Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs. With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas. We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry! # Contact us Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China ## **PM8800A** # Integrated IEEE 802.3af compliant PoE-PD interface and PWM controller with support of external source #### **Features** - IEEE 802.3af compliant PD interface - Works with power supplied from Ethernet LAN cables or from local auxiliary sources - Integrated 100 V, 0.5 Ω, 800 mA hot-swap MOSFET - Integrated signature resistor - Programmable in-rush current limit - Programmable classification current - Programmable DC current limit up to 800 mA - High voltage start-up bias regulator - Thermal shutdown protection - Current mode pulse width modulator - Programmable oscillator frequency - Programmable soft-start - Power good indication - 80 % maximum duty cycle with internal slope compensation - Supports both isolated and non-isolated Applications. - HTSSOP16 package ## **Applications** - VoIP phones, WLAN access points - Security cameras - PoE powered device appliances - High power (>12.95 W) powered devices ### Description The PM8800A integrates a standard power over Ethernet (PoE) interface and a current mode PWM controller to simplify the design of the power supply sections of all powered devices. The PoE interface incorporates all the functions required by the IEEE 802.3af including detection, classification, under-voltage lockout (UVLO) and in-rush current limitation. PM8800A specifically targets PD with extended power requirement with respect to the limit imposed by the 802.3af standard, embedding a hot-swap MOSFET capable of sustaining twice the current of the 802.3af standard with a programmable DC current limit. The integrated switching regulator has been designed to work with power either form the Ethernet cable connection or from an external power source such as AC adapter. The DC-DC section of the PM8800A features a programmable oscillator frequency, soft-start, slope compensation and embeds a voltage output error amplifier allowing use in both isolated and non isolated configuration. Table 1. Device summary | Order codes | Package | Packing | | | |-------------|----------|---------------|--|--| | PM8800A | HTSSOP16 | Tube | | | | PM8800ATR | HTSSOP16 | Tape and reel | | | Contents PM8800A # **Contents** | 1 | Турі | cal application circuit and block diagram | 4 | |---|------|-------------------------------------------|---| | | 1.1 | Application circuits | 4 | | | 1.2 | Block diagram | 5 | | 2 | Pins | description and connection diagrams | 6 | | | 2.1 | Pin descriptions | 6 | | | 2.2 | Thermal data 8 | 8 | | 3 | Elec | trical specifications | 9 | | | 3.1 | Absolute maximum ratings | 9 | | | 3.2 | Electrical characteristic | 0 | | 4 | Devi | ce description and operation14 | 4 | | 5 | PD i | nterface | 6 | | | 5.1 | Detection | 6 | | | 5.2 | Classification | 7 | | | 5.3 | Under voltage lock-out | 8 | | | 5.4 | In rush current limit | 8 | | | 5.5 | Continuos current limitation | 0 | | | 5.6 | HV regulator startup | 1 | | | 5.7 | Power good indication | 2 | | 6 | PWN | // section | 3 | | | 6.1 | Error amplifier and loop compensation | 3 | | | 6.2 | Oscillator and sync capability | 4 | | | 6.3 | Soft start | 5 | | | 6.4 | PWM comparator / slope compensation | 6 | | | 6.5 | Current limiting | 6 | | | 6.6 | Leading edge blanking 28 | 8 | | | 6.7 | Thermal protection | 8 | | PM8800A | Co | ontents | |---------|------------------------------|---------| | 7 | Auxiliary sources | 29 | | 8 | Package mechanical data | 32 | | | 8.1 HTSSOP16 mechanical data | 33 | | 9 | Revision history | 34 | # 1 Typical application circuit and block diagram # 1.1 Application circuits Figure 1. Simplified application schematic for powered devicesing PM8800A in isolated configuration Figure 2. Simplified application schematic for powered device using PM8800A in non-isolated buck configuration # 1.2 Block diagram Figure 3. Block diagram of the PoE PD interface Figure 4. Block diagram of the current mode PWM controller # 2 Pins description and connection diagrams Figure 5. Pins connection (top view) # 2.1 Pin descriptions Table 2. Pin