# imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



PN512 Full NFC Forum-compliant frontend Rev. 5.2 — 16 June 2016 111352

Product data sheet COMPANY PUBLIC

### 1. General description

PN512 is the most broadly adopted NFC frontend - powering more than 10 billion NFC transactions per year.

It is a highly integrated NFC frontend for contactless communication at 13.56 MHz. This NFC frontend utilizes an outstanding modulation and demodulation concept completely integrated for different kinds of contactless communication methods and protocols at 13.56 MHz.

The PN512 NFC frontend supports 4 different operating modes

- Reader/Writer mode supporting ISO/IEC 14443A/MIFARE and FeliCa scheme
- Reader/Writer mode supporting ISO/IEC 14443B
- Card Operation mode supporting ISO/IEC 14443A/MIFARE and FeliCa scheme
- NFCIP-1 mode

Enabled in Reader/Writer mode for ISO/IEC 14443A/MIFARE, the PN512's internal transmitter part is able to drive a reader/writer antenna designed to communicate with ISO/IEC 14443A/ MIFARE cards and transponders without additional active circuitry. The receiver part provides a robust and efficient implementation of a demodulation and decoding circuitry for signals from ISO/IEC 14443A/MIFARE compatible cards and transponders. The digital part handles the complete ISO/IEC 14443A framing and error detection (Parity and CRC).

Enabled in Reader/Writer mode for FeliCa, the PN512 NFC frontend supports the FeliCa communication scheme. The receiver part provides a robust and efficient implementation of the demodulation and decoding circuitry for FeliCa coded signals. The digital part handles the FeliCa framing and error detection like CRC. The PN512 supports contactless communication using FeliCa Higher transfer speeds up to 424 kbit/s in both directions.

The PN512 supports all layers of the ISO/IEC 14443B reader/writer communication scheme, given correct implementation of additional components, like oscillator, power supply, coil etc. and provided that standardized protocols, e.g. like ISO/IEC 14443-4 and/or ISO/IEC 14443B anticollision are correctly implemented.

In Card Operation mode, the PN512 NFC frontend is able to answer to a reader/writer command either according to the FeliCa or ISO/IEC 14443A/MIFARE card interface scheme. The PN512 generates the digital load modulated signals and in addition with an external circuit the answer can be sent back to the reader/writer. A complete card functionality is only possible in combination with a secure IC using the S<sup>2</sup>C interface.



Additionally, the PN512 NFC frontend offers the possibility to communicate directly to an NFCIP-1 device in the NFCIP-1 mode. The NFCIP-1 mode offers different communication mode and transfer speeds up to 424 kbit/s according to the Ecma 340 and ISO/IEC 18092 NFCIP-1 Standard. The digital part handles the complete NFCIP-1 framing and error detection.

Various host controller interfaces are implemented:

- 8-bit parallel interface<sup>1</sup>
- SPI interface
- serial UART (similar to RS232 with voltage levels according pad voltage supply)
- I<sup>2</sup>C interface.

#### 1.1 Different available versions

The PN512 is available in three versions:

- PN5120A0HN1/C2 (HVQFN32), PN5120A0HN/C2 (HVQFN40) and PN5120A0ET/C2 (TFBGA64), hereafter named as version 2.0
- PN512AA0HN1/C2 (HVQFN32) and PN512AA0HN1/C2BI (HVQFN32 with Burn In), hereafter named as industrial version, fulfilling the automotive qualification stated in AEC-Q100 grade 3 from the Automotive Electronics Council, defining the critical stress test qualification for automotive integrated circuits (ICs).

The customer recognizes that:

- since the product was not originally designed for automotive use, it will not be possible to achieve the levels of quality and failure analysis that are normally associated with products explicitly designed for automotive use.
- the product qualification conforms to AEC-Q100.
- all product production locations are certified according to TS16949.
- PN5120A0HN1/C1(HVQFN32) and PN5120A0HN/C1 (HVQFN40), hereafter named as version 1.0

The data sheet describes the functionality for the industrial version and version 2.0. The differences of the version 1.0 to the version 2.0 are summarized in <u>Section 20</u>. The industrial version has only differences within the outlined characteristics and limitations.

<sup>1. 8-</sup>bit parallel Interface only available in HVQFN40 package.

## 2. Features and benefits

- Includes NXP ISO/IEC14443-A, Innovatron ISO/IEC14443-B and NXP MIFARE Crypto 1 intellectual property <u>licensing rights</u>
- Fast and cost-efficient NFC design startup
- Highly integrated analog circuitry to demodulate and decode responses
- Buffered output drivers for connecting an antenna with the minimum number of external components
- Integrated RF Level detector
- Integrated data mode detector
- Supports ISO/IEC 14443 A/MIFARE
- Supports ISO/IEC 14443 B Read/Write modes
- Typical operating distance in Read/Write mode up to 50 mm depending on the antenna size and tuning
- Typical operating distance in NFCIP-1 mode up to 50 mm depending on the antenna size and tuning and power supply
- Typical operating distance in ISO/IEC 14443A/MIFARE card or FeliCa Card Operation mode of about 100 mm depending on the antenna size and tuning and the external field strength
- Supports MIFARE Classic encryption in Reader/Writer mode
- ISO/IEC 14443A higher transfer speed communication at 212 kbit/s and 424 kbit/s
- Contactless communication according to the FeliCa scheme at 212 kbit/s and 424 kbit/s
- Integrated RF interface for NFCIP-1 up to 424 kbit/s
- S<sup>2</sup>C interface
- Additional power supply to directly supply the smart card IC connected via S<sup>2</sup>C
- Supported host interfaces
  - SPI up to 10 Mbit/s
  - I<sup>2</sup>C-bus interface up to 400 kBd in Fast mode, up to 3400 kBd in High-speed mode
  - RS232 Serial UART up to 1228.8 kBd, with voltage levels dependant on pin voltage supply
  - ◆ 8-bit parallel interface with and without Address Latch Enable
- FIFO buffer handles 64 byte send and receive
- Flexible interrupt modes
- Hard reset with low power function
- Power-down mode per software
- Programmable timer
- Internal oscillator for connection to 27.12 MHz quartz crystal
- 2.5 V to 3.6 V power supply
- CRC coprocessor
- Programmable I/O pins
- Internal self-test

