

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

PMD5001K

MOSFET driver
Rev. 01 — 3 November 2006

Product data sheet

Product profile

1.1 General description

PNP transistor and high-speed switching diode to protect the base-emitter junction in reverse direction in a SOT346 (SC-59A/TO-236) small Surface-Mounted Device (SMD) plastic package.

1.2 Features

- General-purpose transistor and high-speed switching diode as driver
- High-speed switching diode to protect the base-emitter junction
- Application-optimized pinout
- Internal connections to minimize layout effort
- Space-saving solution
- Reduces component count

1.3 Applications

Power MOSFET driver

1.4 Quick reference data

Table 1. Quick reference data

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
PNP transi	istor					
V_{CEO}	collector-emitter voltage	open base	-	-	-40	V
Ic	collector current		-	-	-0.1	Α
I _{CM}	peak collector current	single pulse; $t_p \le 1 \text{ ms}$	-	-	-0.2	Α
Diode						
I _F	forward current		-	-	0.2	Α
V _F	forward voltage	$I_F = 200 \text{ mA}$	[1] -	-	1.1	V

^[1] Pulse test: $t_p \le 300 \ \mu s; \ \delta \le 0.02.$

2. Pinning information

Table 2. Pinning

Table 2.	Filling		
Pin	Description	Simplified outline	Symbol
1	base TR1, anode D1		
2	emitter TR1, cathode D1	3	3
3	collector TR1	1 2	1 2 006aaa656

3. Ordering information

Table 3. Ordering information

Type number	Package	Package				
	Name	Description	Version			
PMD5001K	SC-59A	plastic surface-mounted package; 3 leads	SOT346			

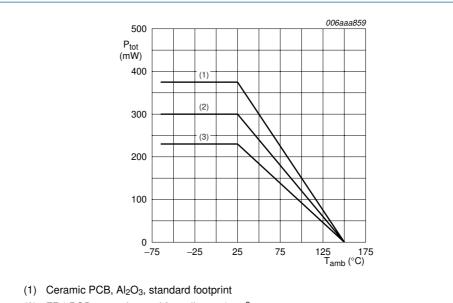
4. Marking

Table 4. Marking codes

Type number	Marking code
PMD5001K	D4

5. Limiting values

Table 5. Limiting values


In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
PNP trans	istor				
V_{CBO}	collector-base voltage	open emitter	-	-40	V
V_{CEO}	collector-emitter voltage	open base	-	-40	V
I _C	collector current		-	-0.1	Α
I _{CM}	peak collector current	single pulse; $t_p \le 1 \text{ ms}$	-	-0.2	Α
I _B	base current		-	-0.1	Α
I_{BM}	peak base current	single pulse; $t_p \le 1 \text{ ms}$	-	-0.2	Α
P _{tot}	total power dissipation	T _{amb} ≤ 25 °C	[1] -	230	mW
		-	[2] _	300	mW
			[3] _	375	mW
Diode					
l _F	forward current		-	0.2	Α
I _{FRM}	repetitive peak forward current	$t_p \leq 1 \text{ ms; } \delta = 0.25$	-	0.6	Α
I _{FSM}	non-repetitive peak forward	square wave			
	current	$t_p \le 1 \mu s$	-	9	Α
		$t_p \le 100 \; \mu s$	-	3	Α
		$t_p \le 10 \text{ ms}$	-	1.7	Α
Device					
T _j	junction temperature		-	150	°C
T _{amb}	ambient temperature		-65	+150	°C
T_{stg}	storage temperature		-65	+150	°C

^[1] Device mounted on an FR4 Printed-Circuit Board (PCB), single-sided copper, tin-plated and standard footprint

^[2] Device mounted on an FR4 PCB, single-sided copper, tin-plated, mounting pad for collector 1 cm².

^[3] Device mounted on a ceramic PCB, Al₂O₃, standard footprint.