description | Pin# | Name | Function | |------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 1 | RT | Oscillator timing resistor pin and synchronization input. An external resistor connected from RT to AGND sets the oscillator frequency. This pin will also accept narrow ac-coupled synchronization pulses from an external clock. | | 2 | SS | Soft-start input. An external capacitor connected from SS and AGND and an internal 10 $\mu$ A current source set the soft-start ramp rate. this pin is also used to set the hiccup timer in case of overcurrent conditions. See <i>Section 6</i> for detail. | | 3 | AUXII | Auxiliary source enable pin. Use this pin to power up the DC/DC section only from the external source. The auxiliary source can prevail over the PoE source depending on the value of the resistor between this pin and the external source. See Section 7 for detail. | | 4 | VIN | System high potential input. The diode "OR" of PoE line and auxiliary sources connected to the PD, it is the most positive input potential. | | 5 | RCLASS | Classification resistor pin. Connect a classification programming resistor between this pin and VSS. | | 6 | AUXI_IRL | In-rush current limit and auxiliary source enable pin. Pulling up this pin to the auxiliary source will change the internal UVLO settings and allow PD to be powered with voltage lower than nominal PoE voltages. In this condition inrush current limit is set to default values. See Section 7 for details. A resistance between this pin and VSS will set the level of inrush current limit. | Table 2. Pin description (continued) | Pin# | Name | Function | |------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 7 | DCCL | DC current limit. A resistor between DCCL and VSS will set the current limit for the interface section of the PM8800A. It can be set to exceed the IEEE802.3af current limit. Leave the pin open for standard IEEE 802.3af applications. | | 8 | VSS | System low potential input. | | 9 | GND | System return for the PWM converter. It is the drain of the internal hot-swap power MOSFET. | | 10 | GD | Output of the PWM controller. External power MOSFET gate driver output. | | 11 | VCC | Output of the internal high voltage regulator. When the auxiliary transformer winding (if used) raises the voltage on this pin above the regulation set point, the internal regulator will be switched off, reducing the controller power dissipation. | | 12 | nPGD | Power good, active low signal. A high to low transition indicates that the inrush current phase has been completed, the internal hot swap MOSFET is fully closed and the SMPS portion of the PM8800A is activated. | | 13 | CS | Current sense input. Current sense input for current mode control and over-current protection. Current limiting is obtained with a dedicated current sense comparator. If the CS pin voltage exceeds 0.5 V the GD pin switches low for cycle-by-cycle current limiting. Leading edge blanking is implemented to mask current spikes. | | 14 | СОМР | The output of the error amplifier and input of the Pulse Width Modulator. COMP pull-up is provided by an internal 2.5 k $\Omega$ resistor which may be used to bias an opto-coupler transistor. | | 15 | VFB | Feedback signal. Inverting input of the internal error amplifier. The non-inverting input is internally connected to a 1.25 V reference. If not used must be grounded to AGND. | | 16 | AGND | Analog PWM supply return. GND for sensitive analog circuitry including the SMPS current limit circuitry. Must be connected to GND to improve noise immunity. | | | EP | Exposed pad. Connect this to a board plane to improve heat dissipation; must be electrically connected to VSS | 7/35 # 2.2 Thermal data Table 3. Thermal data | Symbol | Parameter | Value | Unit | |-------------------|------------------------------------------------|------------|------| | R <sub>thJA</sub> | Max thermal resistance junction to ambient (1) | 50 | °C/W | | T <sub>MAX</sub> | Maximum junction temperature | 150 | °C | | T <sub>STG</sub> | Storage temperature range | -40 to 150 | °C | | T <sub>J</sub> | Junction temperature range | -40 to 125 | °C | | T <sub>A</sub> | Operative temperature range | -40 to 85 | °C | <sup>1.