#### **Quick reference data** 3.

| Table 1.              | Quick reference data   |                                                                                            |           |     |     |     |      |
|-----------------------|------------------------|--------------------------------------------------------------------------------------------|-----------|-----|-----|-----|------|
| Symbol                | Parameter              | Conditions                                                                                 |           | Min | Тур | Max | Unit |
| V <sub>DDA</sub>      | analog supply voltage  | $V_{DD(PVDD)} \leq V_{DDA} = V_{DDD} = V_{DD(TVDD)};$                                      | [1][2]    | 2.5 | -   | 3.6 | V    |
| V <sub>DDD</sub>      | digital supply voltage | $V_{SSA} = V_{SSD} = V_{SS(PVSS)} = V_{SS(TVSS)} = 0 V$                                    |           |     |     |     |      |
| V <sub>DD(TVDD)</sub> | TVDD supply voltage    |                                                                                            |           |     |     |     |      |
| V <sub>DD(PVDD)</sub> | PVDD supply voltage    |                                                                                            | [3]       | 1.6 | -   | 3.6 | V    |
| V <sub>DD(SVDD)</sub> | SVDD supply voltage    | $V_{SSA} = V_{SSD} = V_{SS(PVSS)} = V_{SS(TVSS)} = 0 V$                                    |           | 1.6 | -   | 3.6 | V    |
| I <sub>pd</sub>       | power-down current     | $V_{DDA} = V_{DDD} = V_{DD(TVDD)} = V_{DD(PVDD)} = 3 V$                                    |           |     |     |     |      |
|                       |                        | hard power-down; pin NRSTPD set LOW                                                        | [4]       | -   | -   | 5   | μA   |
|                       |                        | soft power-down; RF level detector on                                                      | [4]       | -   | -   | 10  | μA   |
| I <sub>DDD</sub>      | digital supply current | pin DVDD; $V_{DDD} = 3 V$                                                                  | 6.5       | 9   | mA  |     |      |
| I <sub>DDA</sub>      | analog supply current  | pin AVDD; $V_{DDA} = 3 V$ , CommandReg register's RcvOff bit = 0                           |           | -   | 7   | 10  | mA   |
|                       |                        | pin AVDD; receiver switched off; $V_{DDA} = 3 V$ ,<br>CommandReg register's RcvOff bit = 1 |           | -   | 3   | 5   | mA   |
| I <sub>DD(PVDD)</sub> | PVDD supply current    | pin PVDD                                                                                   | [5]       | -   | -   | 40  | mA   |
| I <sub>DD(TVDD)</sub> | TVDD supply current    | pin TVDD; continuous wave                                                                  | [6][7][8] | -   | 60  | 100 | mA   |
| T <sub>amb</sub>      | ambient temperature    | HVQFN32, HVQFN40, TFBGA64                                                                  |           | -30 |     | +85 | °C   |
| Industrial            | version PN512AA0HN1:   |                                                                                            |           |     |     |     |      |
| I <sub>pd</sub>       | power-down current     | $V_{DDA} = V_{DDD} = V_{DD(TVDD)} = V_{DD(PVDD)} = 3 V$                                    |           |     |     |     |      |
|                       |                        | hard power-down; pin NRSTPD set LOW                                                        | [4]       | -   | -   | 15  | μA   |
|                       |                        | soft power-down; RF level detector on                                                      | [4]       | -   | -   | 30  | μA   |
| T <sub>amb</sub>      | ambient temperature    | HVQFN32                                                                                    |           | -40 | -   | +90 | °C   |

[1] Supply voltages below 3 V reduce the performance in, for example, the achievable operating distance.

 $V_{DDA}$ ,  $V_{DDD}$  and  $V_{DD(TVDD)}$  must always be the same voltage. [2]

 $V_{DD(PVDD)}$  must always be the same or lower voltage than  $V_{DDD}$ . [3]

Ipd is the total current for all supplies. [4]

 $I_{DD(PVDD)}$  depends on the overall load at the digital pins. [5]

[6]  $I_{DD(TVDD)}$  depends on  $V_{DD(TVDD)}$  and the external circuit connected to pins TX1 and TX2.

[7] During typical circuit operation, the overall current is below 100 mA.

Typical value using a complementary driver configuration and an antenna matched to 40 Ω between pins TX1 and TX2 at 13.56 MHz. [8]

## 4. Ordering information

| Table 2. Ordering in | able 2. Ordering information |                                                                                                                |           |  |  |  |  |  |  |  |  |  |
|----------------------|------------------------------|----------------------------------------------------------------------------------------------------------------|-----------|--|--|--|--|--|--|--|--|--|
| Type number          | Package                      |                                                                                                                |           |  |  |  |  |  |  |  |  |  |
|                      | Name                         | Description                                                                                                    | Version   |  |  |  |  |  |  |  |  |  |
| PN5120A0HN1/C2       | HVQFN32                      | plastic thermal enhanced very thin quad flat package; no leads; 32 terminal; body $5 \times 5 \times 0.85$ mm  | SOT617-1  |  |  |  |  |  |  |  |  |  |
| PN5120A0HN/C2        | HVQFN40                      | plastic thermal enhanced very thin quad flat package; no leads; 40 terminals; body $6 \times 6 \times 0.85$ mm | SOT618-1  |  |  |  |  |  |  |  |  |  |
| PN512AA0HN1/C2       | HVQFN32                      | plastic thermal enhanced very thin quad flat package; no leads; 32 terminal; body $5 \times 5 \times 0.85$ mm  | SOT617-1  |  |  |  |  |  |  |  |  |  |
| PN512AA0HN1/C2BI     | HVQFN32                      | plastic thermal enhanced very thin quad flat package; no leads; 32 terminal; body $5 \times 5 \times 0.85$ mm  | SOT617-1  |  |  |  |  |  |  |  |  |  |
| PN5120A0HN1/C1       | HVQFN32                      | plastic thermal enhanced very thin quad flat package; no leads; 32 terminal; body $5 \times 5 \times 0.85$ mm  | SOT617-1  |  |  |  |  |  |  |  |  |  |
| PN5120A0HN/C1        | HVQFN40                      | plastic thermal enhanced very thin quad flat package; no leads; 40 terminals; body $6 \times 6 \times 0.85$ mm | SOT618-1  |  |  |  |  |  |  |  |  |  |
| PN5120A0ET/C2        | TFBGA64                      | plastic thin fine-pitch ball grid array package; 64 balls                                                      | SOT1336-1 |  |  |  |  |  |  |  |  |  |

**PN512** 

#### 5. Block diagram

The analog interface handles the modulation and demodulation of the analog signals according to the Card Receiving mode, Reader/Writer mode and NFCIP-1 mode communication scheme.

The RF level detector detects the presence of an external RF-field delivered by the antenna to the RX pin.

The Data mode detector detects a MIFARE, FeliCa or NFCIP-1 mode in order to prepare the internal receiver to demodulate signals, which are sent to the PN512.

The communication (S<sup>2</sup>C) interface provides digital signals to support communication for transfer speeds above 424 kbit/s and digital signals to communicate to a secure IC.

