

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of http://www.nxp.com, http://www.nxp.com, http://www.nexperia.com, http://www.nexperia.com)

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use salesaddresses@nexperia.com (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

1 A very low V_F MEGA Schottky barrier rectifiers Rev. 02 — 22 March 2007 Pro

Product data sheet

Product profile

1.1 General description

Planar Maximum Efficiency General Application (MEGA) Schottky barrier rectifiers with an integrated guard ring for stress protection, encapsulated in small and flat lead Surface-Mounted Device (SMD) plastic packages.

Table 1. **Product overview**

Type number	Package		Configuration	
	NXP	JEITA		
PMEG3010CEH	SOD123F	-	single	
PMEG3010CEJ	SOD323F	SC-90	single	

1.2 Features

Forward current: I_F ≤ 1 A

Reverse voltage: V_R ≤ 30 V

Very low forward voltage

Small and flat lead SMD plastic packages

1.3 Applications

- Low voltage rectification
- High efficiency DC-to-DC conversion
- Switch mode power supply
- Reverse polarity protection
- Low power consumption applications

1.4 Quick reference data

Table 2. Quick reference data

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I_{F}	forward current	$T_{sp} \le 55 ^{\circ}C$	-	-	1	Α
V _R	reverse voltage		-	-	30	V
V_{F}	forward voltage	$I_F = 1 A$	<u>[1]</u> _	450	520	mV

^[1] Pulse test: $t_p \le 300 \ \mu s$; $\delta \le 0.02$.

1 A very low V_F MEGA Schottky barrier rectifiers

2. Pinning information

Table 3. Pinning

	3	
Pin	Description	Simplified outline Symbol
1	cathode	[1]
2	anode	1 1 2 2 sym001

^[1] The marking bar indicates the cathode.

3. Ordering information

Table 4. Ordering information

Type number	Package	Package				
	Name	Description	Version			
PMEG3010CEH	-	plastic surface-mounted package; 2 leads	SOD123F			
PMEG3010CEJ	SC-90	plastic surface-mounted package; 2 leads	SOD323F			

4. Marking

Table 5. Marking codes

Type number	Marking code
PMEG3010CEH	C8
PMEG3010CEJ	EN

1 A very low V_F MEGA Schottky barrier rectifiers

5. Limiting values

Table 6. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

		Min	Max	Unit
reverse voltage		-	30	V
forward current	T _{sp} ≤ 55 °C	-	1	Α
repetitive peak forward current	$\begin{array}{l} t_p \leq 1 \text{ ms;} \\ \delta \leq 0.25 \end{array}$	-	7	Α
non-repetitive peak forward current	square wave; t _p = 8 ms			
PMEG3010CEH		-	9	Α
PMEG3010CEJ		-	10	Α
total power dissipation	T _{amb} ≤ 25 °C			
PMEG3010CEH		<u>[1]</u> -	375	mW
		[2] _	830	mW
PMEG3010CEJ		<u>[1]</u> -	350	mW
		[2] _	830	mW
junction temperature		-	150	°C
ambient temperature		-65	+150	°C
storage temperature		-65	+150	°C
j	forward current repetitive peak forward current non-repetitive peak forward current PMEG3010CEH PMEG3010CEJ total power dissipation PMEG3010CEH PMEG3010CEH	forward current $T_{sp} \le 55 ^{\circ}\text{C}$ repetitive peak forward current $t_p \le 1 \text{ms};$ $\delta \le 0.25$ non-repetitive peak forward square wave; current $t_p = 8 \text{ms}$ PMEG3010CEH PMEG3010CEJ total power dissipation $T_{amb} \le 25 ^{\circ}\text{C}$ PMEG3010CEH PMEG3010CEJ	forward current $T_{sp} \le 55 ^{\circ}\text{C}$ - repetitive peak forward current $t_p \le 1 \text{ms};$ $\delta \le 0.25$ non-repetitive peak forward square wave; $t_p = 8 \text{ms}$ PMEG3010CEH - PMEG3010CEJ - total power dissipation $T_{amb} \le 25 ^{\circ}\text{C}$ PMEG3010CEH $\frac{[1]}{2} = \frac{1}{2} = \frac{1}{$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$

^[1] Device mounted on an FR4 Printed-Circuit Board (PCB), single-sided copper, tin-plated and standard footprint.

