mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

IPM L1/S1-series APPLICATION NOTE

Sep. 2008

<u>Index</u>

1.	Product Line-up				
2.	Internal circuit				
3.	Package Outline		5		
4.	Applications of IPM to General purpose Inverter (reference)		8		
5.	Term Explanation		9		
6.	Numbering System		10		
7.	Structure		11		
8.	Correct and Safety Use of Power Module		15		
9.	Reliability		17		
10.	Installation of power Module		17		
	10-1. Installing Capacitor		17		
	10-2. Installation Hints		17		
	10-3. Thermal Impedance Considerations & Chip Layout		18		
	10-4. Coating Method of Thermal Grease (Example)		20		
	10-5. Connecting the Interface circuit		21		
	10-6. Terminal of IPM		22		
11.	Using IPM		24		
	11-1. Instruction of the symbol of a terminal of IPM		24		
	11-2. Function of the IPM		26		
	11-3. Area of Safe Operation for Intelligent Power Modules		27		
	11-4. Fault Signal of IPM		28		
	11-5. Interface Circuit Requirements		31		
	11-6. Control Power supply of IPM		32		
	11-7. Applications of IPM L1/S1-series to Motor drive		33		
	11-8. Interface of control side of IPM		34		
	11-9. Other notice of using IPM		37		
	11-10. The circuit current of control power supply of IPM		38		
	11-11. Fo Circuit		40		
12.	Power Loss and Junction Temperature		41		
13.	13. Average Power Loss Simplified Calculation 45				
14.	14. Notice for safe Designs and when Using This Specification 47				

1.Product Line-up

L1-series IPM 7pack (Inverter+ Brake)

600V (AC200)		1200V (AC400V)	
Screw type	Pin type	Screw type	Pin type
	PM50RL1C060		PM25RL1C120
PM50RL1A060	PM50RL1B060	PM25RL1A120	PM25RL1B120
PM75RL1A060	PM75RL1B060	PM50RL1A120	PM50RL1B120
PM100RL1A060	PM100RL1B060	PM75RL1A120	PM75RL1B120
PM150RL1A060	PM150RL1B060	PM100RL1A120	
PM200RL1A060		PM150RL1A120	
PM300RL1A060			

600V (AC200)		1200V (AC400V)		
Screw type	Pin type	Screw type	Pin type	
PM50CL1A060	PM50CL1B060	PM25CL1A120	PM25CL1B120	_
PM75CL1A060	PM75CL1B060	PM50CL1A120	PM50CL1B120	
PM100CL1A060	PM100CL1B060	PM75CL1A120	PM75CL1B120	
PM150CL1A060	PM150CL1B060	PM100CL1A120		
PM200CL1A060		PM150CL1A120		
PM300CL1A060				

S1-series IPM

6р	6pack (Inverter)			
	<u>600V (AC200)</u>	<u>1200V (AC400V)</u>		
	Screw type	Screw type		
	PM50CS1D060	PM25CS1D120		
	PM75CS1D060	PM50CS1D120		
	PM100CS1D060	PM75CS1D120		
	PM150CS1D060	PM100CS1D120		
	PM200CS1D060			