The contactless UART manages the protocol requirements for the communication protocols in cooperation with the host. The FIFO buffer ensures fast and convenient data transfer to and from the host and the contactless UART and vice versa.

Various host interfaces are implemented to meet different customer requirements.



#### **NXP Semiconductors**

#### Full NFC Forum-compliant frontend

PN512



PN512

© NXP Semiconductors N.V. 2016. All rights reserved.

## 6. Pinning information

#### 6.1 Pinning







## 6.2 Pin description

| Table 3. | Pin descrip | tion HVQ | FN32                                                                                                                                                                                                                                           |
|----------|-------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pin      | Symbol      | Туре     | Description                                                                                                                                                                                                                                    |
| 1        | A1          | I        | Address Line                                                                                                                                                                                                                                   |
| 2        | PVDD        | PWR      | Pad power supply                                                                                                                                                                                                                               |
| 3        | DVDD        | PWR      | Digital Power Supply                                                                                                                                                                                                                           |
| 4        | DVSS        | PWR      | Digital Ground                                                                                                                                                                                                                                 |
| 5        | PVSS        | PWR      | Pad power supply ground                                                                                                                                                                                                                        |
| 6        | NRSTPD      | I        | <b>Not Reset and Power Down:</b> When LOW, internal current sinks are switched off, the oscillator is inhibited, and the input pads are disconnected from the outside world. With a positive edge on this pin the internal reset phase starts. |
| 7        | SIGIN       | I        | Communication Interface Input: accepts a digital, serial data stream                                                                                                                                                                           |
| 8        | SIGOUT      | 0        | Communication Interface Output: delivers a serial data stream                                                                                                                                                                                  |
| 9        | SVDD        | PWR      | S2C Pad Power Supply: provides power to the S <sup>2</sup> C pads                                                                                                                                                                              |
| 10       | TVSS        | PWR      | Transmitter Ground: supplies the output stage of TX1 and TX2                                                                                                                                                                                   |
| 11       | TX1         | 0        | Transmitter 1: delivers the modulated 13.56 MHz energy carrier                                                                                                                                                                                 |
| 12       | TVDD        | PWR      | Transmitter Power Supply: supplies the output stage of TX1 and TX2                                                                                                                                                                             |
| 13       | TX2         | 0        | Transmitter 2: delivers the modulated 13.56 MHz energy carrier                                                                                                                                                                                 |
| 14       | TVSS        | PWR      | Transmitter Ground: supplies the output stage of TX1 and TX2                                                                                                                                                                                   |
| 15       | AVDD        | PWR      | Analog Power Supply                                                                                                                                                                                                                            |
| 16       | VMID        | PWR      | Internal Reference Voltage: This pin delivers the internal reference voltage.                                                                                                                                                                  |
| 17       | RX          | I        | Receiver Input                                                                                                                                                                                                                                 |
| 18       | AVSS        | PWR      | Analog Ground                                                                                                                                                                                                                                  |
| 19       | AUX1        | 0        | Auxiliary Outputs: These pins are used for testing.                                                                                                                                                                                            |
| 20       | AUX2        | 0        |                                                                                                                                                                                                                                                |
| 21       | OSCIN       | I        | <b>Crystal Oscillator Input:</b> input to the inverting amplifier of the oscillator. This pin is also the input for an externally generated clock ( $f_{osc} = 27.12 \text{ MHz}$ ).                                                           |
| 22       | OSCOUT      | 0        | Crystal Oscillator Output: Output of the inverting amplifier of the oscillator.                                                                                                                                                                |
| 23       | IRQ         | 0        | Interrupt Request: output to signal an interrupt event                                                                                                                                                                                         |
| 24       | ALE         | I        | Address Latch Enable: signal to latch AD0 to AD5 into the internal address latch when HIGH.                                                                                                                                                    |
| 25 to 31 | D1 to D7    | I/O      | 8-bit Bi-directional Data Bus.                                                                                                                                                                                                                 |
|          |             |          | Remark: An 8-bit parallel interface is not available.                                                                                                                                                                                          |
|          |             |          | <b>Remark:</b> If the host controller selects I <sup>2</sup> C as digital host controller interface, these pins can be used to define the I <sup>2</sup> C address.                                                                            |
|          |             |          | Remark: For serial interfaces this pins can be used for test signals or I/Os.                                                                                                                                                                  |
| 32       | A0          | I        | Address Line                                                                                                                                                                                                                                   |

