imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

PN4917

FAIRCHILD SEMICONDUCTOR TM

PN4917

PNP General Purpose Amplifier

This device is designed for use as general purpose amplifiers and switches requiring collector currents to 100 mA. Sourced from Process 66. See 2N3906 for characteristics.

Absolute Maximum Ratings* TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V_{CEO}	Collector-Emitter Voltage	30	V
V _{CBO}	Collector-Base Voltage	30	V
V_{EBO}	Emitter-Base Voltage	5.0	V
I _C	Collector Current - Continuous	200	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

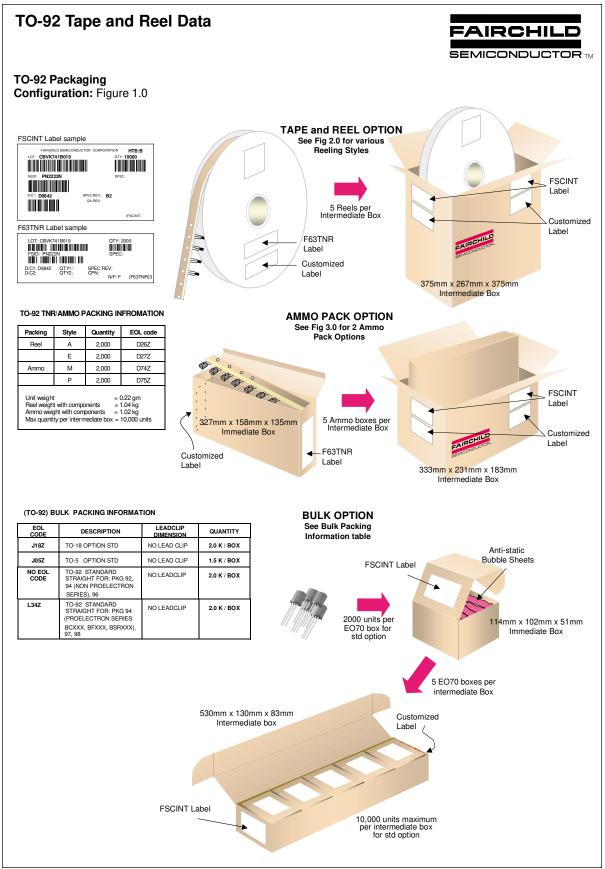
*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:

1) These ratings are based on a maximum junction temperature of 150 degrees C.
2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

