imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

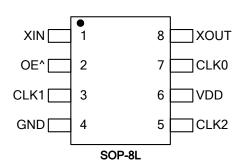
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

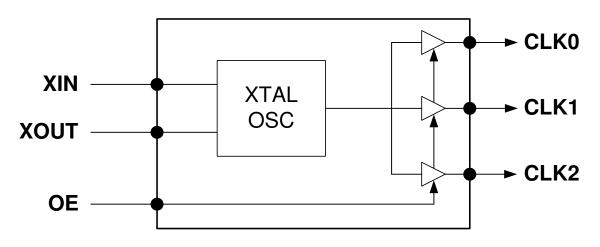
PL135-37

Low Power, 1.62V to 3.63V, 10MHz to 40MHz, 1:3 Oscillator Fanout Buffer

FEATURES


- Advanced Oscillator Design for Wide
 Frequency Coverage
- 3 LVCMOS Outputs
- 12 mA Output Drive Strength
- Input/Output Frequency:
 Fundamental Crystal: 10MHz to 40MHz
- Very Low Jitter and Phase Noise
- Low Current Consumption
- Single 1.62V to 3.63V Power Supply
- Available in SOP-8L GREEN/RoHS Compliant Package

DESCRIPTION


The PL135-37 is an advanced oscillator fanout buffer design for high performance, low-power applications. The PL135-37 accepts a fundamental crystal input of 10MHz to 40MHz and produces three LVCMOS outputs of the same frequency. The Output Enable (OE) function can be used to tri-state the outputs.

The PL135-27 offers the best phase noise and jitter performance and lowest power consumption of any comparable IC.

PACKAGE PIN CONFIGURATION

BLOCK DIAGRAM

Low Power, 1.62V to 3.63V, 10MHz to 40MHz, 1:3 Oscillator Fanout Buffer

PIN DESCRIPTION

Name	SOP-8L	Туре	Description
XIN	1	I	Crystal input
OE	2	I	Output enable input. This pin has internal pull-up resistor. All outputs will be tri-stated when pulled low.
CLK1	3	0	Output clock
GND	4	Р	Ground connection
CLK2	5	0	Output clock
VDD	6	Р	Power supply
CLK0	7	0	Output clock
XOUT	8	I	Crystal output

* Note: This pin includes an internal 60K $\!\Omega$ pull up.

LAYOUT RECOMMENDATIONS

The following guidelines are to assist you with a performance optimized PCB design:

Signal Integrity and Termination Considerations

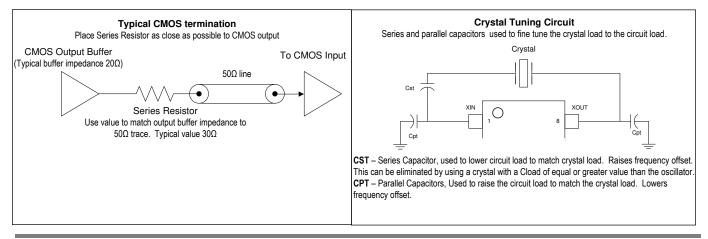
- Keep traces short!

- Trace = Inductor. With a capacitive load this equals ringing!

- Long trace = Transmission Line. Without proper termination this will cause reflections (looks like ringing).

- Design long traces as "striplines" or "microstrips" with defined impedance.

- Match trace at one side to avoid reflections bouncing back and forth.


Decoupling and Power Supply Considerations

- Place decoupling capacitors as close as possible to the V_{DD} pin(s) to limit noise from the power supply

- Multiple V_{DD} pins should be decoupled separately for best performance.

- Addition of a ferrite bead in series with $V_{\mbox{\scriptsize DD}}$ can help prevent noise from other board sources

- Value of decoupling capacitor is frequency dependant. Typical value to use is $0.1 \mu F.$

Low Power, 1.62V to 3.63V, 10MHz to 40MHz, 1:3 Oscillator Fanout Buffer

ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS

PARAMETERS	SYMBOL	MIN.	MAX.	UNITS
Supply Voltage Range	V _{DD}	-0.5	4.6	V
Input Voltage Range	V ₁	-0.5	V _{DD} +0.5	V
Output Voltage Range	Vo	-0.5	V _{DD} +0.5	V
Storage Temperature	Ts	-65	150	°C
Ambient Operating Temperature*		-40	85	°C

Exposure of the device under conditions beyond the limits specified by Maximum Ratings for extended periods may cause permanent damage to the device and affect product reliability. These conditions represent a stress rating only, and functional operations of the device at these or any other conditions above the operational limits noted in this specification is not implied. *Operating temperature is guaranteed by design. Parts are tested to commercial grade only.