Full NFC Forum-compliant frontend

| Table 4. | Pin descrip | tion HVQF | N40                                                                                                                                                                                                                                            |
|----------|-------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pin      | Symbol      | Туре      | Description                                                                                                                                                                                                                                    |
| 1 to 4   | A2 to A5    | I         | Address Line                                                                                                                                                                                                                                   |
| 5        | PVDD        | PWR       | Pad power supply                                                                                                                                                                                                                               |
| 6        | DVDD        | PWR       | Digital Power Supply                                                                                                                                                                                                                           |
| 7        | DVSS        | PWR       | Digital Ground                                                                                                                                                                                                                                 |
| 8        | PVSS        | PWR       | Pad power supply ground                                                                                                                                                                                                                        |
| 9        | NRSTPD      | I         | <b>Not Reset and Power Down:</b> When LOW, internal current sinks are switched off, the oscillator is inhibited, and the input pads are disconnected from the outside world. With a positive edge on this pin the internal reset phase starts. |
| 10       | SIGIN       | I         | Communication Interface Input: accepts a digital, serial data stream                                                                                                                                                                           |
| 11       | SIGOUT      | 0         | Communication Interface Output: delivers a serial data stream                                                                                                                                                                                  |
| 12       | SVDD        | PWR       | S <sup>2</sup> C Pad Power Supply: provides power to the S <sup>2</sup> C pads                                                                                                                                                                 |
| 13       | TVSS        | PWR       | Transmitter Ground: supplies the output stage of TX1 and TX2                                                                                                                                                                                   |
| 14       | TX1         | 0         | Transmitter 1: delivers the modulated 13.56 MHz energy carrier                                                                                                                                                                                 |
| 15       | TVDD        | PWR       | Transmitter Power Supply: supplies the output stage of TX1 and TX2                                                                                                                                                                             |
| 16       | TX2         | 0         | Transmitter 2: delivers the modulated 13.56 MHz energy carrier                                                                                                                                                                                 |
| 17       | TVSS        | PWR       | Transmitter Ground: supplies the output stage of TX1 and TX2                                                                                                                                                                                   |
| 18       | AVDD        | PWR       | Analog Power Supply                                                                                                                                                                                                                            |
| 19       | VMID        | PWR       | Internal Reference Voltage: This pin delivers the internal reference voltage.                                                                                                                                                                  |
| 20       | RX          | I         | Receiver Input                                                                                                                                                                                                                                 |
| 21       | AVSS        | PWR       | Analog Ground                                                                                                                                                                                                                                  |
| 22       | AUX1        | 0         | Auxiliary Outputs: These pins are used for testing.                                                                                                                                                                                            |
| 23       | AUX2        | 0         |                                                                                                                                                                                                                                                |
| 24       | OSCIN       | I         | <b>Crystal Oscillator Input:</b> input to the inverting amplifier of the oscillator. This pin is also the input for an externally generated clock ( $f_{osc} = 27.12 \text{ MHz}$ ).                                                           |
| 25       | OSCOUT      | 0         | Crystal Oscillator Output: Output of the inverting amplifier of the oscillator.                                                                                                                                                                |
| 26       | IRQ         | 0         | Interrupt Request: output to signal an interrupt event                                                                                                                                                                                         |
| 27       | NWR         | I         | Not Write: strobe to write data (applied on D0 to D7) into the PN512 register                                                                                                                                                                  |
| 28       | NRD         | I         | Not Read: strobe to read data from the PN512 register (applied on D0 to D7)                                                                                                                                                                    |
| 29       | ALE         | I         | Address Latch Enable: signal to latch AD0 to AD5 into the internal address latch when HIGH.                                                                                                                                                    |
| 30       | NCS         | I         | Not Chip Select: selects and activates the host controller interface of the PN512                                                                                                                                                              |
| 31 to 38 | D0 to D7    | I/O       | 8-bit Bi-directional Data Bus.                                                                                                                                                                                                                 |
|          |             |           | Remark: For serial interfaces this pins can be used for test signals or I/Os.                                                                                                                                                                  |
|          |             |           | <b>Remark:</b> If the host controller selects $I^2C$ as digital host controller interface, these pins can be used to define the $I^2C$ address.                                                                                                |
| 39 to 40 | A0 to A1    | I         | Address Line                                                                                                                                                                                                                                   |
| 1        | 1           | 1         |                                                                                                                                                                                                                                                |

| Table 5. | Pin description TFBGA64 |
|----------|-------------------------|
|----------|-------------------------|

| Pin                                                       | Symbol | Туре | Description                                                                                                                                                                                                                                    |
|-----------------------------------------------------------|--------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A1 to A5, A8,<br>B3, B4, B8, E1                           | PVSS   | PWR  | Pad power supply ground                                                                                                                                                                                                                        |
| A6                                                        | D4     | I/O  | 8-bit Bi-directional Data Bus.                                                                                                                                                                                                                 |
| A7                                                        | D2     | I/O  | <b>Remark:</b> For serial interfaces this pins can be used for test signals or I/Os.                                                                                                                                                           |
|                                                           |        |      | <b>Remark:</b> If the host controller selects I <sup>2</sup> C as digital host controller interface, these pins can be used to define the I <sup>2</sup> C address.                                                                            |
| B1                                                        | PVDD   | PWR  | Pad power supply                                                                                                                                                                                                                               |
| B2                                                        | A0     | 1    | Address Line                                                                                                                                                                                                                                   |
| B5                                                        | D5     | I/O  | 8-bit Bi-directional Data Bus.                                                                                                                                                                                                                 |
| B6                                                        | D3     | I/O  | Remark: For serial interfaces this pins can be used for test signals or I/Os.                                                                                                                                                                  |
| В7                                                        | D1     | I/O  | <b>Remark:</b> If the host controller selects I <sup>2</sup> C as digital host controller interface, these pins can be used to define the I <sup>2</sup> C address.                                                                            |
| C1                                                        | DVDD   | PWR  | Digital Power Supply                                                                                                                                                                                                                           |
| C2                                                        | A1     | I    | Address Line                                                                                                                                                                                                                                   |
| C3                                                        | D7     | I/O  | 8-bit Bi-directional Data Bus.                                                                                                                                                                                                                 |
| C4                                                        | D6     | I/O  | Remark: For serial interfaces this pins can be used for test signals or I/Os.                                                                                                                                                                  |
|                                                           |        |      | <b>Remark:</b> If the host controller selects I <sup>2</sup> C as digital host controller interface, these pins can be used to define the I <sup>2</sup> C address.                                                                            |
| C5                                                        | IRQ    | 0    | Interrupt Request: output to signal an interrupt event                                                                                                                                                                                         |
| C6                                                        | ALE    | I    | <b>Address Latch Enable:</b> signal to latch AD0 to AD5 into the internal address latch when HIGH.                                                                                                                                             |
| C7, C8, D6, D8,<br>E6, E8, F7, G8,<br>H8                  | AVSS   | PWR  | Analog Ground                                                                                                                                                                                                                                  |
| D1                                                        | DVSS   | PWR  | Digital Ground                                                                                                                                                                                                                                 |
| D2                                                        | NRSTPD | I    | <b>Not Reset and Power Down:</b> When LOW, internal current sinks are switched off, the oscillator is inhibited, and the input pads are disconnected from the outside world. With a positive edge on this pin the internal reset phase starts. |
| D3 to D5, E3 to<br>E5, F3, F4,<br>G1 to G6,<br>H1, H2, H6 | TVSS   | PWR  | Transmitter Ground: supplies the output stage of TX1 and TX2                                                                                                                                                                                   |
| D7                                                        | OSCOUT | 0    | Crystal Oscillator Output: Output of the inverting amplifier of the oscillator.                                                                                                                                                                |
| E2                                                        | SIGIN  | I    | Communication Interface Input: accepts a digital, serial data stream                                                                                                                                                                           |
| E7                                                        | OSCIN  | I    | <b>Crystal Oscillator Input:</b> input to the inverting amplifier of the oscillator. This pin is also the input for an externally generated clock ( $f_{osc} = 27.12$ MHz).                                                                    |
| F1                                                        | SVDD   | PWR  | S <sup>2</sup> C Pad Power Supply: provides power to the S <sup>2</sup> C pads                                                                                                                                                                 |
| F2                                                        | SIGOUT | 0    | Communication Interface Output: delivers a serial data stream                                                                                                                                                                                  |
| F5                                                        | AUX1   | 0    | Auxiliary Outputs: These pins are used for testing.                                                                                                                                                                                            |
| F6                                                        | AUX2   | 0    |                                                                                                                                                                                                                                                |
| F8                                                        | RX     | I    | Receiver Input                                                                                                                                                                                                                                 |
| G7                                                        | VMID   | PWR  | Internal Reference Voltage: This pin delivers the internal reference voltage.                                                                                                                                                                  |
| H3                                                        | TX1    | 0    | Transmitter 1: delivers the modulated 13.56 MHz energy carrier                                                                                                                                                                                 |

| Pin |  | Symbol | Туре | Description                                                        |  |  |  |  |  |
|-----|--|--------|------|--------------------------------------------------------------------|--|--|--|--|--|
| H4  |  | TVDD   | PWR  | Transmitter Power Supply: supplies the output stage of TX1 and TX2 |  |  |  |  |  |
| H5  |  | TX2    | 0    | Transmitter 2: delivers the modulated 13.56 MHz energy carrier     |  |  |  |  |  |
| H7  |  | AVDD   | PWR  | Analog Power Supply                                                |  |  |  |  |  |

#### Table 5. Pin description TFBGA64

## 7. Functional description

The PN512 transmission module supports the Read/Write mode for ISO/IEC 14443 A/MIFARE and ISO/IEC 14443 B using various transfer speeds and modulation protocols.