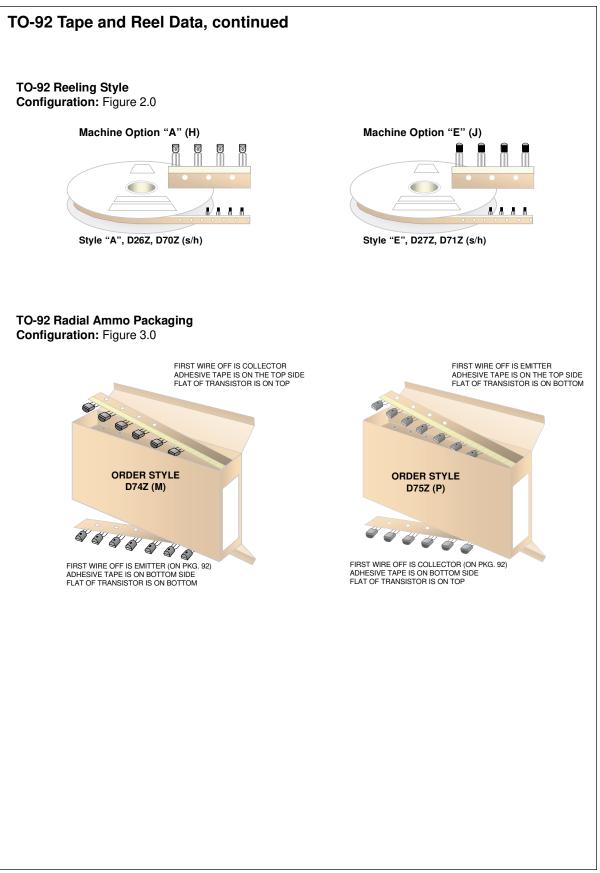
Thermal Characteristics

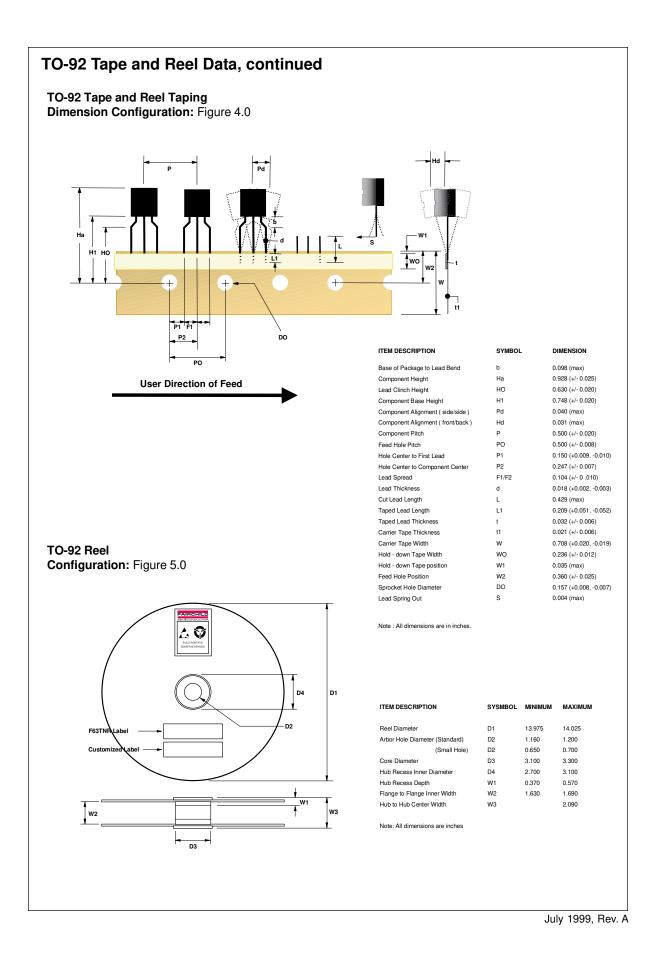
TA = 25°C unless otherwise noted

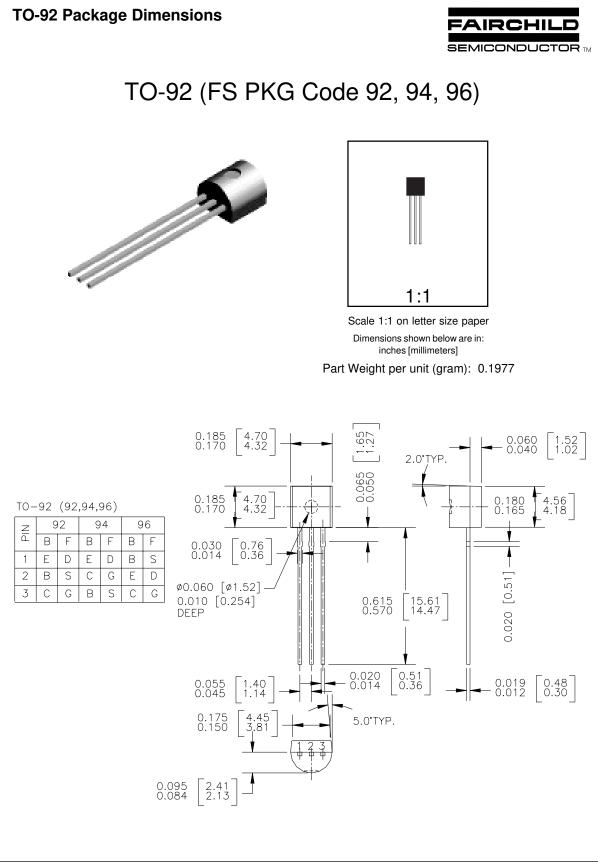

Symbol	Characteristic	Мах	Units
		PN4917	
PD	Total Device Dissipation Derate above 25°C	625 5.0	mW mW/°C
$R_{\theta JC}$	Thermal Resistance, Junction to Case	83.3	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	200	°C/W

PNP General Purpose Amplifier (continued)