Package

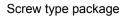
IPM L1-series Mini-package

IPM L1-series Small-package

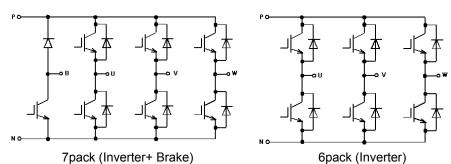
Small pin type package

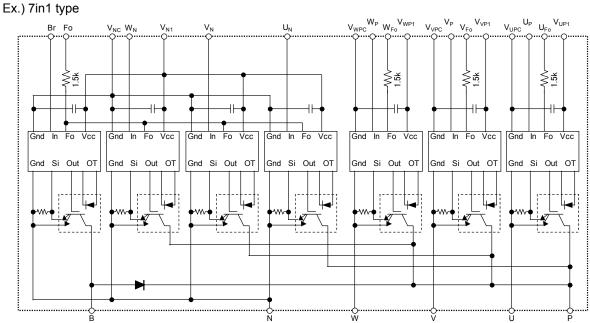
IPM L1-series Medium-package

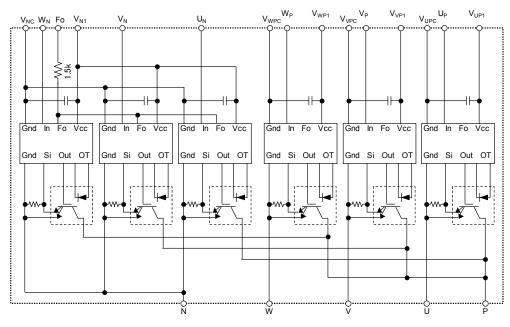
Screw type package


Screw type package

Pin type package


IPM S1-series package

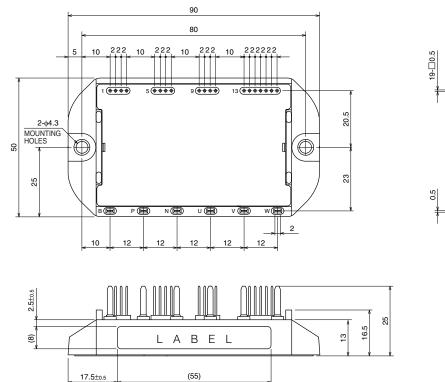



2.Internal circuit

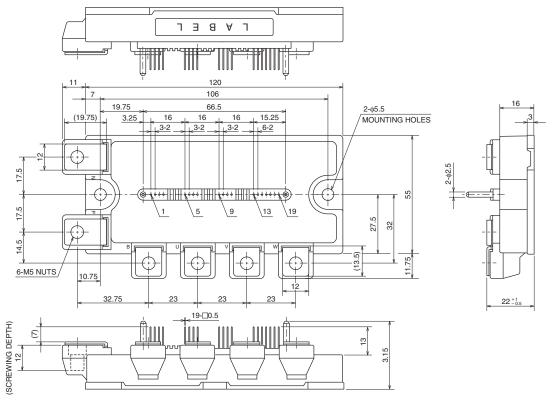
L1-series

S1-series

14.6

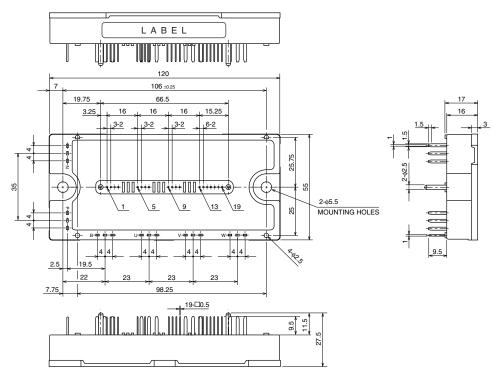

0.3

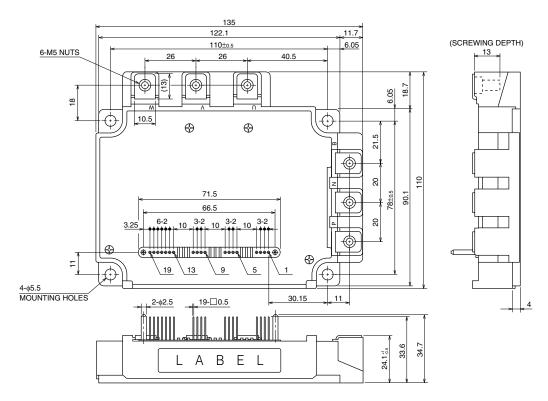
14.2


6.7

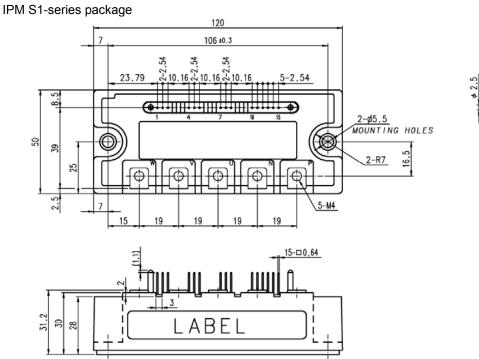
3.Package Outline

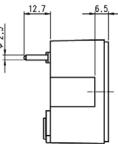
IPM L1-series Mini-package


IPM L1-series Small-package (Screw type)



5


IPM L1-series Small-package (Pin type)



IPM L1-series Medium-package

Applications of IPM to General purpose Inverter (reference)

4.Applications of IPM to General purpose Inverter (reference)

■AC220V Line

Motor	For Inverter Module	For Converter
Ratings (kW)	L1-series	Diode
3.7	PM50RL1A060,PM50RL1B060 PM50CL1A060,PM50CL1B060	RM30TA-H
0.7	PM50RL1C060	
5.5/7.5	PM75RL1A060,PM75RL1B060	RM30TA-H
5.5/7.5	PM75CL1A060,PM75CL1B060	
11.0	PM100RL1A060,PM100RL1B060	RM50TC-H
11.0	PM100CL1A060,PM100CL1B060	
15.0/18.5	PM150RL1A060,PM150RL1B060	RM75TC-H
13.0/10.3	PM150CL1A060,PM150CL1B060	
22.0	PM200RL1A060,PM200CL1A060	RM75TC-H
30.0	PM300RL1A060,PM300CL1A060	PM100DZ-H × 3

■AC440V Line

Motor	For Inverter Module	For Converter
Ratings (kW)	L1-series	Diode
	PM25RL1A120,PM25RL1B120	
5.5	PM25CL1A120,PM25CL1B120	RM20TA-2H
	PM25RL1C120	
7.5	PM50RL1A120,PM50RL1B120	RM50TC-2H
7.5	PM50CL1A120,PM50CL1B120	RIVISUTC-2H
11.0/15.0	PM75RL1A120,PM75RL1B120	RM50TC-2H
11.0/13.0	PM75CL1A120,PM75CL1B120	11110010-211
18.5/22.0	PM100RL1A120,PM100CL1A120	RM50TC-2H
30.0	PM150RL1A120,PM150CL1A120	PM60DZ-2H × 3

Applications of IPM to Servo Motor Controls (reference) ■AC220V Line

Motor	For Inverter Module	For Converter		
Ratings (kW)	S1-series	Diode		
~1.5	PM50CS1D060	RM30TA-H		
~2.0	PM75CS1D060	RM30TA-H		
~3.5	PM100CS1D060	RM50TC-H		
~6.0	PM150CS1D060	RM75TC-H		
~7.5	PM200CS1D060	RM75TC-H		

■AC440V Line

Motor	For Inverter Module	For Converter
Ratings (kW)	S1-series	Diode
~1.5	PM25CS1D120	RM20TA-2H
~3.0	PM50CS1D120	RM50TC-2H
~5.0	PM75CS1D120	RM50TC-2H
~6.0	PM100CS1D120	RM50TC-2H

The above-mentioned tables are examples of the reference.