PN512 NFC frontend supports the following operating modes:

- Reader/Writer mode supporting ISO/IEC 14443A/MIFARE and FeliCa scheme
- Card Operation mode supporting ISO/IEC 14443A/MIFARE and FeliCa scheme
- NFCIP-1 mode

The modes support different transfer speeds and modulation schemes. The following chapters will explain the different modes in detail.

Note: All indicated modulation indices and modes in this chapter are system parameters. This means that beside the IC settings a suitable antenna tuning is required to achieve the optimum performance.



#### 7.1 ISO/IEC 14443 A/MIFARE functionality

The physical level communication is shown in Figure 7.



Fig 7. ISO/IEC 14443 A/MIFARE Read/Write mode communication diagram

The physical parameters are described in Table 4.

#### Table 6. Communication overview for ISO/IEC 14443 A/MIFARE reader/writer

| Communication                            | Signal type            | Transfer speed              |                             |                             |  |  |  |
|------------------------------------------|------------------------|-----------------------------|-----------------------------|-----------------------------|--|--|--|
| direction                                |                        | 106 kBd                     | 212 kBd                     | 424 kBd                     |  |  |  |
| Reader to card (send data from the PN512 | reader side modulation | 100 % ASK                   | 100 % ASK                   | 100 % ASK                   |  |  |  |
| to a card)                               | bit encoding           | modified Miller<br>encoding | modified Miller<br>encoding | modified Miller<br>encoding |  |  |  |
|                                          | bit length             | 128 (13.56 μs)              | 64 (13.56 μs)               | 32 (13.56 μs)               |  |  |  |

 Table 6.
 Communication overview for ISO/IEC 14443 A/MIFARE reader/writer ... continued

| Communication                          | Signal type             | Transfer speed             |                            |                            |  |  |  |  |
|----------------------------------------|-------------------------|----------------------------|----------------------------|----------------------------|--|--|--|--|
| direction                              |                         | 106 kBd                    | 212 kBd                    | 424 kBd                    |  |  |  |  |
| Card to reader<br>(PN512 receives data | card side<br>modulation | subcarrier load modulation | subcarrier load modulation | subcarrier load modulation |  |  |  |  |
| from a card)                           | subcarrier<br>frequency | 13.56 MHz/16               | 13.56 MHz/16               | 13.56 MHz/16               |  |  |  |  |
|                                        | bit encoding            | Manchester<br>encoding     | BPSK                       | BPSK                       |  |  |  |  |

The PN512's contactless UART and dedicated external host must manage the complete ISO/IEC 14443 A/MIFARE protocol. Figure 8 shows the data coding and framing according to ISO/IEC 14443 A/MIFARE.



#### Fig 8. Data coding and framing according to ISO/IEC 14443 A

The internal CRC coprocessor calculates the CRC value based on ISO/IEC 14443 A part 3 and handles parity generation internally according to the transfer speed. Automatic parity generation can be switched off using the ManualRCVReg register's ParityDisable bit.

#### 7.2 ISO/IEC 14443 B functionality

The PN512 reader IC fully supports international standard ISO 14443 which includes communication schemes ISO 14443 A and ISO 14443 B.

Refer to the ISO 14443 reference documents *Identification cards - Contactless integrated circuit cards - Proximity cards* (parts 1 to 4).

#### 7.3 FeliCa reader/writer functionality

The FeliCa mode is the general reader/writer to card communication scheme according to the FeliCa specification. The following diagram describes the communication on a physical level, the communication overview describes the physical parameters.



#### Fig 9. FeliCa reader/writer communication diagram



| Communication direction  |                             | FeliCa            | FeliCa Higher<br>transfer speeds |  |
|--------------------------|-----------------------------|-------------------|----------------------------------|--|
|                          | Transfer speed              | 212 kbit/s        | 424 kbit/s                       |  |
| $PN512 \rightarrow card$ | Modulation on reader side   | 8-30 % ASK        | 8-30 % ASK                       |  |
|                          | bit coding                  | Manchester Coding | Manchester Coding                |  |
|                          | Bitlength                   | (64/13.56) μs     | (32/13.56) μs                    |  |
| card $\rightarrow$ PN512 | Loadmodulation on card side | > 12 % ASK        | > 12 % ASK                       |  |
|                          | bit coding                  | Manchester coding | Manchester coding                |  |

The contactless UART of PN512 and a dedicated external host controller are required to handle the complete FeliCa protocol.

#### 7.3.1 FeliCa framing and coding

#### Table 8.FeliCa framing and coding

| Preamble |     |     |     |     | Sync |     | Len | n-Data |  |  | CRC |  |  |  |
|----------|-----|-----|-----|-----|------|-----|-----|--------|--|--|-----|--|--|--|
| 00h      | 00h | 00h | 00h | 00h | 00h  | B2h | 4Dh |        |  |  |     |  |  |  |

To enable the FeliCa communication a 6 byte preamble (00h, 00h, 00h, 00h, 00h, 00h) and 2 bytes Sync bytes (B2h, 4Dh) are sent to synchronize the receiver.

The following Len byte indicates the length of the sent data bytes plus the LEN byte itself. The CRC calculation is done according to the FeliCa definitions with the MSB first.

To transmit data on the RF interface, the host controller has to send the Len- and databytes to the PN512's FIFO-buffer. The preamble and the sync bytes are generated by the PN512 automatically and must not be written to the FIFO by the host controller. The PN512 performs internally the CRC calculation and adds the result to the data frame.