- (2) FR4 PCB, mounting pad for collector 1 cm²
- (3) FR4 PCB, standard footprint

Fig 1. Power derating curves

6. Thermal characteristics

Table 6. Thermal characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
PNP trans	istor					
ui(j a)	thermal resistance from	in free air	<u>[1]</u> _	-	540	K/W
	junction to ambient		[2] _	-	415	K/W
			[3] _	-	330	K/W

- [1] Device mounted on an FR4 PCB, single-sided copper, tin-plated and standard footprint.
- [2] Device mounted on an FR4 PCB, single-sided copper, tin-plated, mounting pad for collector 1 cm².
- [3] Device mounted on a ceramic PCB, Al₂O₃, standard footprint.

5 of 15

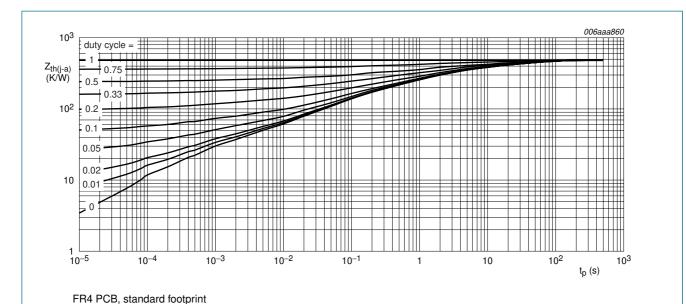


Fig 2. Transient thermal impedance from junction to ambient as a function of pulse duration; typical values

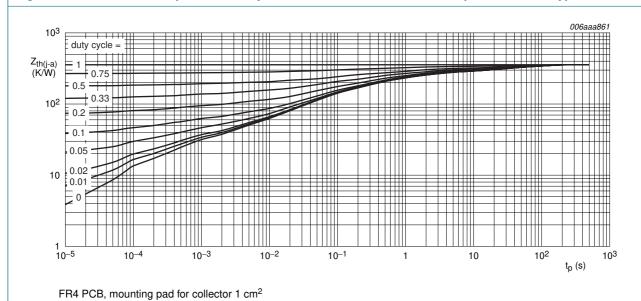
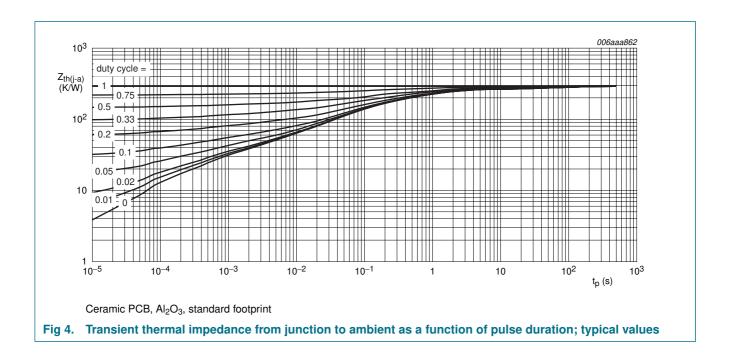
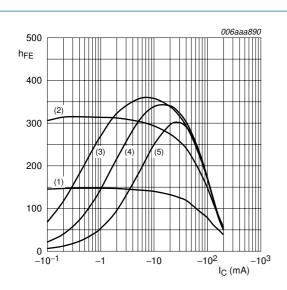



Fig 3. Transient thermal impedance from junction to ambient as a function of pulse duration; typical values



