

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Low-Noise Bottom Port Piezoelectric MEMS Microphone Evaluation Module

Data Sheet

PMM-3738-VM1000-EB-R

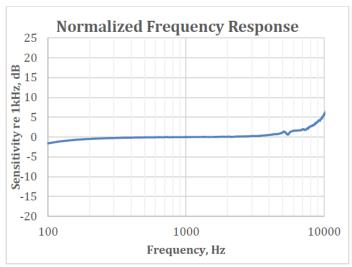
PUI Audio, featuring Vesper's exclusive technology, presents the world's first and only piezoelectric MEMS microphone. The PMM-3738-VM1000-EB-R provides users a simple way to evaluate the performance of the PMM-3738-VM1000-R.

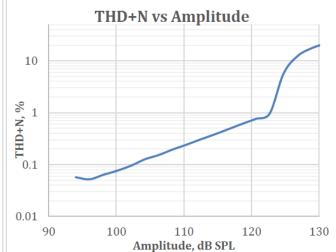
Features:

- Unique piezoelectric MEMS transducer
- · Very-low noise floor
- Low part-to-part variation
- High dynamic range
- Stable performance in all conditions
- Dust and water resistant to IP57
- Easy-to-use evaluation board

The PMM-3738-VM1000-R is a low noise, low part-to-part variation, high dynamic range, single ended analog output piezoelectric MEMS microphone. This microphone consists of a piezoelectric sensor and circuitry to buffer and amplify the output.

Specifications


All specifications are at 25°C, V_{Supply} = 1.8 V unless otherwise noted.


Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Acoustic Specifications						
Sensitivity		1 kHz, 94 dB SPL	-41	-38	-35	dBV
Signal-to-Noise Ratio	SNR	94 dB SPL at 1 kHz signal, 20Hz to 20kHz, A-weighted Noise		62		dB(A)
Signal-to-Noise Ratio Voice Band	SNR	94 dB SPL at 1 kHz signal, 20Hz to 8kHz, A-weighted Noise		64		dB(A)
Total Harmonic Distortion	THD	94 dB SPL		0.1		%
Acoustic Overload Point	АОР	10.0% THD		127		dBSPL
Roll Off Frequency		-3db at 1KHz		85		Hz
Directivity			Omni			
Polarity		Increase in sound pressure	Increase in output voltage			
Electrical Specifications						
Supply Voltage			1.6	1.8	3.6	V
Supply Current		$V_{\text{Supply}} \leq 3.6 \text{ V (TBR)}$		165		μА
Power Supply Rejection Ratio	PSRR	VDD = 1.8, 1kHz, 200mV _{PP} Sine wave		55		dB
Power Supply Rejection	PSR	VDD = 1.8, 217Hz, 100mV _{PP} square wave, 20 Hz – 20kHz, A-weighted		-85		dB(A)
Output Impedance	Zout			400		Ω
Output DC Offset				0.8		V
Startup Time				100		μS

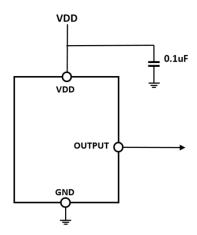
Absolute Maximum Ratings

Parameter	Rating	Units	
Supply Voltage	-0.3 to +3.6	V	
Sound Pressure Level	160	dB re 20 μPa	
Operating Temperature Range	-40 to +85	°C	
Storage Temperature Range	-55 to +150	°C	
Mechanical Shock	10,000g per IEC 60028-2-27:2008		
Vibration	Per MIL-STD 883E, 2007.2		

Typical Performance Characteristics

Environmental Robustness

IP adherence is evaluated by 1 kHz Sensitivity spec post stress


Ingress Protection Type	Description		
Dust Resistance	IP5X;		
Water Immersion	IPX7; 2 hours drying time, normal dry environment		

Reliability Specifications

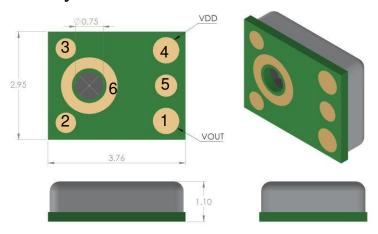
Stress Test	Description
Temperature Cycling Test	-40°C to +125°C, 850 cycles
High Temperature Operating Life	+125°C, 1000 hours, biased
High Temperature Storage	+125°C, 1000 hours, unbiased
Temperature Humidity Bias	+85°C, 85% RH, 1000 hours, biased
Reflow	3 reflow cycles with peak temperature of +260°C
ESD-HBM	3 discharges, all pins, ± 2kV
ESD-CDM	3 discharges, all pins, ± 800V
ESD-LID/GND	3 discharges to lid, ± 8kV
ESD-MM	3 discharges, all pins, ± 200V
ESD-Air Discharge	3 discharges, ± 15kV

Applications Information

Recommended drive circuit and external components.

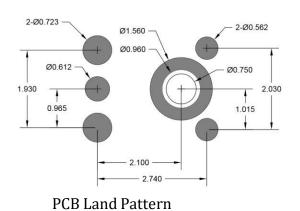
Evaluation Board Pin Layout and Edge Connector Information

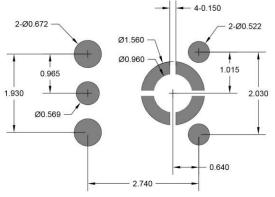
CW Industries CWR-170-10-0000 Edge Connector



Handling Instructions

The Piezo MEMS microphone is very robust to harsh environments such as dust and moisture. However, to avoid mechanical damage to the microphone, we recommend using appropriate handling procedures when manually handling the parts. The following guidelines will help to avoid damage:


- Do not apply a vacuum to the bottom side of the microphone. A vacuum pen may be used with care on the top side only.
- Do not apply very high air pressure over the sound port hole.
- Do not insert any large particles or objects in the sound port hole. The microphone is resistant to small particles per IP5X specification.
- Do not expose the sound port to harsh chemicals.


Dimensions and Pin Layout

Pin Number	Pin Name	Description
1	Vout	Analog Output Voltage
2	GND	Ground
3	GND	Ground
4	$V_{ m DD}$	Power Supply
5	GND	Ground
6	GND	Ground

PMM-3738-VM1000-R PCB Design and Land Pattern Layout

Solder Stencil Pattern

Specifications Revisions

Revision	Description	Date	
-	Released from Engineering	6/7/2017	
A	Revised AOM from 125 to 127 dB	12/7/2017	

Note

- 1. All dimensions are in millimeters.
- 2. Specifications subject to change or withdrawal without notice.
- 3. This part is RoHS 2011/65/EU Compliant.