versus  $d_{\text{IF}}/dt$  (90% confidence).




**Fig. 9:** Junction capacitance versus reverse voltage applied on clamping characteristic (typical values).



4/5

#### **PACKAGE MECHANICAL DATA**

DO-15



| REF. | DIMENSIONS  |      |       |       |
|------|-------------|------|-------|-------|
|      | Millimeters |      | Inc   | hes   |
|      | Min. Max.   |      | Min.  | Max.  |
| А    | 6.05        | 6.75 | 0.238 | 0.266 |
| В    | 2.95        | 3.53 | 0.116 | 0.139 |
| С    | 26          | 31   | 1.024 | 1.220 |
| D    | 0.71        | 0.88 | 0.028 | 0.035 |

| Ordering type | Marking                          | Package | Weight | Base qty | Delivery<br>mode |
|---------------|----------------------------------|---------|--------|----------|------------------|
| PKC136        | Partnumber Diode cathode ring    | DO-15   | 0.4g   | 1000     | Ammopack         |
| PKC136-RL     | Partnumber<br>Diode cathode ring | DO-15   | 0.4g   | 6000     | Tape and reel    |

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patient or patients of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.

STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 2001 STMicroelectronics - Printed in Italy - All rights reserved.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