7. Characteristics

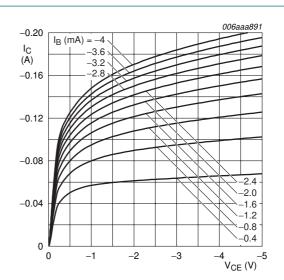
Table 7 Characteristics

Symbol Parameter Conditions Min Typ Max Unit PNE transmission 1CBO collector-base cut-off current VCB = -40 V; IE = 0 A - - -15 nA MFE DC current gain VCB = -5 V; IC = -1 mA 200 290 450 - VCE = -5 V; IC = -100 mA 95 150 - - VCESAL Collector-emitter saturation voltage IC = -100 mA; IB = -0.5 mA - -90 -250 mV VESAL Dase-emitter saturation voltage IC = -100 mA; IB = -0.5 mA - -0.07 - W VBESAL Dase-emitter voltage IC = -100 mA; IB = -0.5 mA - -0.07 - W VBESAL Dase-emitter voltage VCE = -5 V; IC = -2 mA - - - - W VBESAL Dase-emitter voltage IF = 200 mA 1 - - - - - - - - - - - - - - <	Table 7.	Characteristics					
$ \begin{array}{ c c c c } \hline l_{CBO} & collector-base cut-off current \\ \hline current \\ current \\ \hline current \\ current \\ \hline current \\ current \\ \hline current \\$	Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$ \begin{array}{ c c c c } \hline & current & V_{CB} = -40 \ V; \ E = 0 \ A; \\ \hline T_j = 150 \ {}^{\circ}C \\ \hline \\ N_{EB} & DC \ current gain & V_{CE} = -5 \ V; \ C = -1 \ mA & 200 & 290 & 450 \\ \hline & V_{CE} = -5 \ V; \ C = -100 \ mA & 95 & 150 & - \\ \hline & V_{CE} = -5 \ V; \ C = -200 \ mA & 95 & 150 & - \\ \hline & V_{CE} = -5 \ V; \ C = -200 \ mA & 24 & 55 & - \\ \hline & V_{CE} = -5 \ V; \ C = -200 \ mA & 24 & 55 & - \\ \hline & V_{CE} = -5 \ V; \ C = -200 \ mA & 24 & 55 & - \\ \hline & V_{CE} = -5 \ V; \ C = -200 \ mA & - 90 & -250 \ mV \\ \hline & I_{C} = -100 \ mA; \ I_{B} = -0.5 \ mA & - 90 & -250 \ mV \\ \hline & I_{C} = -100 \ mA; \ I_{B} = -0.5 \ mA & - 200 & -400 \ mV \\ \hline & V_{ES} & base-emitter saturation voltage & I_{C} = -100 \ mA; \ I_{B} = -0.5 \ mA & - 0.7 & - V \\ \hline & I_{C} = -100 \ mA; \ I_{B} = -0.5 \ mA & - 0.7 & - V \\ \hline & I_{C} = -100 \ mA; \ I_{B} = -0.5 \ mA & - 0.7 & - V \\ \hline & I_{C} = -100 \ mA; \ I_{B} = -0.5 \ mA & - 0.85 & - V \\ \hline & I_{C} = -200 \ mA; \ I_{B} = -0.5 \ mA & - 0.85 & - V \\ \hline & I_{C} = -200 \ mA; \ I_{B} = -0.5 \ mA & - 0.85 & - V \\ \hline & V_{E} & base-emitter voltage & V_{CE} = -5 \ V; \ I_{C} = -2 \ mA & - 0.85 & - V \\ \hline & Diode & V_{CE} = -5 \ V; \ I_{C} = -2 \ mA & - 0.85 & - V \\ \hline & Diode & V_{CE} = -5 \ V; \ I_{C} = -2 \ mA & - 0.85 & - M \\ \hline & V_{F} & forward voltage & I_{F} = 200 \ mA & II & - 0.85 & - M \\ \hline & V_{F} & forward voltage & I_{F} = 200 \ mA & II & - 0.85 & - M \\ \hline & V_{F} & rise time & I_{C} = -0.05 \ A; \ I_{B} = -2.5 \ mA & - 0.85 & - M \\ \hline & I_{C} = -0.05 \ A; \ I_{B} = -2.5 \ mA & - 0.85 & - M \\ \hline & I_{C} = -0.05 \ A; \ I_{B} = -2.5 \ mA; & - 0.85 & - M \\ \hline & I_{C} = -0.05 \ A; \ I_{B} = -2.5 \ mA; & - 0.85 & - M \\ \hline & I_{C} = -0.05 \ A; \ I_{B} = -2.5 \ mA; & - 0.85 & - M \\ \hline & I_{C} = -0.05 \ A; \ I_{B} = -2.5 \ mA; & - 0.85 & - M \\ \hline & I_{C} = -0.05 \ A; \ I_{B} = -2.5 \ mA; & - 0.85 & - M \\ \hline & I_{C} = -0.05 \ A; \ I_{B} = -2.5 \ mA; & - 0.85 & - M \\ \hline & I_{C} = -0.05 \ A; \ I_{B} = -2.5 \ mA; & - 0.85 & - M \\ \hline & I_{C} = -0.05 \ A; \ I_{C} = -0.05 \ A;$	PNP tran	sistor					
