Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs. With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas. We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry! # Contact us Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China Wireless Infrastructure #### Edition 2003-12-04 Published by Infineon Technologies AG, St.-Martin-Strasse 53, 81669 München, Germany © Infineon Technologies AG 2003. All Rights Reserved. #### Attention please! The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. #### Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com). #### **Warnings** Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. | Prescaler | Circuit 2.1 GHz | | | |------------|-------------------------|---|-------------| | Revision I | listory: 2003- | 12-04 | Version 1.2 | | Previous V | ersion: none | | | | Page | Subjects (major | changes since last revision) | | | All | Updated Format | We Lister | to Your Comments | | | | Your feed | back will help us to co | ment that you feel is wrong, unclear or
intinuously improve the quality of this d
uding a reference to this document) to: | ocument. | mcdocu.comments@infineon.com ## **Table of Contents** | 1 | Overview 5 | |----|--------------------------| | 2 | Pin Assignment | | 3 | Block Diagram | | 4 | Absolute Maximum Ratings | | 5 | Operating Range | | 6 | AC/DC Characteristics | | 7 | Test Circuit | | 8 | Application Circuit | | 9 | Diagrams | | 10 | Package Outlines | Overview ### 1 Overview – Prescalar Circuit 2.1 GHz ### 1.1 Functional Description/ Application The IC is designed for use in mobile radio communication devices up to 2100 MHz and upconversion systems up 2500 MHz. Due to low power consumption and low phase noise generation, the PMB2314T is suitable for use in battery powered handheld systems, e.g. GSM, cordless telephones and cordless consumer products, as well as in basestations. Low supply voltage down to 2.7V. It can be switched to a low-power standby mode. Internal current source at the emitter follower output. No external resistor needed in typical applications. The divide ratio is 1:64/65 or 1:128/129 depending on the external circuit configuration. ### 1.2 Circuit Description The differential inputs of the IC may be connected either balanced or single ended. In the latter case the unused input must be RF-grounded with a capacitor (about 10 pF) with a low serial inductance. Depending on the logic level at SW input the basic divide ratio of the ECL-stages is fixed to 1:64/65 or 1:128/129. The MOD input determines whether modulus 1:n or 1:n+1 (n=64 or 128 according to SW-level) is active. The IC can be switched to a low-power standby mode (input STB). The MOD input is TTL/CMOS compatible. The emitter follower output is CMOS compatible according to the application circuit on page 12. The minimum logic swing is $0.8\ V_{pp}$. Table 1 Function Table | Input pin | Logic level | Prescaler function | |-----------|--|---------------------------------| | SW | $HIGH = U_S-0.1 \text{ V to } U_S$
LOW = GND to 0.8 V or open | 1:64/65
1:128/129 | | MOD | HIGH = 2.0 V to U _S or open
LOW = GND to 0.8 V | 1:64/1:128
1:65/1:129 | | STB | $HIGH = U_S-0.1 \text{ V to } U_S$
LOW = GND to 0.8 V | Divider
Q=HIGH, STANDBY-mode | Data Sheet 5 Version 1.2, 2003-12-04 **Pin Assignment** ## 2 Pin Assignment **Block Diagram** # 3 Block Diagram **Absolute Maximum Ratings** ## 4 Absolute Maximum Ratings $T_{\rm A}$ = -40 to 85 °C | Parameter | Symbol | Limit Values | | Unit | Remarks | |--------------------------------------|--|--------------|---|------|-------------------------| | | | min. | max. | | | | Supply voltage | $U_{\mathtt{s}}$ | -0.3 | 6 | V | | | Input level
(Pin 1; Pin 8) | $U_{\scriptscriptstyle 1}$ | | 2 | V | $U_{\rm s}$ =0V | | Voltage swing
(Pin 1 to 8) | $U_{\scriptscriptstyle I18}$ | -2 | 2 | V | | | Input level