Example for FeliCa CRC Calculation:

#### Table 9.Start value for the CRC Polynomial: (00h), (00h)

| Preamble |     |     |     |     | Sync |     | Len | en 2 Data Bytes |     | CRC |     |     |
|----------|-----|-----|-----|-----|------|-----|-----|-----------------|-----|-----|-----|-----|
| 00h      | 00h | 00h | 00h | 00h | 00h  | B2h | 4Dh | 03h             | ABh | CDh | 90h | 35h |

#### 7.4 NFCIP-1 mode

The NFCIP-1 communication differentiates between an active and a Passive Communication mode.

- Active Communication mode means both the initiator and the target are using their own RF field to transmit data.
- Passive Communication mode means that the target answers to an initiator command in a load modulation scheme. The initiator is active in terms of generating the RF field.
- · Initiator: generates RF field at 13.56 MHz and starts the NFCIP-1 communication
- Target: responds to initiator command either in a load modulation scheme in Passive Communication mode or using a self generated and self modulated RF field for Active Communication mode.

In order to fully support the NFCIP-1 standard the PN512 supports the Active and Passive Communication mode at the transfer speeds 106 kbit/s, 212 kbit/s and 424 kbit/s as defined in the NFCIP-1 standard.



#### 7.4.1 Active communication mode

Active communication mode means both the initiator and the target are using their own RF field to transmit data.



#### Table 10. Communication overview for Active communication mode

| Communication direction                                          | 106 kbit/s                                                               | 212 kbit/s                    | 424 kbit/s                  | 848 kbit/s                        | 1.69 Mbit/s,<br>3.39 Mbit/s |
|------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------|-----------------------------|-----------------------------------|-----------------------------|
| Initiator $\rightarrow$ Target<br>Target $\rightarrow$ Initiator | According to<br>ISO/IEC 14443A<br>100 % ASK,<br>Modified<br>Miller Coded | According to F<br>ASK Manches | eliCa, 8-30 %<br>ster Coded | digital capabili<br>this communic | ty to handle<br>cation      |

The contactless UART of PN512 and a dedicated host controller are required to handle the NFCIP-1 protocol.

Note: Transfer Speeds above 424 kbit/s are not defined in the NFCIP-1 standard. The PN512 supports these transfer speeds only with dedicated external circuits.

#### 7.4.2 Passive communication mode

Passive Communication mode means that the target answers to an initiator command in a load modulation scheme. The initiator is active meaning generating the RF field.



| Table 11. | Communication | overview f | or Passive | communication | mode |
|-----------|---------------|------------|------------|---------------|------|
|           |               |            |            |               |      |

| Communication direction | 106 kbit/s                                                                           | 212 kbit/s                    | 424 kbit/s                   | 848 kbit/s                        | 1.69 Mbit/s,<br>3.39 Mbit/s |
|-------------------------|--------------------------------------------------------------------------------------|-------------------------------|------------------------------|-----------------------------------|-----------------------------|
| Initiator → Target      | According to<br>ISO/IEC 14443A<br>100 % ASK,<br>Modified<br>Miller Coded             | According to F<br>% ASK Manch | FeliCa, 8-30<br>nester Coded | digital capabili<br>this communic | ity to handle<br>cation     |
| Target → Initiator      | According to<br>ISO/IEC 14443A<br>subcarrier load<br>modulation,<br>Manchester Coded | According to F<br>ASK Manches | eliCa, > 12 %<br>ster Coded  |                                   |                             |

The contactless UART of PN512 and a dedicated host controller are required to handle the NFCIP-1 protocol.

Note: Transfer Speeds above 424 kbit/s are not defined in the NFCIP-1 standard. The PN512 supports these transfer speeds only with dedicated external circuits.

#### 7.4.3 NFCIP-1 framing and coding

The NFCIP-1 framing and coding in Active and Passive Communication mode is defined in the NFCIP-1 standard.

#### Table 12. Framing and coding overview

| Transfer speed | Framing and Coding                            |
|----------------|-----------------------------------------------|
| 106 kbit/s     | According to the ISO/IEC 14443A/MIFARE scheme |
| 212 kbit/s     | According to the FeliCa scheme                |
| 424 kbit/s     | According to the FeliCa scheme                |

#### 7.4.4 NFCIP-1 protocol support

The NFCIP-1 protocol is not completely described in this document. For detailed explanation of the protocol refer to the NFCIP-1 standard. However the datalink layer is according to the following policy:

- Speed shall not be changed while continuum data exchange in a transaction.
- Transaction includes initialization and anticollision methods and data exchange (in continuous way, meaning no interruption by another transaction).

In order not to disturb current infrastructure based on 13.56 MHz general rules to start NFCIP-1 communication are defined in the following way.

- 1. Per default NFCIP-1 device is in Target mode meaning its RF field is switched off.
- 2. The RF level detector is active.
- 3. Only if application requires the NFCIP-1 device shall switch to Initiator mode.
- 4. Initiator shall only switch on its RF field if no external RF field is detected by RF Level detector during a time of TIDT.
- 5. The initiator performs initialization according to the selected mode.

#### 7.4.5 MIFARE Card operation mode

#### Table 13. MIFARE Card operation mode

| Communication direction   |                           | ISO/IEC 14443A/<br>MIFARE  | MIFARE Higher transfer speeds |                            |  |
|---------------------------|---------------------------|----------------------------|-------------------------------|----------------------------|--|
|                           | transfer speed            | 106 kbit/s                 | 212 kbit/s                    | 424 kbit/s                 |  |
| reader/writer →<br>PN512  | Modulation on reader side | 100 % ASK                  | 100 % ASK                     | 100 % ASK                  |  |
|                           | bit coding                | Modified Miller            | Modified Miller               | Modified Miller            |  |
|                           | Bitlength                 | (128/13.56) μs             | (64/13.56) μs                 | (32/13.56) μs              |  |
| PN512 → reader/<br>writer | Modulation on PN512 side  | subcarrier load modulation | subcarrier load modulation    | subcarrier load modulation |  |
|                           | subcarrier<br>frequency   | 13.56 MHz/16               | 13.56 MHz/16                  | 13.56 MHz/16               |  |
|                           | bit coding                | Manchester coding          | BPSK                          | BPSK                       |  |

#### 7.4.6 FeliCa Card operation mode

#### Table 14. FeliCa Card operation mode

| Communication direction                                                                 | nication FeliCa               |                            | FeliCa Higher<br>transfer speeds |
|-----------------------------------------------------------------------------------------|-------------------------------|----------------------------|----------------------------------|
|                                                                                         | Transfer speed                | 212 kbit/s                 | 424 kbit/s                       |
| reader/writer →<br>PN512                                                                | Modulation on reader side     | 8-30 % ASK                 | 8-30 % ASK                       |
|                                                                                         | bit coding                    | Manchester Coding          | Manchester Coding                |
|                                                                                         | Bitlength                     | (64/13.56) μs              | (32/13.56) μs                    |
| $\begin{array}{l} \text{PN512} \rightarrow \text{reader/} \\ \text{writer} \end{array}$ | Load modulation on PN512 side | > 12 % ASK load modulation | > 12 % ASK load modulation       |
|                                                                                         | bit coding                    | Manchester coding          | Manchester coding                |