It is necessary to select the power-module (IPM) from the power-loss and the heat calculation result in the voltage, the current, and use conditions.

5. Term Explanation

General	1
Concrui	

	Definition
Insulated Gate Bipolar Transistor	
Free Wheeling Diode	anti-parallel to the IGBT
Intelligent Power Module	
Dead Time	Low side turn-off to high Side turn-on & High Side turn-off to low side turn-on
Interior Permanent Magnet Motor	
Common Mode Noise Reduction	The maximum rise ratio of common mode voltage
	The maximum rise ratio of common mode voltage at the specific high level
	The maximum rise ratio of common mode voltage at the specific low level
Current Transfer Ratio	the ratio of the output current to the input current
	Free Wheeling Diode Intelligent Power Module Dead Time Interior Permanent Magnet Motor Common Mode Noise Reduction

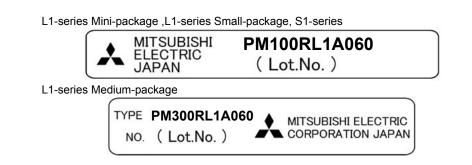
General 2

Symbol	Parameter	Definition
Ta	Ambient Temperature	Atmosphere temperature without being subject to thermal source
Tc	Case Temperature	Case temperature measured at specified point

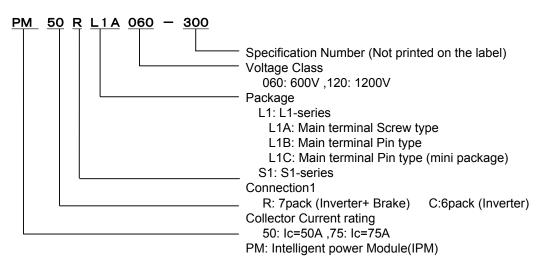
Absolute maximum Ratings

Symbol	Parameter	Definition
VCES	Collector-Emitter Blocking Voltage	Maximum Off-state collector-emitter voltage at applied control input off signal
Ic	Continuous Collector Current	Maximum collector current – DC
I _{CP}	Peak Collector Current Repetitive	Peak collector current, Tj≤150°C
Pc	Power Dissipation	Maximum power dissipation, per device, T _C =25°C
Tj	Junction Temperature	Allowable range of IGBT junction temperature during operation
T _{stg}	Storage Temperature	Allowable range of temperature within which the module may be stored or transported without being subject to electrical load.
V _{iso}	Isolation Voltage	Minimum RMS isolation voltage capability applied electric terminal to base plate, 1 minute duration
-	Mounting Torque	Allowable tightening torque for terminal and mounting screws

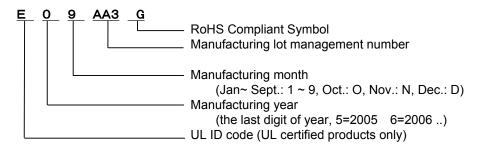
 $\, \, \, \, \aleph I_E$ and I_F are using by the difference of the connection and so on like the following figure.


Electrical Characteristics

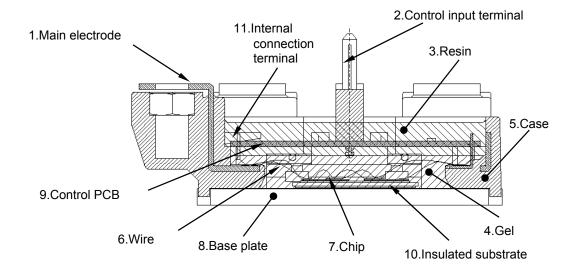
naracteristics	
Parameter	Definition
Collector-Emitter Leakage Current	I_C at V_{CE} = V_{CES} , V_{CIN} = 15V
Collector-Emitter Saturation Voltage	V_{CE} at I_C = rated I_C and V_D = 15V
Turn-on Crossover Time	Time from I_C =10% to V_{CE} =10% of final value
Turn-off Crossover Time	Time from V_{CE} =10% to I_C =10% of final value
Turn-on Switching loss	Energy dissipated inside the IGBT during the turn-on of a single collector current pulse. Integral time starts from the 10% rise point of the collector current and ends at the 10% of the collector-emitter voltage point.
Turn-off Switching loss	Energy dissipated inside the IGBT during the turn-off of a single collector current pulse. Integral time starts from the 10% rise point of the collector-emitter voltage and ends at the 10% of the collector current point.
Diode Reverse Recovery Time	Time from I _C =0A to projection of zero I _C from Irr and $0.5 \times$ Irr points with I _E = rated I _C .
Forward Voltage Drop of Diode	V_{EC} at $-I_C$ = rated IC
Thermal Resistance	The rise of junction temperature per unit of power applied for a given time period
Thermal Resistance, Junction to Case	$I_{\rm C}$ conducting to establish thermal equilibrium
Thermal Resistance, Case to Fin	I _C conducting to establish thermal equilibrium lubricated
	Parameter Collector-Emitter Leakage Current Collector-Emitter Saturation Voltage Turn-on Crossover Time Turn-off Crossover Time Turn-on Switching loss Turn-off Switching loss Diode Reverse Recovery Time Forward Voltage Drop of Diode Thermal Resistance Thermal Resistance, Junction to Case