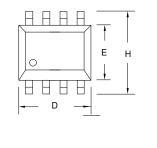
AC SPECIFICATIONS

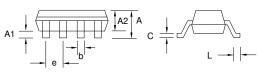
PARAMETERS CONDITIONS		MIN.	TYP.	MAX.	UNITS
Crystal Input Frequency	Fundamental Crystal	10		40	MHz
Settling Time	At power-up ($V_{DD} \ge 1.62V$)			5	ms
Output Enable Time	put Enable Time OE Function; Ta=25° C, 10pF Load			10	ns
V _{DD} Sensitivity	Frequency vs. V _{DD} , ±10%	-1		1	ppm
Output Rise Time	15pF Load, 10/90% V _{DD} , 3.3V		2	3	ns
Output Fall Time	but Fall Time 15pF Load, 90/10% V _{DD} , 3.3V		2	3	ns
Output to Output Skew	Under all conditions			250	ps
Duty Cycle	Under all conditions	45	50	55	%

DC SPECIFICATIONS

PARAMETERS	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
		V_{DD} = 3.3V, 25MHz, No Load		4		mA
Supply Current, Dynamic	I _{DD}	V_{DD} = 2.5V, 25MHz, No Load		3		mA
		V _{DD} = 1.8V, 25MHz, No Load		2		mA
Supply Current, Standby	I _{DD_SB}	OE Pin Pulled Low, 25MHz, 3.3V			0.6	mA
Operating Voltage	V _{DD}		1.62		3.63	V
Output Low Voltage	V _{OL}	I _{OL} = +12mA, 3.3V			0.4	V
Output High Voltage	V _{OH}	I _{он} = -12mA, 3.3V	2.4			V
Output Current	I _{osd}	V _{OL} = 0.4V, V _{OH} = 2.4V	12			mA

Low Power, 1.62V to 3.63V, 10MHz to 40MHz, 1:3 Oscillator Fanout Buffer

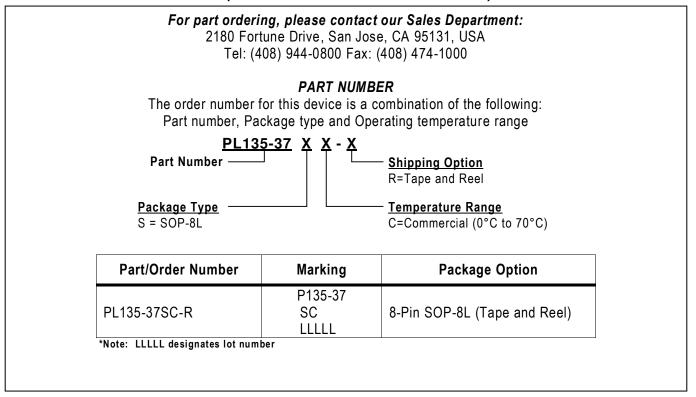

CRYSTAL SPECIFICATIONS


PARAMETERS	SYMBOL	MIN.	TYP.	MAX.	UNITS
Fundamental Crystal Resonator Frequency	F _{XIN}	10		40	MHz
Crystal Loading Rating	C _{L (xtal)}		8.5		pF
Maximum Sustainable Drive Level				200	μW
Operating Drive Level			50		μW
Crystal Shunt Capacitance	CO			3	pF
Effective Series Resistance	ESR			30	Ω

PACKAGE DRAWINGS (GREEN PACKAGE COMPLIANT)

SOP-8L

Symbol	Dimension in MM			
Symbol	Min.	Max.		
Α	1.35	1.75		
A1	0.10	0.25		
A2	1.25	1.50		
В	0.33	0.53		
С	0.19	0.27		
D	4.80	5.00		
E	3.80	4.00		
Н	5.80	6.20		
L	0.40	0.89		
е	1.27 BSC			



PL135-37

Low Power, 1.62V to 3.63V, 10MHz to 40MHz, 1:3 Oscillator Fanout Buffer

ORDERING INFORMATION (GREEN PACKAGE COMPLIANT)

Micrel Inc., reserves the right to make changes in its products or specifications, or both at any time without notice. The information furnished by Micrel is believed to be accurate and reliable. However, Micrel makes no guarantee or warranty concerning the accuracy of said information and shall not be responsible for any loss or damage of whatever nature resulting from the use of, or reliance upon this product.

LIFE SUPPORT POLICY: Micrel's products are not authorized for use as critical components in life support devices or systems without the express written approval of the President of Micrel Inc.