</sup> Package mounted on 4 layers 35 micron demoboard # 3 Electrical specifications # 3.1 Absolute maximum ratings Table 4. Absolute maximum ratings | Parameter | Value | Unit | |---------------------|-------------|------| | VIN, GND to VSS | -0.3 to 100 | V | | AUXI_IRL to VSS | -0.3 to 100 | V | | DCCL, RCLASS to VSS | -0.3 to 3.6 | V | | AUXII to AGND | -0.3 to 100 | V | | COMP, SS to AGND | -0.3 to 3.6 | V | | VFB, RT, CS to AGND | -0.3 to 3.6 | V | | VCC, GD to AGND | -0.3 to 15 | V | | nPGD to AGND | -0.3 to 15 | V | | GND to AGND | -0.3 to 0.3 | V | Note: Absolute maximum ratings are limits beyond which damage to the device may occur. ## 3.2 Electrical characteristic Table 5. Electrical characteristics - interface section (V<sub>IN</sub> = 48 V, VCC = open, $T_A$ = 25 °C unless otherwise specified). | Symbol | Parameter | Test conditions | Min | Тур | Max | Unit | |---------------------|------------------------------------------|---------------------------------------------|---------------------|------|---------------------|------| | Detection a | nd classification | | 1 | | | | | | Signature enable | V <sub>IN</sub> rising | | | 1.5 <sup>(1)</sup> | V | | | Signature resistance | | 23.5 (1) | 24.5 | 25.5 <sup>(1)</sup> | kΩ | | | Signature disable classification turn on | V <sub>IN</sub> rising | 10.5 <sup>(1)</sup> | 11.5 | 12.5 <sup>(1)</sup> | V | | | Classification turn on hysteresis | | | 1.40 | | V | | | Classification turn-off | V <sub>IN</sub> rising | 21.5 <sup>(1)</sup> | 23 | 24.5 <sup>(1)</sup> | V | | | RCLASS voltage during classification | | 1.37 <sup>(1)</sup> | 1.4 | 1.43 <sup>(1)</sup> | V | | | Supply current during classification | V <sub>IN</sub> inside classification range | | 1.8 | | mA | | Bias curren | t | | | | | | | IIN | V <sub>IN</sub> supply current | V <sub>IN</sub> = 48 V; VCC = 10 V | | 3 | | mA | | Under Volta | ge Lock-Out | | | | | | | V <sub>UVLO_R</sub> | UVLO release | V <sub>IN</sub> rising | 37 | 38.5 | 40 <sup>(1)</sup> | V | | V <sub>UVLO_F</sub> | UVLO lock-out | V <sub>IN</sub> falling | 30 (1) | 31.5 | 33.5 | V | | | UVLO hysteresis | | | 7.0 | | ٧ | | Hot swap M | OSFET | | | | | | | R <sub>DSON</sub> | MOSFET resistance | | | 0.5 | 1 (1) | Ω | | | Default in-rush current limit | V <sub>IN</sub> > 30 V | 120 (1) | 140 | 160 <sup>(1)</sup> | mA | | | Default in-rush current limit | 15 V < V <sub>IN</sub> < 30 V | 220 (1) | 250 | 280 (1) | mA | | | Default in-rush current limit | 1.5 V < V <sub>IN</sub> < 15 V | 390 <sup>(1)</sup> | 440 | 490 <sup>(1)</sup> | mA | | | Adjustable in-rush current limit | R <sub>AUXI_IRL</sub> = 82 kΩ | 120 <sup>(1)</sup> | 140 | 160 <sup>(1)</sup> | mA | | | Default DC current limit | | 390 <sup>(1)</sup> | 440 | 490 <sup>(1)</sup> | mA | | | Adjustable DC current limit precision | $R_{DCLL}$ = From 15.4 kΩ to 82 kΩ | -15 <sup>(1)</sup> | - | +15 <sup>(1)</sup> | % | Table 5. Electrical characteristics - interface section (continued) $\overline{(V_{IN}}$ = 48 V, VCC = open, $T_A$ = 25 °C unless otherwise specified). | Symbol | Parameter | Test conditions | Min | Тур | Max | Unit | |--------------|--------------------------------------------------|-----------------------------------|---------------------|------|---------------------|------| | Power good | d indication | | | | | | | | Hot-swap V <sub>DS</sub> | V <sub>DS</sub> falling | 1.45 <sup>(1)</sup> | 1.60 | 1.75 <sup>(1)</sup> | V | | | Hysteresis | | | 1.45 | | V | | | Hot-swap V <sub>GS</sub> required for power good | Guaranteed by design | | 2 | | ٧ | | | nPGD current source | | 25 <sup>(1)</sup> | 30 | 35 | μΑ | | nPGD | nPGD pull down resistance | nPGD low; I = -5 mA | | | 0.5 (1) | ٧ | | | nPGD threshold | nPGD rising | 1.7 <sup>(1)</sup> | 2 | 2.3 <sup>(1)</sup> | V | | Auxiliary po | ower | | | | | | | | AUXI_IRL UVLO release | VIN rising | 15 <sup>(1)</sup> | 16 | 17 <sup>(1)</sup> | V | | AUX I | AUXI_IRL UVLO lock-out | VIN falling | 11.5 <sup>(1)</sup> | 12.5 | 13.5 <sup>(1)</sup> | V | | 7.07. | AUXI / IRL switch-over threshold | V <sub>AUXI_IRL</sub> rising | | 2 | | ٧ | | | Bias voltage | I <sub>AUXII</sub> = 0 to -250 μA | 0.85 | 1.1 | 1.4 | V | | AUX II | Lower threshold current | | 20 | 35 | 50 | μΑ | | | Upper threshold current | | 80 | 100 | 120 | μΑ | Table 6. Electrical characteristics - SMPS section $\underline{\text{(V}_{\text{IN}}} = 48 \text{ V}, \text{ VCC} = \text{open}, \text{ T}_{\text{A}} = 25 \, ^{\circ}\text{C} \text{ unless otherwise specified)}.