$N_{EB} = N_{EB} = N$	I_{CBO}		$V_{CB} = -40 \text{ V}; I_E = 0 \text{ A}$	-	-	-15	nA
$ V_{CE} = -5 \ V; \ I_{C} = -100 \ mA \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		current		-	-	- 5	μΑ
$V_{CEsat} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	h _{FE}	DC current gain	$V_{CE} = -5 \text{ V}; I_C = -1 \text{ mA}$	200	290	450	
$ \begin{array}{c} V_{CEsat} \\ value & collector-emitter \\ value & saturation voltage \\ \hline \\ V_{CEsat} \\ voltage \\ \hline \\ V_{BEsat} \\ voltage \\ \hline \\ V_{BE} \\ \hline \\ V_$			$V_{CE} = -5 \text{ V}; I_{C} = -100 \text{ mA}$	95	150	-	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			$V_{CE} = -5 \text{ V}; I_{C} = -200 \text{ mA}$	24	55	-	
$V_{BESAT} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	V_{CEsat}		$I_C = -10 \text{ mA}; I_B = -0.5 \text{ mA}$	-	-90	-250	mV
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		saturation voltage	$I_C = -100 \text{ mA}; I_B = -5 \text{ mA}$	-	-200	-400	mV
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$I_C = -200 \text{ mA}; I_B = -20 \text{ mA}$	-	-350	-500	mV
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V _{BEsat}		$I_C = -10 \text{ mA}; I_B = -0.5 \text{ mA}$	-	-0.7	-	V
$\begin{array}{ c c c c c c }\hline V_{BE} & base-emitter voltage & V_{CE} = -5 \ V; \ I_{C} = -2 \ mA & - & -650 & - & mV\\ \hline \textbf{Diode} & & & & & & & & & & & & & & & & & & &$	voltage	voltage	$I_C = -100 \text{ mA}; I_B = -5 \text{ mA}$	-	-0.85	-	V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$I_C = -200 \text{ mA}; I_B = -20 \text{ mA}$	-	-1	-1.2	V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V_{BE}	base-emitter voltage	$V_{CE} = -5 \text{ V}; I_{C} = -2 \text{ mA}$	-	-650	-	mV
	Diode						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V _F	forward voltage	I _F = 200 mA	<u>[1]</u> -	-	1.1	V
	Device						
	t _d	delay time	$I_C = -0.05 \text{ A}; I_B = -2.5 \text{ mA}$	-	8	-	ns
$t_s \text{storage time} \begin{array}{c ccccccccccccccccccccccccccccccccccc$	t _r	rise time		-	56	-	ns
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	t _{on}	turn-on time		-	64	-	ns
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ts	storage time		-	588	-	ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	t _f	fall time		-	216	-	ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	t _{off}	turn-off time		-	804	-	ns
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Device w	rith optional capacitor C1					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	t _d	delay time		-	4	-	ns
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	t _r	rise time	C1 = 1 nF	-	6	-	ns
t _f fall time - 57 - ns	t _{on}	turn-on time		-	10	-	ns
<u> </u>	ts	storage time		-	108	-	ns
t _{off} turn-off time - 165 - ns	t _f	fall time		-	57	-	ns
	t _{off}	turn-off time		-	165	-	ns