#### 8. **PN512 register SET**

#### 8.1 PN512 registers overview

#### Table 15. PN512 registers overview

| Addr<br>(hex) | Register Name  | Function                                                              |
|---------------|----------------|-----------------------------------------------------------------------|
| Page 0:       | Command and St | atus                                                                  |
| 0             | PageReg        | Selects the register page                                             |
| 1             | CommandReg     | Starts and stops command execution                                    |
| 2             | ComlEnReg      | Controls bits to enable and disable the passing of Interrupt Requests |
| 3             | DivlEnReg      | Controls bits to enable and disable the passing of Interrupt Requests |
| 4             | ComlrqReg      | Contains Interrupt Request bits                                       |
| 5             | DivIrqReg      | Contains Interrupt Request bits                                       |
| 6             | ErrorReg       | Error bits showing the error status of the last command executed      |
| 7             | Status1Reg     | Contains status bits for communication                                |
| 8             | Status2Reg     | Contains status bits of the receiver and transmitter                  |
| 9             | FIFODataReg    | In- and output of 64 byte FIFO-buffer                                 |
| A             | FIFOLevelReg   | Indicates the number of bytes stored in the FIFO                      |
| В             | WaterLevelReg  | Defines the level for FIFO under- and overflow warning                |
| С             | ControlReg     | Contains miscellaneous Control Registers                              |
| D             | BitFramingReg  | Adjustments for bit oriented frames                                   |
| E             | CollReg        | Bit position of the first bit collision detected on the RF-interface  |
| F             | RFU            | Reserved for future use                                               |
| Page 1:       | Command        | ·                                                                     |
| 0             | PageReg        | Selects the register page                                             |
| 1             | ModeReg        | Defines general modes for transmitting and receiving                  |
| 2             | TxModeReg      | Defines the data rate and framing during transmission                 |
| 3             | RxModeReg      | Defines the data rate and framing during receiving                    |
| 4             | TxControlReg   | Controls the logical behavior of the antenna driver pins TX1 and TX2  |
| 5             | TxAutoReg      | Controls the setting of the antenna drivers                           |

|               |                     | S Over viewcontinued                                                                                           |
|---------------|---------------------|----------------------------------------------------------------------------------------------------------------|
| Addr<br>(hex) | Register Name       | Function                                                                                                       |
| 6             | TxSelReg            | Selects the internal sources for the antenna driver                                                            |
| 7             | RxSelReg            | Selects internal receiver settings                                                                             |
| 8             | RxThresholdReg      | Selects thresholds for the bit decoder                                                                         |
| 9             | DemodReg            | Defines demodulator settings                                                                                   |
| A             | FelNFC1Reg          | Defines the length of the valid range for the receive package                                                  |
| В             | FelNFC2Reg          | Defines the length of the valid range for the receive package                                                  |
| С             | MifNFCReg           | Controls the communication in ISO/IEC 14443/MIFARE and NFC target mode at 106 kbit                             |
| D             | ManualRCVReg        | Allows manual fine tuning of the internal receiver                                                             |
| E             | TypeBReg            | Configure the ISO/IEC 14443 type B                                                                             |
| F             | SerialSpeedReg      | Selects the speed of the serial UART interface                                                                 |
| Page 2:       | CFG                 | ·                                                                                                              |
| 0             | PageReg             | Selects the register page                                                                                      |
| 1             | CRCResultReg        | Shows the actual MSB and LSB values of the CRC calculation                                                     |
| 2             |                     |                                                                                                                |
| 3             | GsNOffReg           | Selects the conductance of the antenna driver pins TX1 and TX2 for modulation, when the driver is switched off |
| 4             | ModWidthReg         | Controls the setting of the ModWidth                                                                           |
| 5             | TxBitPhaseReg       | Adjust the TX bit phase at 106 kbit                                                                            |
| 6             | RFCfgReg            | Configures the receiver gain and RF level                                                                      |
| 7             | GsNOnReg            | Selects the conductance of the antenna driver pins TX1 and TX2 for modulation when the drivers are switched on |
| 8             | CWGsPReg            | Selects the conductance of the antenna driver pins TX1 and TX2 for modulation during times of no modulation    |
| 9             | ModGsPReg           | Selects the conductance of the antenna driver pins TX1 and TX2 for modulation during modulation                |
| A             | TModeReg            | Defines settings for the internal timer                                                                        |
| В             | TPrescalerReg       |                                                                                                                |
| С             | TReloadReg          | Describes the 16-bit timer reload value                                                                        |
| D             | 1                   |                                                                                                                |
| E             | TCounterValReg      | Shows the 16-bit actual timer value                                                                            |
| F             |                     |                                                                                                                |
| Page 3:       | TestRegister        |                                                                                                                |
| 0             | PageReg             | selects the register page                                                                                      |
| 1             | TestSel1Reg         | General test signal configuration                                                                              |
| 2             | TestSel2Reg         | General test signal configuration and PRBS control                                                             |
| 3             | TestPinEnReg        | Enables pin output driver on 8-bit parallel bus (Note: For serial interfaces only)                             |
| 4             | TestPin<br>ValueReg | Defines the values for the 8-bit parallel bus when it is used as I/O bus                                       |
| 5             | TestBusReg          | Shows the status of the internal testbus                                                                       |
| 6             | AutoTestReg         | Controls the digital selftest                                                                                  |

 Table 15.
 PN512 registers overview ...continued

PN512 Product data sheet COMPANY PUBLIC

| Table 15. | PN512 | registers | overview | continued |
|-----------|-------|-----------|----------|-----------|
|-----------|-------|-----------|----------|-----------|

| Addr<br>(hex) | Register Name | Function                                |
|---------------|---------------|-----------------------------------------|
| 7             | VersionReg    | Shows the version                       |
| 8             | AnalogTestReg | Controls the pins AUX1 and AUX2         |
| 9             | TestDAC1Reg   | Defines the test value for the TestDAC1 |
| A             | TestDAC2Reg   | Defines the test value for the TestDAC2 |
| В             | TestADCReg    | Shows the actual value of ADC I and Q   |
| C-F           | RFT           | Reserved for production tests           |

#### 8.1.1 Register bit behavior

Depending on the functionality of a register, the access conditions to the register can vary. In principle bits with same behavior are grouped in common registers. In <u>Table 16</u> the access conditions are described.