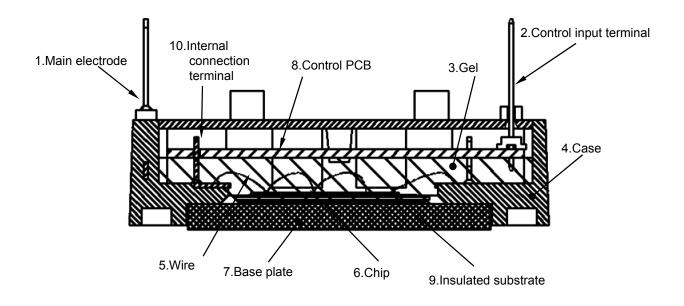
6. Numbering System


Label)

Type Name)

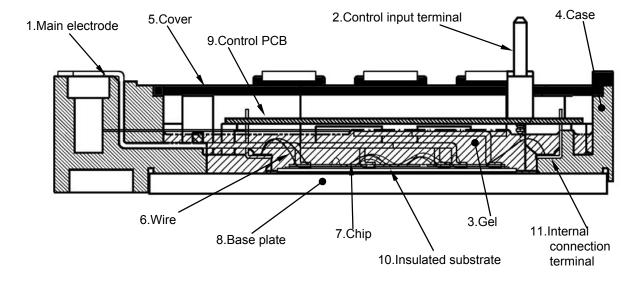

Lot Number)

7. Structure


ex.) L1-series Small package Screw type

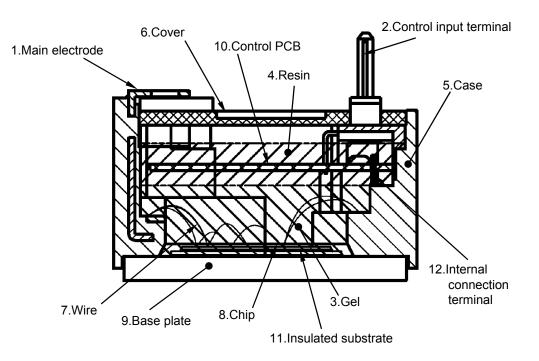
	Part	Quality of the material	UL Flame class
1	Main electrode	Copper plated with nickel	
2	Control input terminal	Brass plated with gold	
		PBT resin	UL 94-V0
3	Resin	Ероху	UL 94-V0
4	Gel	Silicone	
5	Case	PPS resin	UL 94-V0
6	Wire	Aluminum	
7	Chip	Silicon	
8	Base plate	Copper	
9	Control PCB	Glass epoxy	UL 94-V0
10	Insulated substrate	Ceramic	
11	Internal connection terminal	Copper plated with nickel	

Note of Insulated substrate


ex.) L1-series Mini package Screw type

	Part	Quality of the material	UL Flame class
1	Main electrode	Copper plated with nickel	
2	Control input terminal	Brass plated with tin	
3	Gel	Silicone	
4	Case	PPS resin	UL 94-V0
5	Wire	Aluminum	
6	Chip	Silicon	
7	Base plate	Copper	
8	Control PCB	Glass epoxy	UL 94-V0
9	Insulated substrate	Ceramic	
10	Internal connection terminal	Copper plated with nickel	

Note of Insulated substrate



ex.) L1-series Medium package

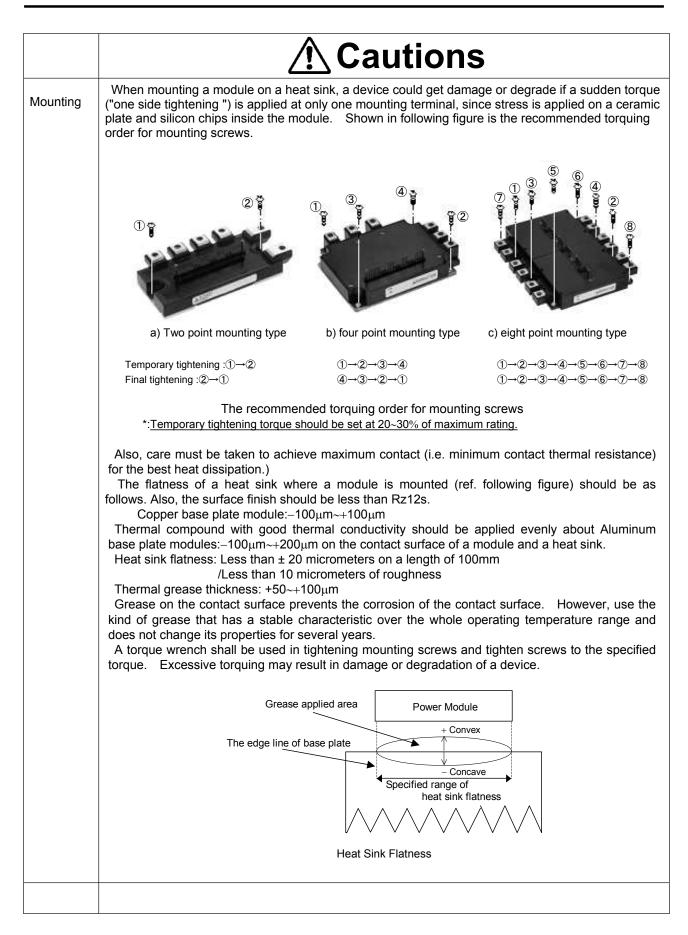
	Part	Quality of the material	UL Flame class
1	Main electrode	Copper plated with nickel	
2	Control input terminal	Brass plated with gold	
		PBT resin	UL 94-V0
3	Gel	Silicone	
4	Case	PPS resin	UL 94-V0
5	Cover	PPS resin	UL 94-V0
6	Wire	Aluminum	
7	Chip	Silicon	
8	Base plate	Copper	
9	Control PCB	Glass epoxy	UL 94-V0
10	Insulated substrate	Ceramic	
11	Internal connection terminal	Copper plated with nickel	