Symbol	Parameter	Test Conditions	Min	Max	Units
OFF CHA	RACTERISTICS				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage*	$I_{\rm C} = 10 \text{ mA}, I_{\rm B} = 0$	30		V
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{\rm C} = 10 \ \mu {\rm A}, \ I_{\rm E} = 0$	30		V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_{E} = 10 \ \mu A, I_{C} = 0$	5.0		V
V _{(BR)CES}	Collector-Emitter Breakdown Voltage	I _C = 10 μA	30		V
I _B	Base Cutoff Current	V _{CE} = 15 V		25	nA
I _{CES}	Collector Cutoff Current	V _{CE} = 15 V		25	nA
		$V_{CE} = 15 \text{ V}, \text{T}_{A} = 65 ^{\circ}\text{C}$		25	μA
ON CHA	RACTERISTICS*		-	1	
h _{FE}	DC Current Gain	$V_{CE} = 1.0 \text{ V}, I_{C} = 100 \mu\text{A}$	100		
		$V_{CE} = 1.0 \text{ V}, I_C = 1.0 \text{ mA}$ $V_{CE} = 1.0 \text{ V}, I_C = 10 \text{ mA}$	150 150	300	
		$V_{CE} = 1.0 \text{ V}, \text{ I}_{C} = 10 \text{ mA}$ $V_{CE} = 1.0 \text{ V}, \text{ I}_{C} = 50 \text{ mA}$	30	300	
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_{\rm C} = 1.0 {\rm mA}, I_{\rm B} = 0.1 {\rm mA}$		0.13	V
()		$I_{\rm C} = 10 \text{ mA}, I_{\rm B} = 1.0 \text{ mA}$		0.14	V
	Base-Emitter Saturation Voltage	$I_{\rm C} = 50 \text{ mA}, I_{\rm B} = 5.0 \text{ mA}$ $I_{\rm C} = 1.0 \text{ mA}, I_{\rm B} = 0.1 \text{ mA}$	-	0.30	V V
V _{BE(sat)}	Dase-Emilier Saluralion vollage	$I_{\rm C} = 1.0 \text{mA}, I_{\rm B} = 0.1 \text{mA}$		0.75	
		$l_{c} = 10 \text{ mA}$, $l_{B} = 1.0 \text{ mA}$	0.70	0.90	-
		$I_{C} = 10 \text{ mA}, I_{B} = 1.0 \text{ mA}$ $I_{C} = 50 \text{ mA}, I_{B} = 5.0 \text{ mA}$	0.70 0.75	0.90 1.10	V V
		$I_{C} = 10 \text{ mA}, I_{B} = 1.0 \text{ mA}$ $I_{C} = 50 \text{ mA}, I_{B} = 5.0 \text{ mA}$			V
SMALL S	IGNAL CHARACTERISTICS	$I_{C} = 10 \text{ mA}, I_{B} = 1.0 \text{ mA}$ $I_{C} = 50 \text{ mA}, I_{B} = 5.0 \text{ mA}$			V
	IGNAL CHARACTERISTICS Output Capacitance	$I_{C} = 10 \text{ mA}, I_{B} = 1.0 \text{ mA}$ $I_{C} = 50 \text{ mA}, I_{B} = 5.0 \text{ mA}$ $V_{CB} = 10 \text{ V}, \text{ f} = 1.0 \text{ MHz}$			V
SMALL S C _{ob} C _{ib}		$I_{\rm C} = 50$ mA, $I_{\rm B} = 5.0$ mA		1.10	V V
C _{ob}	Output Capacitance	$I_{C} = 50 \text{ mA}, I_{B} = 5.0 \text{ mA}$ $V_{CB} = 10 \text{ V}, f = 1.0 \text{ MHz}$ $V_{EB} = 0.5 \text{ V}, f = 1.0 \text{ MHz}$ $I_{C} = 10 \text{ mA}, V_{CE} = 20 \text{ V},$		1.10 4.5	V V pF
C _{ob} C _{ib} h _{fe}	Output Capacitance Input Capacitance	$I_{C} = 50 \text{ mA}, I_{B} = 5.0 \text{ mA}$ $V_{CB} = 10 \text{ V}, f = 1.0 \text{ MHz}$ $V_{EB} = 0.5 \text{ V}, f = 1.0 \text{ MHz}$	0.75	1.10 4.5	V V pF