6. Thermal characteristics

Table 7. Thermal characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$R_{th(j-a)}$	thermal resistance from junction to ambient	in free air	[1]			
	PMEG3010CEH		[2] _	-	330	K/W
			[3] _	-	150	K/W
	PMEG3010CEJ		[2] _	-	350	K/W
			[3] _	-	150	K/W
$R_{th(j\text{-sp})}$	thermal resistance from junction to solder point		<u>[4]</u>			
	PMEG3010CEH		-	-	60	K/W
	PMEG3010CEJ		-	-	55	K/W

^[1] For Schottky barrier diodes thermal runaway has to be considered, as in some applications the reverse power losses P_B are a significant part of the total power losses.

^[2] Device mounted on an FR4 PCB, single-sided copper, tin-plated, mounting pad for cathode 1 cm².

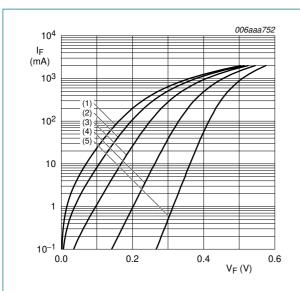
^[2] Device mounted on an FR4 PCB, single-sided copper, tin-plated and standard footprint.

^[3] Device mounted on an FR4 PCB, single-sided copper, tin-plated, mounting pad for cathode 1 cm².

^[4] Soldering point of cathode tab.

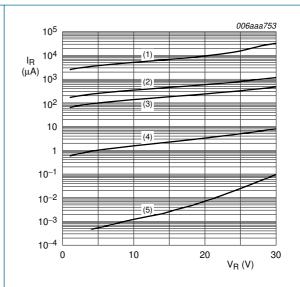
1 A very low V_F MEGA Schottky barrier rectifiers

7. Characteristics


Table 8. Characteristics

T_{amb} = 25 °C unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{F}	forward voltage		[1]			
		$I_F = 1 \text{ mA}$	-	200	240	mV
		I _F = 10 mA	-	260	310	mV
	I _F = 100 mA	-	330	390	mV	
		$I_F = 500 \text{ mA}$	-	400	440	mV
		$I_F = 700 \text{ mA}$	-	420	450	mV
		I _F = 1 A	-	450	520	mV
I _R	reverse current	$V_R = 5 V$	-	1.2	-	μΑ
		V _R = 10 V	-	1.8	-	μΑ
		$V_R = 30 V$	-	10	50	μΑ
C _d	diode capacitance	$V_R = 1 V; f = 1 MHz$	-	90	100	pF


^[1] Pulse test: $t_p \le 300~\mu s;~\delta \le 0.02.$

1 A very low V_F MEGA Schottky barrier rectifiers

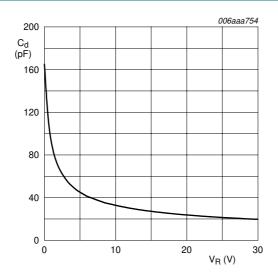
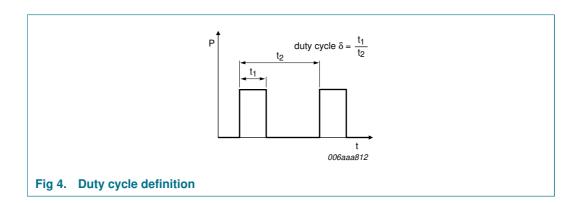

- (1) $T_{amb} = 150 \, ^{\circ}C$
- (2) $T_{amb} = 125 \, ^{\circ}C$
- (3) $T_{amb} = 85 \, ^{\circ}C$
- (4) $T_{amb} = 25 \, ^{\circ}C$
- (5) $T_{amb} = -40 \, ^{\circ}C$

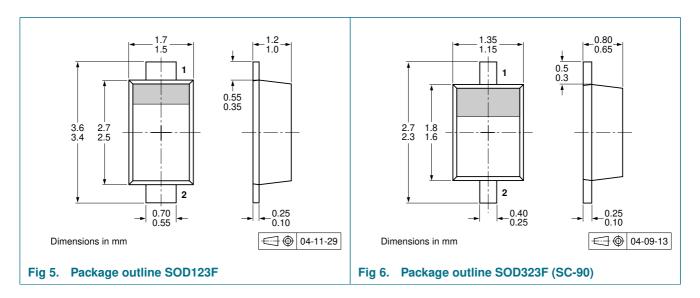
Fig 1. Forward current as a function of forward voltage; typical values