(Pin 3; Pin 6; Pin 7) | $U_{ m SW,} \ U_{ m MOD,} \ U_{ m STB,}$ | -0.3 | $U_{\rm s}$ +0.7V or 5.5V if $U_{\rm s}$ +0.7V > 5.5V | V | U _s =2.75.5V | | Output level
(Pin 4) | U_{Q} | | $U_{\mathtt{S}}$ | V | | | Output current
(Pin 4) | -I _Q | | 5 | mA | | | Junction temperature | $T_{\rm j}$ | | 125 | °C | | | Storage temperature | $T_{\mathtt{S}}$ | -65 | 125 | °C | | | Thermal resistance system-ambient | R_{thsa} | | 185 | K/W | | The maximum ratings may not be exceeded under any circumstances, not even momentarily and individually, as permanent damage to the IC will result. ### ESD-integrity (according MIL-STD 883D, Meth. 3015.7): 500V ## 5 Operating Range | Parameter | Symbol | Li | mit Values | Unit | Remarks | |---------------------|---------|------|------------|------|---------| | | | min. | max. | | | | Supply Voltage | U_{S} | 2.7 | 5.5 | V | | | Input frequency | f | 100 | 2300 | MHz | | | Ambient temperature | T_{A} | -40 | 85 | °C | | Within the operational range the IC operates as described in the circuit description. The AC / DC characteristic limits are not guaranteed. **AC/DC Characteristics** ## 6 AC/DC Characteristics Supply voltage $V_{\rm s}$ =2.7 to 5.5V Ambient temperature $T_{\rm A}$ = -20 to 85 °C (refered to the test circuit) | Parameter | Symbol | Limit Values | | Unit | Test Condition | | |-------------------------------|--------------------|-----------------------|------|---------|----------------|---| | | | min. | typ. | max. | | | | | | | | | | | | Supply Current | | | | | | | | Supply current | I_{S} | | 2.7 | 3.3 | mA | inputs RF-grounded, | | normal operation | | | | | | $U_{\rm S}$ =2.7, $T_{\rm A}$ = 25 °C,
STB= $V_{\rm S}$ output open | | | $I_{\mathbb{S}}$ | | 2.8 | 3.4 | mA | inputs RF-grounded,
$U_{\rm S}$ =4.0, $T_{\rm A}$ = 25 °C,
STB= $V_{\rm S}$ output open | | | $I_{\mathbb{S}}$ | | 2.9 | 3.5 | mA | inputs RF-grounded,
$V_{\rm S}$ =5.5, $T_{\rm A}$ = 25 °C,
STB= $V_{\rm S}$ output open | | Supply current standby-mode | I_{STB} | | | 0.1 | mA | inputs RF-grounded,
output open, STB = GND | | RF Input I1,I2 | | | | | | | | Input level | P_{in} | -20 | | 4 | dBm | 100-1500MHz (sine wave) | | dynamic range | P_{in} | -20 | | -3 | dBm | 2100 MHz (diagram 2) | | Output Q | | | • | | | | | Output logic swing | U_{Q} | 1 | 1.1 | | VPP | $C_{\rm L} <= 12 {\rm pF}, R_{\rm L} = 2 {\rm k}\Omega$ | | | U_{Q} | 0.8 | 1.1 | | VPP | C _L <= 8pF | | Internal current source | 1 | | 400 | | μΑ | see block diagram | | Divider Ratio Control Inp | out SW | | | | | | | age high | V_{SWH} | V _S -0.1 | | V_{S} | V | | | Voltage low | V_{SWL} | GND | | 0.8 | V | | | Input current high | I_{SWH} | | | 60 | μΑ | $SW=V_S$ | | Input current low | -I _{SWL} | | | 30 | μΑ | SW=GND | | Modulus Control Input M | | | | | | | | Voltage high | V_{MODH} | 2.3 | | V_{S} | V | | | Voltage low | V_{MODL} | GND | | 0.8 | V | | | Input current high | I_{MODH} | | | 50 | μΑ | $MOD=V_S$ | | Input current low | -I _{MODL} | | | 120 | μА | MOD=GND | | Standby Mode Control Ir | | | • | | | | | Voltage high | V_{STBH} | U_{S} -0.1 | | V_{S} | V | | | Voltage low | V_{STBL} | GND | | 0.8 | V | | | Input current high | I_{STBH} | | | 30 | μА | $STB=V_S$ | | Input current low | -I _{STBL} | | | 60 | μΑ | STB=GND | | Delay times | - | - | - | - | - | 1 | | MOD setup time
(diagram 1) | t_{set} | | 8 | 14 | ns | | AC /DC characteristics involve the spread of values guaranteed within the specified suply voltage and ambient temperature range. Typical characteristics are the median of the production. Data Sheet 9 Version 1.2, 2003-12-04 **Test Circuit** ## 7 Test Circuit **Application Circuit** # 8 Application Circuit **Diagrams** ## 9 Diagrams **Package Outlines** # 10 Package Outlines Plastic Package, P-DSO-8, Dual-in-Line-Package, 20 A 8 DIN 41870 T16 (SMD) www.infineon.com Published by Infineon Technologies AG