C _{ob} C _{ib} h _{fe} rb'Cc	Output Capacitance Input Capacitance Small-Signal Current Gain Collector-Base Time Constant	$\begin{split} I_{C} &= 50 \text{ mA}, I_{B} = 5.0 \text{ mA} \\ \\ V_{CB} &= 10 \text{ V}, \text{ f} = 1.0 \text{ MHz} \\ \\ V_{EB} &= 0.5 \text{ V}, \text{ f} = 1.0 \text{ MHz} \\ \\ I_{C} &= 10 \text{ mA}, V_{CE} = 20 \text{ V}, \\ \text{ f} &= 100 \text{ MHz} \\ \\ \\ V_{CE} &= 20 \text{ V}, I_{C} = 10 \text{ mA} \\ \text{ f} &= 80 \text{ MHz} \end{split}$	0.75	4.5 8.0	PF
C _{ob} C _{ib} h _{fe}	Output Capacitance Input Capacitance Small-Signal Current Gain	$\begin{split} I_{C} &= 50 \text{ mA}, I_{B} = 5.0 \text{ mA} \\ \\ V_{CB} &= 10 \text{ V}, \text{ f} = 1.0 \text{ MHz} \\ \\ V_{EB} &= 0.5 \text{ V}, \text{ f} = 1.0 \text{ MHz} \\ \\ I_{C} &= 10 \text{ mA}, V_{CE} = 20 \text{ V}, \\ \text{ f} &= 100 \text{ MHz} \\ \\ \\ V_{CE} &= 20 \text{ V}, I_{C} = 10 \text{ mA} \\ \\ \text{ f} &= 80 \text{ MHz} \\ \\ \\ V_{CE} &= 5.0 \text{ V}, I_{C} = 1.0 \text{ mA}, \end{split}$	0.75	4.5 8.0 50	PF PF ps
C _{ob} C _{ib} h _{fe} rb'Cc	Output Capacitance Input Capacitance Small-Signal Current Gain Collector-Base Time Constant	$\begin{split} I_{C} &= 50 \text{ mA}, I_{B} = 5.0 \text{ mA} \\ \hline V_{CB} &= 10 \text{ V}, \text{ f} = 1.0 \text{ MHz} \\ \hline V_{EB} &= 0.5 \text{ V}, \text{ f} = 1.0 \text{ MHz} \\ \hline I_{C} &= 10 \text{ mA}, V_{CE} = 20 \text{ V}, \\ \hline \text{f} &= 100 \text{ MHz} \\ \hline V_{CE} &= 20 \text{ V}, I_{C} = 10 \text{ mA} \\ \hline \text{f} &= 80 \text{ MHz} \\ \hline V_{CE} &= 5.0 \text{ V}, I_{C} = 1.0 \text{ mA}, \\ \hline R_{S} &= 100 \Omega, \text{ f} = 100 \text{ MHz} \end{split}$	0.75	1.10 4.5 8.0	PF
C _{ob} C _{ib} h _{fe} rb'Cc	Output Capacitance Input Capacitance Small-Signal Current Gain Collector-Base Time Constant	$\begin{split} I_{C} &= 50 \text{ mA}, I_{B} = 5.0 \text{ mA} \\ \\ V_{CB} &= 10 \text{ V}, \text{ f} = 1.0 \text{ MHz} \\ \\ V_{EB} &= 0.5 \text{ V}, \text{ f} = 1.0 \text{ MHz} \\ \\ I_{C} &= 10 \text{ mA}, V_{CE} = 20 \text{ V}, \\ \text{ f} &= 100 \text{ MHz} \\ \\ \\ V_{CE} &= 20 \text{ V}, I_{C} = 10 \text{ mA} \\ \\ \text{ f} &= 80 \text{ MHz} \\ \\ \\ V_{CE} &= 5.0 \text{ V}, I_{C} = 1.0 \text{ mA}, \end{split}$	0.75	4.5 8.0 50	PF PF ps
C _{ob} C _{ib} h _{fe} rb'Cc	Output Capacitance Input Capacitance Small-Signal Current Gain Collector-Base Time Constant	$\begin{split} I_{C} &= 50 \text{ mA}, I_{B} = 5.0 \text{ mA} \\ \hline V_{CB} &= 10 \text{ V}, \text{ f} = 1.0 \text{ MHz} \\ \hline V_{EB} &= 0.5 \text{ V}, \text{ f} = 1.0 \text{ MHz} \\ \hline I_{C} &= 10 \text{ mA}, V_{CE} = 20 \text{ V}, \\ \hline f &= 100 \text{ MHz} \\ \hline V_{CE} &= 20 \text{ V}, I_{C} = 10 \text{ mA} \\ \hline f &= 80 \text{ MHz} \\ \hline V_{CE} &= 5.0 \text{ V}, I_{C} = 1.0 \text{ mA}, \\ \hline R_{S} &= 100 \ \Omega, \text{ f} = 100 \text{ MHz} \\ \hline V_{CE} &= 5.0 \text{ V}, I_{C} = 100 \text{ mA}, \end{split}$	0.75	1.10 4.5 8.0 50 6.0	pF pF ps dB