$ | Symbol | Parameter | Test conditions | Min | Тур | Max | Unit | |------------------|------------------------------------------------|-----------------------------------------------------|--------------------|---------|--------------------|------| | Oscillator | | | <u>'</u> | • | | | | | Free running | R <sub>T</sub> = open | 85 <sup>(1)</sup> | 100 | 115 <sup>(1)</sup> | kHz | | f <sub>osc</sub> | Frequency | $R_T = 88 \text{ k}\Omega$ | 210 <sup>(1)</sup> | 240 | 270 <sup>(1)</sup> | kHz | | | programmability | $R_T = 33 \text{ k}\Omega$ | 385 <sup>(1)</sup> | 440 | 495 <sup>(1)</sup> | kHz | | | Ext. synch threshold | 50 ns pulse | | 2.8 | | ٧ | | Error ampli | fier | | <u>.</u> | | | | | V <sub>EA</sub> | EA input voltage | FB = COMP | 1.21 (1) | 1.25 | 1.29 (1) | V | | GBW | Gain bandwidth | Guaranteed by design | | 10 | | MHz | | G <sub>0</sub> | DC gain | Guaranteed by design | | 75 | | dB | | COMP | Sink current capability | COMP to GND | -8 <sup>(1)</sup> | -15 | | mA | | Soft start | | | · | | | | | , | 0-4 | Charging | 7 (1) | 10 | 13 <sup>(1)</sup> | μΑ | | I <sub>SS</sub> | Soft start current | Discharging | -7 <sup>(1)</sup> | -10 | -13 <sup>(1)</sup> | μΑ | | | SS voltage | After soft start | 2.1 <sup>(1)</sup> | 2.3 | 2.5 <sup>(1)</sup> | ٧ | | Current lim | it | | | | • | | | | Delay to output | Guaranteed by design | | 20 | | ns | | | Cycle by cycle current limit threshold voltage | | 0.44 (1) | 0.50 | 0.56 (1) | V | | | Leading edge blanking time | | | 80 | | ns | | PWM comp | arator | | <u>.</u> | | | | | | Delay to output | Guaranteed by design | | 25 | | ns | | | Minimum duty cycle | | | | 0 (1) | % | | | Maximum duty cycle | | | 80 | 83 <sup>(1)</sup> | % | | | COMP to PWM gain | Guaranteed by design | | 0.5 | | | | Output driv | er | | · | | | | | | Output high | I <sub>GD</sub> = 100 mA;<br>guaranteed by design | | Vcc-0.4 | Vcc-0.7 | V | | | Output low | I <sub>GD</sub> = -100 mA | | 0.25 | 0.5 | ٧ | | | Fall time | $C_{LOAD} = 3.3 \text{ nF}$ | | 35 | | ns | | | Rise time | C <sub>LOAD</sub> = 3.3 nF | | 35 | | ns | | | Peak source current | C <sub>LOAD</sub> = 3.3 nF;<br>guaranteed by design | | 800 | | mA | Table 6. Electrical characteristics - SMPS section ( $V_{IN}$ = 48 V, VCC = open, $T_A$ = 25 °C unless otherwise specified). | Symbol | Parameter | Test conditions | Min | Тур | Max | Unit | |---------------------|-------------------------------------|-------------------------------------------------------------------|---------------------|------|--------------------|------| | | Peak sink current | C <sub>LOAD</sub> = 3.3 nF;<br>Guaranteed by design | | 1200 | | mA | | Thermal shu | ıtdown | | | | | | | | Shutdown temp. | 1 <sup>st</sup> level; Inrush phase only;<br>Guaranteed by design | | 130 | | °C | | | | 2 <sup>nd</sup> Level; guaranteed by design | | 160 | | °C | | | Th. shutdown Hyst. | | | 30 | | °C | | VCC regulat | ion | • | <b>.</b> | | | | | VCC | Internal default | VIN = 48 V; VCC = open | 8 (1) | 8.3 | 8.6 <sup>(1)</sup> | V | | VCC | Current capability | VIN = 48 V; GD = open | | | 10 <sup>(1)</sup> | mA | | VCC | Internal default<br>UVLO, release | V <sub>CC</sub> rising; wrt VCC | -400 <sup>(1)</sup> | | -50 | mV | | VCC <sub>UVLO</sub> | Internal default;<br>UVLO, lock-out | V <sub>CC</sub> falling | 6.4 <sup>(1)</sup> | 6.7 | 7.1 <sup>(1)</sup> | ٧ | | ICC | V <sub>CC</sub> supply current | V <sub>CC</sub> = 10 V | | 4 | | mA | | | V <sub>CC</sub> regulator dropout | ICC = 5 mA; GD = open | | 2 | | ٧ | Note: 1 These values applies over the full operating temperarure range. <sup>2</sup> Device thermal limitations could limit useful operating range. <sup>3</sup> The $V_{CC}$ regulator is intended for internal use only as bias supply of PM8800A; any additional external $V_{CC}$ current has to be limited within the specified max current limit. ## 4 Device description and operation The PM8800A is a monolithic device embedding an IEEE 802.3af compliant PD interface together with a current mode pulse width