- (1) $T_{amb} = 150 \, ^{\circ}C$
- (2) $T_{amb} = 125 \, ^{\circ}C$
- (3) $T_{amb} = 85 \, ^{\circ}C$
- (4) $T_{amb} = 25 \, ^{\circ}C$
- (5) $T_{amb} = -40 \, ^{\circ}C$

Fig 2. Reverse current as a function of reverse voltage; typical values



 $f = 1 \text{ MHz}; T_{amb} = 25 \,^{\circ}\text{C}$


Fig 3. Diode capacitance as a function of reverse voltage; typical values

1 A very low V_F MEGA Schottky barrier rectifiers

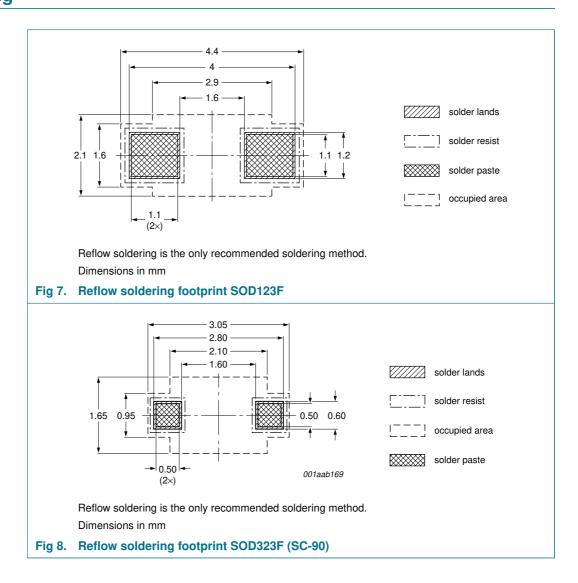
8. Test information

9. Package outline

10. Packing information

Table 9. Packing methods

The indicated -xxx are the last three digits of the 12NC ordering code.[1]


Type number	Package	Description	Packing quantity	
			3000	10000
PMEG3010CEH	SOD123F	4 mm pitch, 8 mm tape and reel	-115	-135
PMEG3010CEJ	SOD323F	_		

^[1] For further information and the availability of packing methods, see Section 14.

PMEG3010CEH_PMEG3010CEJ_2 © NXP B.V. 2007. All rights reserved.

1 A very low V_F MEGA Schottky barrier rectifiers

11. Soldering

1 A very low V_F MEGA Schottky barrier rectifiers

12. Revision history

Table 10. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes	
PMEG3010CEH_PMEG3010CEJ_2	20070322	Product data sheet	-	PMEG3010CEJ_1	
Modifications:	 The format of this data sheet has been redesigned to comply with the new identity guidelines of NXP Semiconductors. 				
	 Legal texts 	have been adapted to the	new company name	where appropriate.	
	 Type numb 	er PMEG3010CEH added			
	Section 1.1 "General description": amended				
	• Table 1 "Pro	oduct overview": added			
	• Table 7 "Th	ermal characteristics": Tab	le note 1 amended		
	• Table 8 "Ch	naracteristics": V _F forward	oltage maximum valu	ues amended	
	 Section 8 " 	Test information": added			
PMEG3010CEJ_1	20060411	Product data sheet	-	-	

1 A very low V_F MEGA Schottky barrier rectifiers

13. Legal information

13.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

13.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

13.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or

malfunction of a NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

13.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

14. Contact information

For additional information, please visit: http://www.nxp.com

For sales office addresses, send an email to: salesaddresses@nxp.com

PMEG3010CEH_PMEG3010CEJ_2 © NXP B.V. 2007. All rights reserved.

NXP Semiconductors

PMEG3010CEH; PMEG3010CEJ

1 A very low V_F MEGA Schottky barrier rectifiers

15. Contents

15	Contents	10
14	Contact information	. 9
13.4	Trademarks	. 9
13.3	Disclaimers	. 9
13.2	Definitions	. 9
13.1	Data sheet status	. 9
13	Legal information	. 9
12	Revision history	. 8
11	Soldering	. 7
10	Packing information	
9	Package outline	
8	Test information	
7	Characteristics	
6	Thermal characteristics	
5	Limiting values	
-	_	
3 4	Marking	
3	Ordering information	
2	Pinning information	
1.4	Quick reference data	
1.3	Applications	
1.2	Features	
1.1	General description	
1	Product profile	. 1

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2007.

All rights reserved.

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 22 March 2007

Document identifier: PMEG3010CEH_PMEG3010CEJ_2