C _{ob} C _{ib} h _{fe} rb'Cc NF	Output Capacitance Input Capacitance Small-Signal Current Gain Collector-Base Time Constant Noise Figure	$\begin{split} I_{C} &= 50 \text{ mA}, I_{B} = 5.0 \text{ mA} \\ \hline V_{CB} &= 10 \text{ V}, \text{ f} = 1.0 \text{ MHz} \\ \hline V_{EB} &= 0.5 \text{ V}, \text{ f} = 1.0 \text{ MHz} \\ \hline I_{C} &= 10 \text{ mA}, V_{CE} = 20 \text{ V}, \\ \hline f &= 100 \text{ MHz} \\ \hline V_{CE} &= 20 \text{ V}, I_{C} = 10 \text{ mA} \\ \hline f &= 80 \text{ MHz} \\ \hline V_{CE} &= 5.0 \text{ V}, I_{C} = 1.0 \text{ mA}, \\ \hline R_{S} &= 100 \ \Omega, \text{ f} = 100 \text{ MHz} \\ \hline V_{CE} &= 5.0 \text{ V}, I_{C} = 100 \text{ mA}, \end{split}$	0.75	1.10 4.5 8.0 50 6.0	pF pF ps dB
C _{ob} C _{ib} h _{fe} rb'Cc NF SWITCHI	Output Capacitance Input Capacitance Small-Signal Current Gain Collector-Base Time Constant	$\begin{split} I_{C} &= 50 \text{ mA}, I_{B} = 5.0 \text{ mA} \\ \hline V_{CB} &= 10 \text{ V}, \text{ f} = 1.0 \text{ MHz} \\ \hline V_{EB} &= 0.5 \text{ V}, \text{ f} = 1.0 \text{ MHz} \\ \hline I_{C} &= 10 \text{ mA}, V_{CE} = 20 \text{ V}, \\ \hline f &= 100 \text{ MHz} \\ \hline V_{CE} &= 20 \text{ V}, I_{C} = 10 \text{ mA} \\ \hline f &= 80 \text{ MHz} \\ \hline V_{CE} &= 5.0 \text{ V}, I_{C} = 1.0 \text{ mA}, \\ \hline R_{S} &= 100 \ \Omega, \text{ f} = 100 \text{ MHz} \\ \hline V_{CE} &= 5.0 \text{ V}, I_{C} = 100 \text{ mA}, \end{split}$	0.75	1.10 4.5 8.0 50 6.0	pF pF ps dB
C _{ob} C _{ib} h _{fe} rb'Cc NF SWITCHI	Output Capacitance Input Capacitance Small-Signal Current Gain Collector-Base Time Constant Noise Figure	$\begin{split} I_{C} &= 50 \text{ mA}, I_{B} = 5.0 \text{ mA} \\ \\ V_{CB} &= 10 \text{ V}, \text{ f} = 1.0 \text{ MHz} \\ \\ V_{EB} &= 0.5 \text{ V}, \text{ f} = 1.0 \text{ MHz} \\ \\ I_{C} &= 10 \text{ mA}, V_{CE} = 20 \text{ V}, \\ f &= 100 \text{ MHz} \\ \\ V_{CE} &= 20 \text{ V}, I_{C} = 10 \text{ mA} \\ \text{f} &= 80 \text{ MHz} \\ \\ V_{CE} &= 5.0 \text{ V}, I_{C} = 1.0 \text{ mA}, \\ R_{S} &= 100 \Omega, \text{ f} = 100 \text{ MHz} \\ \\ V_{CE} &= 5.0 \text{ V}, I_{C} = 100 \text{ µA}, \\ R_{S} &= 1.0 \text{ k}\Omega \end{split}$	0.75	1.10 4.5 8.0 50 6.0 4.0	pF pF ps dB dB
C _{ob} C _{ib} h _{fe} rb'Cc NF SWITCHI	Output Capacitance Input Capacitance Small-Signal Current Gain Collector-Base Time Constant Noise Figure NG CHARACTERISTICS Turn-on Time	$\begin{split} I_{C} &= 50 \text{ mA}, I_{B} = 5.0 \text{ mA} \\ \hline V_{CB} &= 10 \text{ V}, \text{ f} = 1.0 \text{ MHz} \\ \hline V_{EB} &= 0.5 \text{ V}, \text{ f} = 1.0 \text{ MHz} \\ \hline I_{C} &= 10 \text{ mA}, V_{CE} = 20 \text{ V}, \\ \hline f &= 100 \text{ MHz} \\ \hline V_{CE} &= 20 \text{ V}, I_{C} = 10 \text{ mA} \\ \hline f &= 80 \text{ MHz} \\ \hline V_{CE} &= 5.0 \text{ V}, I_{C} = 1.0 \text{ mA}, \\ \hline R_{S} &= 100 \ \Omega, \text{ f} = 100 \text{ MHz} \\ \hline V_{CE} &= 5.0 \text{ V}, I_{C} = 100 \text{ mA}, \\ \hline R_{S} &= 1.0 \text{ k}\Omega \\ \hline \end{array}$	0.75	1.10 4.5 8.0 50 6.0 4.0 40	pF pF ps dB dB