modulator to be used in all power over Ethernet powered devices. In addition to the standard.3af features, PM8800A anticipates some features of the forth-coming.3at standard, specifically targeting appliances or systems requiring higher power with respect to the 12.95 W allowed by standard PSE. The PD interface integrates the 24.5 k $\Omega$ signature resistor used in detection and disabled during the rest of operating modes. Classification is done through an external resistor detached when classification is over, in order to save power. The PM8800A integrates standard compliant UVLO thresholds to determine normal operating mode (UVLO rising) or recognize disconnection (UVLO falling). A graphical representation of the voltage thresholds and hysteresis during all the operating phases is depicted in the following figure: Figure 6. State diagram of the PM8800A interface depending on the input voltage For input voltages in the range 1.5 to 11.5 V, PM8800A exposes a 24.5 k $\Omega$ resistance. After detection is over, the internal resistor is disabled and the external classification resistor is presented. When classification is over, the external resistor is disconnected and the PM8800A wait for the input voltage to overpass the UVLO voltage. The hot-swap MOSFET is specifically designed to have a low $R_{DSon}$ to contain the conduction losses and sustain up to 800 mA. A constant dissipated power method is used to limit the current in the in-rush phase. The integrated in-rush current limit controls in a safe manner the current flowing through the MOSFET, shortening the duration of the hot-swap event itself. Designers have the possibility to further limit the current in the in-rush by acting on the proper programming resistor. Designers have the possibility to set the limit of the current through the interface during normal operation. For non standard application, this limit exceeds the 350 mA foreseen by the 802.3af and can reach up to 800 mA. PM8800A can work with power either from PoE networks or from auxiliary sources - like AC adapters -. Alternative sources are present in PoE appliances where devices can work also outside the context of the PoE networks or to ensure normal operation even if PoE becomes unavailable. PM8800A limits the number of external components to handle the coexistence of both PoE and auxiliary supplies. External sources can be connected so to exploit the in-rush current limitation provided by the MOSFET or enabling the PWM section, bypassing the interface section. A state-of-the-art current mode pulse with modulator is embedded in the PM8800A to support low side single ended isolated and non isolated topologies. A high gain bandwidth product error amplifier is embedded for non isolated configuration. PM8800A has a 80 % maximum duty cycle, featuring embedded slope compensation. The PWM switching frequency of PM8800A is programmable with an appropriate resistor and it is also capable of working with an external clock reference. 5/ PD interface PM8800A #### 5 PD interface #### 5.1 Detection In power over Ethernet systems, the PSE senses the connection to detect whether an IEEE 802.3af compatible device is plugged to the cable termination by applying a small voltage (2.7 to 10 V) on the Ethernet cable and measuring in two successive steps the equivalent resistance. During this phase, the Powered Device must present a resistance between 23.75 k $\Omega$ and 26.25 k $\Omega$ PM8800A integrates a 24.5 k $\Omega$ signature resistor to simplify the design of PoE powered Device appliances and to reduce the overall component count. Signature resistor is in series to a pass transistor (see *Figure 7*) used to disconnect the resistor itself upon completion of the detection phase. The value of the integrated detection resistance has been selected taking into account also the diode bridges typical voltage drop. During detection, most of the circuits inside the PM8800A are disabled to minimize the offset current. Figure 7. PM8800A: reference schematic of the integrated 24.5 $k\Omega$ and resistor disable logic PM8800A PD interface #### 5.2 Classification Classification process in the IEEE 802.3af standard is optional for the powered device. This feature allows PSE