Note of Insulated substrate

ex.) S1-series package

	Part	Quality of the material	UL Flame class
1	Main electrode	Copper plated with nickel	
2	Control input terminal	Brass plated with gold	
		PBT resin	UL 94-V0
3	Gel	Silicone	
4	Resin	Ероху	UL 94-V0
5	Case	PPS resin	UL 94-V0
6	Cover	PPS resin	UL 94-V0
7	Wire	Aluminum	
8	Chip	Silicon	
9	Base plate	Copper	
10	Control PCB	Glass epoxy	UL 94-V0
11	Insulated substrate	Ceramic	
12	Internal connection terminal	Copper plated with nickel	

Note of Insulated substrate



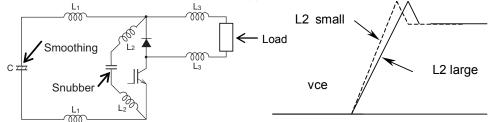
8. Correct and Safety Use of Power Module

Unsuitable operation (such as electrical, mechanical stress and so on) may lead to damage of power modules. Please pay attention to the following descriptions and use Mitsubishi Electric's IGBT modules according to the guidance.

	A
	<u>∕</u> Cautions
During Transit	 Keep sipping cartons right side up. If stress is applied by either placing a carton upside down or by leaning a box against something, terminals can be bent and/or resin packages can be damaged. Tossing or dropping of a carton may damage devices inside. If a device gets wet with water, malfunctioning and failure may result. Special care should be taken during rain or snow to prevent the devices from getting wet.
Storage	• The temperature and humidity of the storage place should be 5~35°C and 45~75% respectively. The performance and reliability of devices may be jeopardized if devices are stored in an environment far above or below the range indicated above.
Prolonged Storage	• When storing devices more than one year, dehumidifying measures should be provided for the storage place. When using devices after a long period of storage, make sure to check the exterior of the devices is free from scratches, dirt, rust, and so on.
Operating Environment Flame Resistance	 Devices should not be exposed to water, organic solvents, corrosive gases, explosive gases, fine particles, or corrosive agents, since any of those can lead to a serious accident. Although the epoxy resin and case materials are in conformity with UL 94-V0 standards, it should be
Anti-electrostatic	noted that those are not non-flammable.
Measures	 (1) Precautions against the device rupture caused by static electricity Static electricity of human bodies and cartons and/or excessive voltage applied across the gate to emitter may damage and rupture devices. The basis of anti-electro static build-up and quick dissipation of the charged electricity. * Containers that are susceptible to static electricity should not be used for transit nor for storage. * Gate to emitter should be always shorted with a carbon cloth or the like until right before a module is
Anti-electrostatic Measures	 used. Never touch the gate terminals with bare hands. * Always ground the equipment and your body during installation (after removing a carbon cloth or the like. It is advisable to cover the workstation and it's surrounding floor with conductive mats and ground them. * It should be noted that devices may get damaged by the static electricity charged to a printed circuit board if the gate to emitter of the circuit board is open. * Use soldering irons with grounded tips.
	 (2) Precautions when the gate to emitter is open * Voltage should not be applied across the collector to emitter when the gate to emitter is open. * The gate to emitter should be shorted before removing a device from a unit.

9.Reliability

Please refer to the URL of our web site. "http://www.mitsubishichips.com/Global/index.html"


10. Installation of power Module

10-1. Installing Capacitor

During switching, voltage is induced in power circuit stray inductance by the high di/dt of the main current. This voltage can appear on the IPM and cause damage. In order to avoid this problem, guidelines that should be followed in designing the circuit layout are:

- ① Located the smoothing capacitor as close as possible to the IPM
- ② Use ceramic capacitor near the IPM to bypass high frequency current
- ③ Adopt low impedance electrolytic capacitor as smoothing capacitor
- ④ Use snubber circuit to absorb surge voltage
- (5) Decrease switching speed in order to lower di/dt.

(2) and (5) are the most effective to reduce surge voltage. The stray inductance of snubber circuit generally is not considered to avoid complicating the circuit. In addition, combination of (2), (4), (5) is needed since there is a limit on the length of wiring. The bypass capacitor of approach (2) act as a snubber when oscillation is occurring.

- L1 : Stray inductance between the electrolytic capacitor and the IPM.
- L2 : Stray inductance between the filter capacitor and the driver.
- L3 : Stray inductance between the load and the power circuit's output stage

10-2. Installation Hints

When mounting IPM on a heat-sink, uneven mounting can cause the modules ceramic isolation to crack. To achieve the best thermal radiation effect, the bigger the contact area is, the smaller the thermal resistance is.