C _{ob} C _{ib} h _{fe} rb'Cc NF SWITCHI ton t _d tr	Output Capacitance Input Capacitance Small-Signal Current Gain Collector-Base Time Constant Noise Figure NG CHARACTERISTICS Turn-on Time Delay Time	$\begin{split} I_{C} &= 50 \text{ mA}, I_{B} = 5.0 \text{ mA} \\ \hline V_{CB} &= 10 \text{ V}, \text{ f} = 1.0 \text{ MHz} \\ \hline V_{EB} &= 0.5 \text{ V}, \text{ f} = 1.0 \text{ MHz} \\ \hline I_{C} &= 10 \text{ mA}, V_{CE} = 20 \text{ V}, \\ \hline f &= 100 \text{ MHz} \\ \hline V_{CE} &= 20 \text{ V}, I_{C} = 10 \text{ mA} \\ \hline f &= 80 \text{ MHz} \\ \hline V_{CE} &= 5.0 \text{ V}, I_{C} = 1.0 \text{ mA}, \\ \hline R_{S} &= 100 \ \Omega, \text{ f} = 100 \text{ MHz} \\ \hline V_{CE} &= 5.0 \text{ V}, I_{C} = 100 \text{ mA}, \\ \hline R_{S} &= 1.0 \text{ k}\Omega \\ \hline \end{array}$	0.75	1.10 4.5 8.0 50 6.0 4.0 40 15	pF pF ps dB dB dB
C _{ob} C _{ib} h _{fe} rb'Cc NF	Output Capacitance Input Capacitance Small-Signal Current Gain Collector-Base Time Constant Noise Figure NG CHARACTERISTICS Turn-on Time Delay Time Rise Time	$\begin{split} I_{C} &= 50 \text{ mA}, I_{B} = 5.0 \text{ mA} \\ \hline V_{CB} &= 10 \text{ V}, \text{ f} = 1.0 \text{ MHz} \\ \hline V_{EB} &= 0.5 \text{ V}, \text{ f} = 1.0 \text{ MHz} \\ \hline I_{C} &= 10 \text{ mA}, V_{CE} = 20 \text{ V}, \\ \hline f &= 100 \text{ MHz} \\ \hline V_{CE} &= 20 \text{ V}, \text{ I}_{C} = 10 \text{ mA} \\ \hline f &= 80 \text{ MHz} \\ \hline V_{CE} &= 5.0 \text{ V}, \text{ I}_{C} = 1.0 \text{ mA}, \\ \hline R_{S} &= 100 \Omega, \text{ f} = 100 \text{ MHz} \\ \hline V_{CE} &= 5.0 \text{ V}, \text{ I}_{C} = 100 \text{ µA}, \\ \hline R_{S} &= 1.0 \text{ k}\Omega \\ \hline \end{array}$	0.75	1.10 4.5 8.0 50 6.0 4.0 40 15 40	pF pF ps dB dB dB


*Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%


PN4917



©2001 Fairchild Semiconductor Corporation

March 2001, Rev. B1

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™ Bottomless™ CoolFET™ CROSSVOLT™ DOME™ E²CMOS[™] EnSigna™ FACT™ FACT Quiet Series[™] FAST[®]

FASTr™ GlobalOptoisolator[™] GTO™ HiSeC™ ISOPLANAR™ MICROWIRE™ OPTOLOGIC™ **OPTOPLANAR™** PACMAN™ **POP™**

- PowerTrench[®] QFET™ QS™ QT Optoelectronics[™] Quiet Series[™] SILENT SWITCHER® SMART START™ SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8
- SvncFET™ TinyLogic™ UHC™ VCX[™]

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.