^[1] Pulse test: $t_p \le 300 \ \mu s; \ \delta \le 0.02.$

$$V_{CE} = -5 \text{ V}$$

(1)
$$T_{amb} = -55 \,^{\circ}C$$


(2)
$$T_{amb} = 25 \, ^{\circ}C$$

(3)
$$T_{amb} = 100 \, ^{\circ}C$$

(4)
$$T_{amb} = 125 \, ^{\circ}C$$

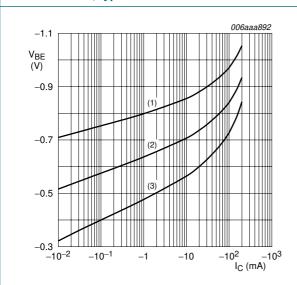
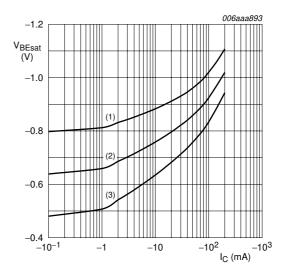

(5)
$$T_{amb} = 150 \, ^{\circ}C$$

Fig 5. DC current gain as a function of collector current; typical values

T_{amb} = 25 °C

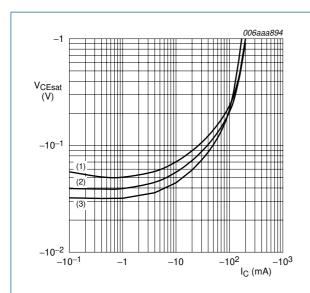

 $V_{CE} = -5 \text{ V}$

(1)
$$T_{amb} = -55 \, ^{\circ}C$$

(2)
$$T_{amb} = 25 \, ^{\circ}C$$

(3)
$$T_{amb} = 100 \, ^{\circ}C$$

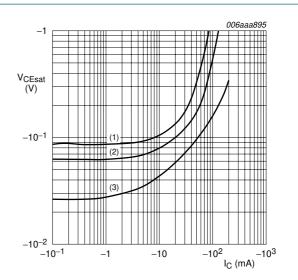
Fig 7. Base-emitter voltage as a function of collector current; typical values


$$I_C/I_B = 20$$

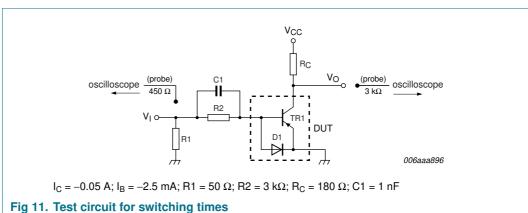
(1)
$$T_{amb} = -55 \, ^{\circ}C$$

(2)
$$T_{amb} = 25 \, ^{\circ}C$$

(3)
$$T_{amb} = 100 \, ^{\circ}C$$


Fig 8. Base-emitter saturation voltage as a function of collector current; typical values

- (1) $T_{amb} = 100 \, ^{\circ}C$
- (2) $T_{amb} = 25 \, ^{\circ}C$
- (3) $T_{amb} = -55 \, ^{\circ}C$


Fig 9. Collector-emitter saturation voltage as a function of collector current; typical values