Heat-sink should have a surface finish in range of $Rz6 \sim Rz12$, curvature within 100µm.

Uniform coating of thermal grease between the module and heat-sink can prevent corrosion of contact parts. Select a compound, which has stable characteristics over the whole operating temperature range and does not change its properties over the life of the equipment.

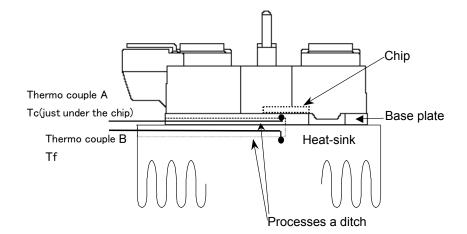
Use a uniform coating of thermal interface compound. The thickness of thermal grease should be ranked in 100~200µm according to the surface finish.

Mounting screws should be tightened by using a torque wrench to the prescribed torque in progressive stages in a cross pattern. As mentioned before, over torque terminal or mounting screws may result in damage of IPM. When an electric driver is used, thermal grease with low viscosity is recommended and extra grease must be extruded before final tightening screws.

* For the recommended torque order for mounting screws referring to "Installation Method" in the section of

"Correct and Safety Use of Power Module"

Note) Maximum torque specifications are provided in device data sheets. The type and quantity of thermal compounds having an effect on the thermal resistance are determined by consideration of both thermal grease and heat-sink. Typical value given in datasheet is measured by using thermal grease produced by Shin-Etsu Chemical Co.,Ltd.


(G-746, which has not issued in Shin-Etsu's publications, is almost the same as G-747.)

10-3. Thermal Impedance Considerations & Chip Layout

The junction to case thermal resistance $R_{th(j-c)}$ and the case to heat-sink thermal resistance $R_{th(c-f)}$ are given in datasheet.

The case temperature has been measured at the just under the chip. The chip location is given with a data sheet.

Note

*The thermal impedance depends on the material, area and thickness of heat-sink. The smaller the area and the thinner the heat-sink is, the lower the impedance is for the same material.

*The type and quantity of thermal compounds can affect the thermal resistance.

Thermal resistance of IPM L1-series

Thermal resistance 600V type

	Inverter part		Brake part		contact thermal
	Just under	Just under the chip		Just under the chip	
Type Name	IGBT-chip	FWDi-chip	IGBT-chip	FWDi(P)-chip	
	Rth(j-c)Q	Rth(j-c)	Rth(j-c)Q	Rth(j-c)	Rth(c-f)
PM50RL1C060	0.74	1.28	0.74	1.28	0.085
PM50RL1A060, PM50RL1B060	0.44	0.75	0.44	0.75	0.038
PM50CL1A060, PM50CL1B060	0.44	0.75	-	-	0.038
PM75RL1A060, PM75RL1B060	0.37	0.63	0.44	0.75	0.038
PM75CL1A060, PM75CL1B060	0.37	0.63	-	-	0.038
PM100RL1A060, PM100RL1B060	0.32	0.52	0.44	0.75	0.038
PM100CL1A060, PM100CL1B060	0.32	0.52	-	-	0.038
PM150RL1A060, PM150RL1B060	0.25	0.41	0.38	0.64	0.038
PM150CL1A060, PM150CL1B060	0.25	0.41	-	-	0.038
PM200RL1A060	0.20	0.30	0.32	0.53	0.023
PM200CL1A060	0.20	0.30	-	-	0.023
PM300RL1A060	0.15	0.23	0.24	0.39	0.023
PM300CL1A060	0.15	0.23	-	-	0.023

Thermal resistance 1200V type

	Inverte	Inverter part		Brake part	
	Just under	Just under the chip		Just under the chip	
Type Name	IGBT-chip Rth(i-c)Q	FWDi-chip Rth(i-c)	IGBT-chip Rth(i-c)Q	FWDi(P)-chip Rth(i-c)	Rth(c-f)
PM25RL1C120	0.70	1.18	0.70	1.18	0.085
PM25RL1A120,PM25RL1B120	0.97	1.60	0.97	1.60	0.038
PM25CL1A120,PM25CL1B120	0.97	1.60	-	-	0.038
PM50RL1A120,PM50RL1B120	0.27	0.47	0.39	0.67	0.038
PM50CL1A120,PM50CL1B120	0.27	0.47	-	-	0.038
PM75RL1A120,PM75RL1B120	0.21	0.36	0.27	0.47	0.038
PM75CL1A120,PM75CL1B120	0.21	0.36	-	-	0.038
PM100RL1A120	0.19	0.31	0.28	0.48	0.023
PM100CL1A120	0.19	0.31	-	-	0.023
PM150RL1A120	0.15	0.23	0.21	0.36	0.023
PM150CL1A120	0.15	0.23	-	-	0.023

Thermal resistance of IPM S1-series

Thermal resistance 600V type

	Inverter	contact thermal		
	Just under	Just under the chip		
Type Name	IGBT-chip	FWDi-chip		
	Rth(j-c)Q	Rth(j-c)	Rth(c-f)	
PM50CS1D060	0.40	0.68	0.046	
PM75CS1D060	0.33	0.55	0.046	
PM100CS1D060	0.28	0.46	0.046	
PM150CS1D060	0.21	0.35	0.046	
PM200CS1D060	0.18	0.27	0.046	

Thermal resistance 1200V type

	Inverter	contact thermal	
	Just under	the chip	resistance
Type Name	IGBT-chip	FWDi-chip	
	Rth(j-c)Q	Rth(j-c)	Rth(c-f)
PM25CS1D120	0.37	0.59	0.046
PM50CS1D120	0.25	0.41	0.046
PM75CS1D120	0.20	0.32	0.046
PM100CS1D120	0.18	0.27	0.046

10-4. Coating Method of Thermal Grease (Example)

The coating method of thermal grease is introduced in this section. The thermal grease is called as grease in the following.