to plan and allocate the available power to the appliances connected to the PoE network. IEEE 802.3af specification groups the need for power of the PD in 5 classes, one is reserved for future use. After successful detection, the PSE sets a constant voltage between 15.5 V and 20.5 V for a maximum duration of 75 ms and senses the current flowing through the cable to determine the PD's class. The relevant thresholds in PM8800A are 11.5 V and 23 V, with a turn off hysteresis of 1.4 V. To support the classification function, an equivalent programmable constant current generator has been implemented. The following figure depicts a principle schematic of the classification circuit. Just after the detection phase has been successfully completed, the voltage of the RCLASS pin is set to the 1.4 V voltage reference and a pass transistor connects the VIN pin to RCLASS pin. Figure 8. PM8800A: reference schematic of the PoE classification logic Classification resistor can be detached by three main causes: - An auxiliary power source (front or rear) has been connected (see Section 7), - The device is in thermal protection - The classification has been successfully completed. Designers can set the current by changing the value of the external resistor according to the following table. PD interface PM8800A **IEEE 802.3af** Classification current (mA) **CLASS** PD power (W) $R_{CLASS}(\Omega)$ min max 0 0.44 - 12.95 0 4 Open 1 0.44 - 3.84158 9 12 2 82.5 17 20 3.84 - 6.49 3 6.49 - 12.95 52.3 26 30 4 36.5 36 44 Reserved Table 7. value of the external classification resistor for the different PD class of power ### 5.3 Under voltage lock-out After the classification is completed, the PSE raises the voltage to provide the Power Devices with the negotiated power. During the transition from low to operating voltage, the internal UVLO is released and the hot-swap MOSFET is activated initiating the in-rush sequence. The IEEE 802.3af standard sets a maximum turn-on voltage (42 V) and the minimum turn-off voltage (30 V) for the PDs and indicates normal voltage drops across the Ethernet cable. The PM8800A implements the UVLO mechanism by setting 2 internal thresholds on the voltage across the VIN-VSS pins; one is to activate the hot-swap ( $V_{UVLO\_R}$ ), while the other is to switch off the hot-swap MOSFET upon detection of a supply voltage drop ( $V_{UVLO\_F}$ ) from normal operating conditions. No additional external components are required to comply with the IEEE 802.3af requirements. Thermal protection alarm overrides the gate driving of the MOSFET immediately switching off the MOSFET itself in case of device overheating. The hot-swap is bypassed also in auxiliary source topology supplying directly the PWM and not requiring the hot-swap to be active. #### 5.4 In rush current limit Once the detection and classification phases have been successfully completed, the PSE raises the voltage across the Ethernet cable. When the voltage difference between the VIN and VSS is greater than the $V_{UVLO\_R}$ threshold, the internal hot-swap MOSFET is switched on and the DC-DC input capacitance is charged in a controlled way. As depicted in the following figure, the current delivered by the hot-swap MOSFET during inrush period is a function of the voltage drop between GND and VSS (hot-swap drain source terminals). In more detail, the higher the voltage across the internal hot-swap, the lower the current flowing trough it, so that the total dissipated power is almost constant throughout the inrush phase, preventing the IC to reach the thermal protection limit. The lower current limitation is internally set at 140 mA and takes action when the voltage GND-VSS is above 30 V. The second limit is set at 250 mA when GND-VSS voltage is between 30 V and 15 V. When the voltage falls below 15 V, the limit switches to the higher PM8800A PD interface inrush current level, which is set by default at 440 mA. Connecting a resistor between VSS and AUXI\_IRL it's possible to adjust this limit to a lower value. Figure 9. Relation between the hot-swap drain-source voltage and the default Inrush current. The maximum inrush current can be set by programming the value of the resistor on the AUX\_IRL pin. Depending on the chosen