| Abbreviation | Behavior       | Description                                                                                                                                                                                                                                                                                                                                                  |
|--------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| r/w          | read and write | These bits can be written and read by the $\mu$ -Controller. Since they are used only for control means, there content is not influenced by internal state machines, e.g. the PageSelect-Register may be written and read by the $\mu$ -Controller. It will also be read by internal state machines, but never changed by them.                              |
| dy           | dynamic        | These bits can be written and read by the $\mu$ -Controller.<br>Nevertheless, they may also be written automatically by internal<br>state machines, e.g. the Command-Register changes its value<br>automatically after the execution of the actual command.                                                                                                  |
| r            | read only      | These registers hold bits, which value is determined by internal states only, e.g. the CRCReady bit can not be written from external but shows internal states.                                                                                                                                                                                              |
| w            | write only     | Reading these registers returns always ZERO.                                                                                                                                                                                                                                                                                                                 |
| RFU          | -              | These registers are reserved for future use.<br>In case of a PN512 Version version 2.0 (VersionReg = 82h) a<br>read access to these registers returns always the value "0".<br>Nevertheless this is not guaranteed for future chips versions<br>where the value is undefined. In case of a write access, it is<br>recommended to write always the value "0". |
| RFT          | -              | These registers are reserved for production tests and shall not be changed.                                                                                                                                                                                                                                                                                  |

Table 16. Behavior of register bits and its designation

#### 8.2 Register description

#### 8.2.1 Page 0: Command and status

#### 8.2.1.1 PageReg

Selects the register page.

#### Table 17. PageReg register (address 00h); reset value: 00h, 000000b

|                  | 7              | 6   | 5   | 4   | 3   | 2   | 1     | 0      |
|------------------|----------------|-----|-----|-----|-----|-----|-------|--------|
|                  | UsePage Select | 0   | 0   | 0   | 0   | 0   | Pages | Select |
| Access<br>Rights | r/w            | RFU | RFU | RFU | RFU | RFU | r/w   | r/w    |

#### Table 18. Description of PageReg bits

| Bit    | Symbol        | Description                                                                                                                                                                                                  |
|--------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7      | UsePageSelect | Set to logic 1, the value of PageSelect is used as register address A5 and A4. The LSB-bits of the register address are defined by the address pins or the internal address latch, respectively.             |
|        |               | Set to logic 0, the whole content of the internal address latch defines the register address. The address pins are used as described in <u>Section 9.1 "Automatic microcontroller interface detection"</u> . |
| 6 to 2 | -             | Reserved for future use.                                                                                                                                                                                     |
| 1 to 0 | PageSelect    | The value of PageSelect is used only if UsePageSelect is set to logic 1. In this case it specifies the register page (which is A5 and A4 of the register address).                                           |

#### 8.2.1.2 CommandReg

Starts and stops command execution.

#### Table 19. CommandReg register (address 01h); reset value: 20h, 00100000b

|                  | 7   | 6   | 5      | 4          | 3  | 2   | 1    | 0  |
|------------------|-----|-----|--------|------------|----|-----|------|----|
|                  | 0   | 0   | RcvOff | Power Down |    | Com | mand |    |
| Access<br>Rights | RFU | RFU | r/w    | dy         | dy | dy  | dy   | dy |

#### Table 20. Description of CommandReg bits

| Bit    | Symbol    | Description                                                                                                                                                                                                    |  |  |  |
|--------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 7 to 6 | -         | Reserved for future use.                                                                                                                                                                                       |  |  |  |
| 5      | RcvOff    | Set to logic 1, the analog part of the receiver is switched off.                                                                                                                                               |  |  |  |
| 4      | PowerDown | Set to logic 1, Soft Power-down mode is entered.                                                                                                                                                               |  |  |  |
|        |           | Set to logic 0, the PN512 starts the wake up procedure. During this procedure this bit still shows a 1. A 0 indicates that the PN512 is ready for operations; see <u>Section 15.2 "Soft power-down mode"</u> . |  |  |  |
|        |           | Note: The bit Power Down cannot be set, when the command SoftReset has been activated.                                                                                                                         |  |  |  |
| 3 to 0 | Command   | Activates a command according to the Command Code. Reading this register shows, which command is actually executed (see <u>Section 18.3</u> "PN512 command overview").                                         |  |  |  |

Product data sheet COMPANY PUBLIC

#### 8.2.1.3 CommlEnReg

Control bits to enable and disable the passing of interrupt requests.

#### Table 21. CommIEnReg register (address 02h); reset value: 80h, 1000000b

|                  | 7      | 6     | 5     | 4       | 3          | 2          | 1      | 0        |
|------------------|--------|-------|-------|---------|------------|------------|--------|----------|
|                  | IRqInv | TxIEn | RxIEn | IdleIEn | HiAlertIEn | LoAlertIEn | ErrlEn | TimerIEn |
| Access<br>Rights | r/w    | r/w   | r/w   | r/w     | r/w        | r/w        | r/w    | r/w      |

#### Table 22. Description of CommIEnReg bits

| Bit | Symbol     | Description                                                                                                                                                                                                                                                                                              |
|-----|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7   | lRqInv     | Set to logic 1, the signal on pin IRQ is inverted with respect to bit IRq in the register Status1Reg. Set to logic 0, the signal on pin IRQ is equal to bit IRq. In combination with bit IRqPushPull in register DivIEnReg, the default value of 1 ensures, that the output level on pin IRQ is 3-state. |
| 6   | TxlEn      | Allows the transmitter interrupt request (indicated by bit TxIRq) to be propagated to pin IRQ.                                                                                                                                                                                                           |
| 5   | RxIEn      | Allows the receiver interrupt request (indicated by bit RxIRq) to be propagated to pin IRQ.                                                                                                                                                                                                              |
| 4   | IdleIEn    | Allows the idle interrupt request (indicated by bit IdleIRq) to be propagated to pin IRQ.                                                                                                                                                                                                                |
| 3   | HiAlertIEn | Allows the high alert interrupt request (indicated by bit HiAlertIRq) to be propagated to pin IRQ.                                                                                                                                                                                                       |
| 2   | LoAlertIEn | Allows the low alert interrupt request (indicated by bit LoAlertIRq) to be propagated to pin IRQ.                                                                                                                                                                                                        |
| 1   | ErrlEn     | Allows the error interrupt request (indicated by bit ErrIRq) to be propagated to pin IRQ.                                                                                                                                                                                                                |
| 0   | TimerIEn   | Allows the timer interrupt request (indicated by bit TimerIRq) to be propagated to pin IRQ.                                                                                                                                                                                                              |