① Preparations: power module, grease, scraper or roller, electronic mass meter and gloves

2 Relationship between the coating amount and thickness is,

Thickness of grease = $\frac{\text{amount of grease}[g]}{\text{base area of module}[cm²] \times \text{density of grease}[g/cm³]}$

The recommended thickness of grease is $100\mu m \sim 200\mu m$. The amount of grease can be obtained as the following example.

For example : For case with size of 110×89 (PM100CSD060), the amount of Shin-Etsu Chemical Co.,Ltd. grease G-746 can be calculated through the equation below.

100~200µm= $\frac{\text{amount of grease[g]}}{97.9[\text{cm}^2] \times 2.66[\text{g/cm}^3]}$ ∴The amount needed is $\approx 2.6 \times 5.2$ [g]

③ Measure the mass of module

- ④ Measure the grease with the same amount as calculated
- (5) Coating the module base uniformly by using scraper or roller

6 Mask print of grease.

Finally it is fulfilled to uniformly cover thermal grease on the module base with specified thickness.

Thermal Compounds

Туре	Note
KS-613, G-747, else	
YG6260, YG6260V	
UNIVERSAL JOINTING-COMPOUND	For non-insulation type
	KS-613, G-747, else YG6260, YG6260V UNIVERSAL

For more information, please refer to manufacturers.

ALCAN UNIVERSAL JOINTING-COMPOUND is grease for the aluminum conductor connection.

The purpose of grease is electricity and a contact resistance decline by the contact-ability improvement and the corrosion control of the aluminum surface.

It seems that there is long-range use experience but because we are not the one of the purpose to improve a heat conduction at the contacted part, the contact thermal resistance reductional effect cannot look forward to it too much. When employing these, the more enough radiation design becomes necessary.

10-5. Connecting the Interface circuit

The input pins of Mitsubishi Intelligent Power Modules are design to be connected directly to a printed circuit board. Noise pick up can be minimized by building the interface circuit on the PCB near the input pins of the module. L1B,L1C type modules have tin plated control and power pins that are designed to be soldered directly to the PCB. L1A, S1D type modules have gold plated pins that are design to be connected to the PCB using an inverse mounted header receptacle. It is the special connector of IPM which secured an electrical clearance among the terminals (U-V, V-W, W-U of P-side and N). The terminal with gold plate is recommended from the viewpoint of contact reliability.

IPM type	Connection method and type name of connector
PM50RL1C060	Main terminal
PM25RL1C120	Connect by solder.
PM50RL1B060, PM50CL1B060	Control terminal
PM75RL1B060, PM75CL1B060	Connect by solder.
PM100RL1B060, PM100CL1B060	
PM150RL1B060, PM150CL1B060	
PM25RL1B120, PM25CL1B120	
PM50RL1B120, PM50CL1B120	
PM75RL1B120, PM75CL1B120	
PM50RL1A060, PM50CL1A060	Main terminal
PM75RL1A060, PM75CL1A060	Connect by screw (screw:M5).
PM100RL1A060, PM100CL1A060	
PM150RL1A060, PM150CL1A060	Control terminal
PM200RL1A060, PM200CL1A060	Connect by connector.
PM300RL1A060, PM300CL1A060	
	DF10-31S-2DSA(68), or DF10-31S-2DSA(62)
PM25RL1A120, PM25CL1A120	(HIROSE ELECTRIC CO., LTD)
PM50RL1A120, PM50CL1A120	
PM75RL1A120, PM75CL1A120	
PM100RL1A120, PM100CL1A120	
PM150RL1A120, PM150CL1A120	
PM50CS1D060, PM75CS1D060	Main terminal
PM100CS1D060, PM150CS1D060	Connect by screw (screw:M4).
PM200CS1D060	
	Control terminal
PM25CS1D120, PM50CS1D120	Connect by connector.
PM75CS1D120, PM100CS1D120	
	MDF7-25S-2.54DSA(31), or MDF7-25S-2.54DSA(32)
	(HIROSE ELECTRIC CO., LTD)

10-6. Terminal of IPM

(1) The material of control terminal of IPM (L1-series RL1A, CL1A type /S1-series)

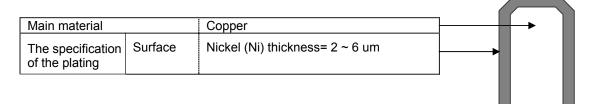
As a reference of the connector selection, the material and the metal finishing of the control terminal on the side of IPM are shown below.

Main material		Brass	 →
The specification of the plating	Substrate	Nickel (Ni) thickness= 1 ~ 5 um	
	Surface	Gold (Au) thickness= 0.05 ~ 0.2 um	

(2) The material of control terminal of IPM (L1-series RL1B, CL1B type)

As a reference of the connector selection, the material and the metal finishing of the control terminal on the side of IPM are shown below.