value there could be 3 steps (when the selected max current is between 250 and 400 mA), 2 steps (when the selected max current is between 140 and 250 mA) or a single step. The formulae to select the desired inrush current is the following: $$\mathsf{R}_{\mathsf{IRL}}[\mathsf{k}\Omega] = \frac{\mathsf{11200}}{\mathsf{I}_{\mathsf{IRL}}[\mathsf{mA}]}$$ The PM8800A useful programming range for the inrush current limitation is between 140 mA and 440 mA. Practical resistor value ranges between 25 k $\Omega$ and 82 k $\Omega$ . Figure 10. Inrush current limit vs R<sub>IRL</sub> PD interface PM8800A In the following picture a typical start sequence that can be observed in real circuits. Figure 11. Typical start up sequence Ch1 = 5 Vout, Ch2 = VSS - GND, Ch3 = Vcc, Ch4 = I input Depending on the application, care must be put on the choice of the inrush current limit to avoid that the voltage drop on the external Ethernet cable will cause UVLO conditions during the charging phase of the bulk capacitor. It is recommended to select this voltage drop (20 $\Omega$ max for 100 m of cable x I inrush) to be lower than the UVLO hysteresis ( 7 V) in order to avoid hiccup turn on. #### 5.5 Continuos current limitation PM8800A provide a default continuos current limitation of 440 mA. This is achieved by leaving the pin DCCDL floating. A different DC current limit can be set by connecting a resistor between DCCL and VSS whose value can be obtained by the following equation: $$\mathsf{R}_{\mathsf{DC}}[\mathsf{k}\Omega] = \frac{\mathsf{11200}}{\mathsf{I}_{\mathsf{DC}}[\mathsf{mA}]}$$ PM8800A PD interface Figure 12. DC current vs R<sub>DC</sub> This limitation is active after nPGD set and when the PD is supplied through the PoE or in the Front connection (see *Section 7*) The PM8800A useful programming range for the current limitation is between 150 mA and 800 mA. Practical resistor value ranges between 15 k $\Omega$ and 75 k $\Omega$ . ## 5.6 HV regulator startup PM8800A embeds a high voltage start-up regulator to provide a controlled reference voltage of 8.3 V to the Current mode PWM during its start-up phase. The regulator output is connected to the VCC pin as well as to the DC DC section In normal isolated topology, the VCC pin is diode connected to the auxiliary winding of the transformer used for the flyback or forward configuration. When the voltage from the transformer exceeds the regulated voltage, the high voltage regulator is shut off, reducing the amount of power dissipated inside the PM8800A. The external auxiliary voltage must higher then 8.3 V but must be also lower than 15 V under all working conditions, to avoid the intervent of the internal protection clamp. A VCC UVLO mechanism monitors the level of voltage on the VCC pin. When VCC voltage exceeds the VCC $_{\rm UVLO\_R}$ the PWM controller is enabled and it remains enabled until the VCC voltage drops under its VCC $_{\rm UVLO\_F}$ value. PD interface PM8800A #### 5.7 Power good indication The PM8800A embeds a power good circuit that is used to indicate that PWM input capacitors are fully charged and that the switching regulator can start operation. The power good circuit monitors the status of the internal hot-swap MOSFET and nPGD, an active low signal is asserted when its $V_{DS}$ voltage falls below 1.5 V and $V_{GS}$ rise above 2 V. The power good circuit includes hysteresis to allow the PM8800A to operate near the current limit point without inadvertently disabling nPGD. The MOSFET voltage must increase to 3 V before nPGD is disabled. An internal comparator monitors the status of the nPGD pin and the PWM controller will be running until the voltage at this pin goes above 2 V. The power good indication is exposed at nPGD pin with a open drain, 45 $\Omega$ MOSFET so that board designers can put a LED and a series current limiting resistor from the VCC pin to the nPGD pin to indicate that the PD is powered from the PoE network. Since the power good signal is internally used to activate the PWM controller, to avoid that transients on the input voltage could produce intermittent operation of the PWM controller, board designer can connect a capacitor $C_{PGD}$ between the nPGD pin and GND. This will mask the nPGD signal for