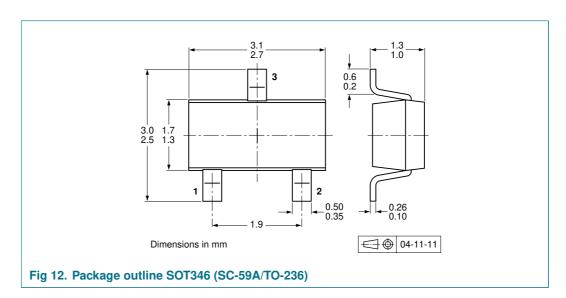
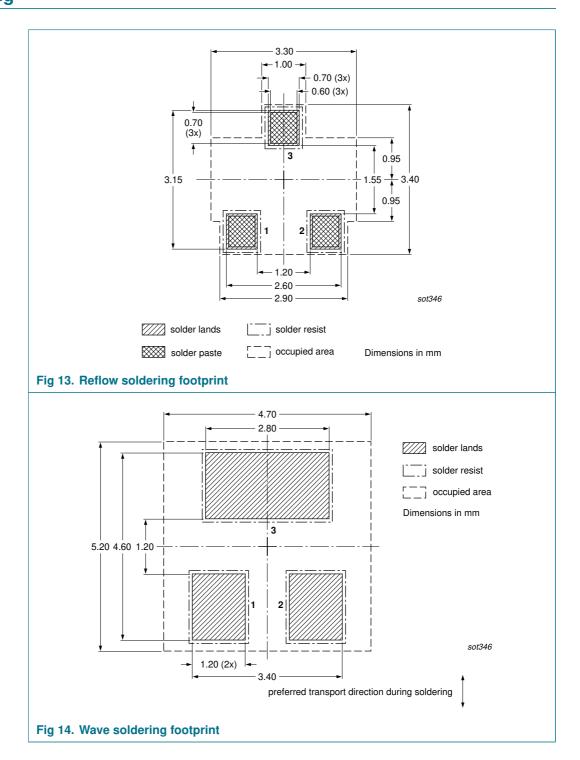

- (1) $I_C/I_B = 100$
- (2) $I_C/I_B = 50$
- (3) $I_C/I_B = 10$

Fig 10. Collector-emitter saturation voltage as a function of collector current; typical values

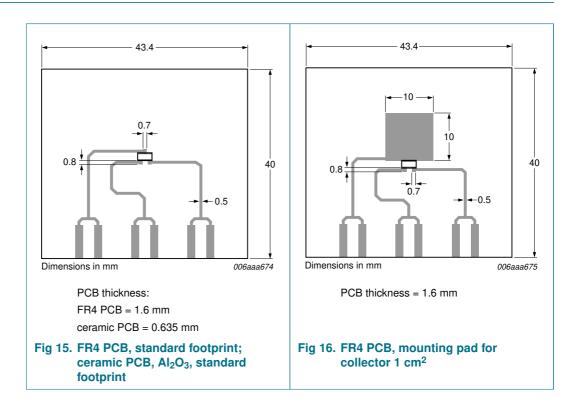
Test information 8.

9. Package outline

10. Packing information


Table 8. Packing methods

The indicated -xxx are the last three digits of the 12NC ordering code.[1]


Type number	Package	Description	Packing qu	uantity
			3000	10000
PMD5001K	SOT346	4 mm pitch, 8 mm tape and reel	-115	-135

[1] For further information and the availability of packing methods, see Section 15.

11. Soldering

12. Mounting

13. Revision history

Table 9. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
PMD5001K_1	20061103	Product data sheet	-	-

14. Legal information

14.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

14.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

14.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or

malfunction of a NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

14.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

15. Contact information

For additional information, please visit: http://www.nxp.com

For sales office addresses, send an email to: salesaddresses@nxp.com

16. Contents

1	Product profile
1.1	General description
1.2	Features
1.3	Applications
1.4	Quick reference data
2	Pinning information 2
3	Ordering information 2
4	Marking 2
5	Limiting values 3
6	Thermal characteristics 4
7	Characteristics 7
8	Test information
9	Package outline 10
10	Packing information 10
11	Soldering 11
12	Mounting 12
13	Revision history
14	Legal information14
14.1	Data sheet status
14.2	Definitions
14.3	Disclaimers
14.4	Trademarks14
15	Contact information14
16	Contents 15

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