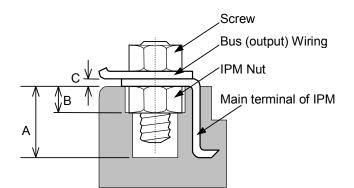
Main material		Brass	
The specification of the plating	Substrate	Nickel (Ni) thickness= 1 ~ 6 um	
	Surface	Tin (Sn) thickness= 4 ~ 10 um	


(3) The material of control terminal of IPM (L1-series RL1C type)

As a reference of the connector selection, the material and the metal finishing of the control terminal on the side of IPM are shown below.

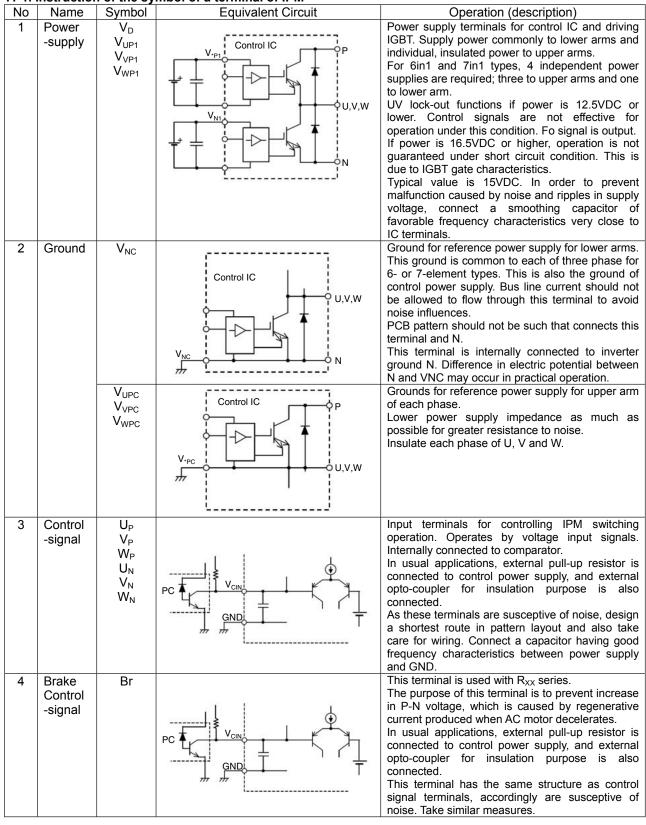
Main material		Brass	→
The specification of the plating	Substrate	Nickel (Ni) thickness= 0.5 ~ 1 um	
	Surface	Tin (Sn) thickness= 2 ~ 6 um	

(4) The material of main terminal of IPM


As a reference of the connector selection, the material and the metal finishing of the main terminal on the side of IPM are shown below.

(5) The main terminal of IPM

The structure of main terminal of IPM are shown bellow.


Package	Screw	Deepness of Screw Hole Mark A (mm)	Thickness of IPM Nut Mark B (mm)	Thickness of Main Terminal Mark C (mm)
L1-series RL1A/CL1A	M5	Typ. 9.5/ min. 9.0	Тур. 4.0	Тур. 0.8
S1-series	M4	Typ. 6.5/ min. 6.0	Тур. 3.3	Тур. 0.8

(6) The guide pin of IPM

The guide pin on both sides of the control terminal of IPM is metal. The guide pin is molded by plastic, and isolated.

11. Using IPM

11-1. Instruction of the symbol of a terminal of IPM

6	Fault -output	F _o	This is the output indicating faulty state of IPM. Faulty modes are classified into overheat, load (arm) short circuit, control power supply under voltage protection. This output does not make distinction of these modes, however. The terminal is an open collector with resistor connected in series. It is possible to directly insert a opto-coupler (or LED) between this terminal and V _D . Power supply terminal to inverter.
	Power -supply		In usual applications, connect this terminal to positive (+) line after rectifying AC line. Internally connected to collector of upper arm IGBT. In order to suppress surge voltage caused by inductance component of PCB pattern, connect a smoothing capacitor very close to P and N terminals. It is also effective to add a film capacitor of good frequency characteristics.
7	Inverter -ground	Ν	Power supply ground of inverter. In usual applications, connect this terminal to ground (-) line after rectifying AC line. Make connection so that bus line current flows through this terminal. Internally connected to emitter of lower arm IGBT. This terminal is also connected to reference control ground V_{NC} . Difference in electric potential between VNC and N may occur in practical operation due to IPM's internal parasitic inductance.
8	Output	U V W	Inverter output terminal. A load such as AC motor is connected in usual applications. Take care for generation of surge voltage. Internally connected to mid point of IGBT modules (IPM) of half-bridge configuration.
9	Brake -output	В	This terminal is used with R _{XX} series. The purpose of this terminal is to prevent increase in P-N voltage, which is caused by regenerative current produced when AC motor decelerates. In usual applications, power dissipating resistor (brake resistor) is connected between this terminal and upper arm. Since this terminal is designed taking into account regenerative current produced when AC motor is decelerates, the current rating of this terminal is about 50% of that of IGBT chip used for U, V, and W. This terminal cannot endure use involving special control that allows a large current to flow.