a duration that can be estimate by the following equation: $$\Delta t(\mu s) = \frac{(2 \text{V} \cdot \text{C}_{\text{PGD}}(\text{nF}))}{(0.03 \text{mA} + \text{I}_{\text{LED}}(\text{mA}))}$$ where 30 $\mu$ A is an internal current source that act as pull-up on the nPGD pin and I<sub>LED</sub> is the current flowing through the external LED, if present. PM8800A PWM section #### 6 PWM section #### 6.1 Error amplifier and loop compensation The PM8800A addresses both isolated and non-isolated configuration by embedding a wide band high gain error amplifier. In non-isolated topology, the voltage to be regulated is connected to the FB pin - the inverting input of the EA - through a resistor divider. The non inverting input of the EA is set to a fixed reference value of 1.25 V. The output of the error amplifier is connected to the COMP pin which is pulled up internally with a 2.5 $k\Omega$ resistor to a fixed reference of 3.3 V; loop compensation can be done connecting an appropriate compensation network between the FB pin and the COMP pin Figure 13. Non-isolated feedback In typical isolated topology, the error amplifier is located outside the IC and the feedback signal is taken on the collector of an opto coupler. The internal error amplifier is to be bypassed connecting the FB pin to AGND. In order to minimize external components count the opto coupler is directly connected to the COMP pin using the internal pull-up resistor as bias for the opto coupler. PM8800A COMP Vout Vout R<sub>2</sub> R<sub>2</sub> C<sub>2</sub> R<sub>3</sub> R<sub>4</sub> R<sub>5</sub> R<sub>7</sub> R<sub>7</sub> R<sub>8</sub> R<sub>8</sub> R<sub>9</sub> R<sub>9</sub> R<sub>1</sub> R<sub>2</sub> R<sub>2</sub> R<sub>2</sub> R<sub>2</sub> R<sub>3</sub> R<sub>4</sub> R<sub>5</sub> R<sub>5</sub> R<sub>7</sub> R<sub>8</sub> R<sub>8</sub> R<sub>9</sub> Figure 14. Isolated opto coupler feedback. PWM section PM8800A When a shunt regulator is used for output voltage regulation, the output voltage is set by the ratio of resistors R1 and R2, see *Figure 14* for details. The output voltage is given by the following equation: $$V_{out} = V_{REF} \cdot \left(1 + \frac{R_2}{R_1}\right)$$ where $V_{\mathsf{REF}}$ is the reference voltage of the shunt regulator chosen for the application. Loop compensation in typical isolated application is done by connecting an appropriate compensation network around the external error amplifier. A pull-up current source of few nA is internally connected to FB pin providing a safe switch-off of the DC DC converter in case of feedback disconnection. ## 6.2 Oscillator and sync capability The internal oscillator frequency can be programmed by connecting an external resistor between the RT and AGND pins. The relation between the oscillator frequency $f_{OSC}$ and the $R_{T}$ resistor is: $$f_{osc}(kHz) \, = \, 100 \cdot \left(1 + \frac{125}{3k\Omega + R_T(k\Omega)}\right)$$ The PWM switching frequency is equal to the programmed oscillator frequency. PM8800A PWM section The PM8800A can work also with a clock reference provided by an external source whose frequency is higher than the one programmed by the $R_T$ resistor. The presence of the external resistor is mandatory also when the reference is provided from outside the IC. The external source must coupled to the RT with a 100 pF capacitor and have a minimum peak amplitude of 2.8 V. Minimum pulse width of 50 ns has to be assured for proper operation. When synchronized the PWM frequency is equal to the external clock reference. #### 6.3 Soft start The soft-start feature of the PM8800A allows the load voltage to ramp-up in a safe and controlled manner. This is achieved by a 10 $\mu A$ internal current source charging an external $C_{ss}$ capacitor connected to the SS pin, which progressively increases the duty cycle of the PWM pulse, since the reference of the error amplifier is clamped with this value. Duration of the start-up time and external capacitor are linked by the following relation: $$t_{ss}(ms) = 0.23 \cdot C_{ss}(nF)$$ SS voltage is actively kept at 2.3 V by the internal control circuitry, which manages also over-current and fault conditions. Figure 16. Typical soft start waveform Ch1 = 5Vout, Ch2 = soft start, Ch4 = I input