# mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



PN7462 family Quick Start Guide - Development Kit

Rev. 1.6 — 14 May 2018 319816

User manual COMPANY PUBLIC

#### Document information

| Info     | Content                                                                                                                                                                                                                                                                                                                                   |  |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Keywords | PN7462 family, Development Kit, Customer board, Quick Start Guide, functional description of the customer board, NFC Cockpit                                                                                                                                                                                                              |  |
| Abstract | This document describes PN7462 Controller Development Kits. It also describes PN7462 software stack, gives directions to run example application using the MCUXpresso IDE. Document provides PN7462 customer board configuration instructions, gives board hardware overview and provides basic steps how to use NFC Cockpit application. |  |



#### **Revision history**

| Rev | Date     | Description                                                    |
|-----|----------|----------------------------------------------------------------|
| 1.6 | 20180514 | Added OM27462CDKP and PNEV7462C description, editorial changes |
| 1.5 | 20180115 | Reworked NFC Cockpit usage description                         |
| 1.4 | 20170907 | Updated Getting started description                            |
|     |          | PN7462 plugin for MCUXpresso not needed form version 10.0.2    |
|     |          | Reworked NFC Cockpit installation description                  |
| 1.3 | 20170511 | Development Kit description added                              |
|     |          | MCUXpresso IDE support added                                   |
|     |          | Board description and schematic updated                        |
|     |          | SW examples description updated                                |
|     |          | Abbreviation section added                                     |
| 1.2 | 20170216 | PNEV7462B customer demo board V2.2 added                       |
|     |          | SW examples description updated                                |
|     |          | Guidelines how to upgrade firmware are updated                 |
|     |          | Figures updated                                                |
| 1.1 | 20161124 | SW examples description updated                                |
|     |          | Guidelines how to import projects are updated                  |
|     |          | Figures updated                                                |
| 1.0 | 20160329 | First release                                                  |

## **Contact information**

For more information, please visit: http://www.nxp.com

## 1. Getting started

This document gives information about how to start software and hardware development with PN7462 NFC Controller Development Kits: OM27462CDK [1] and OM27462CDKP [2]. Development kit ensures easy and quick development of NFC applications running on the PN7462 family [3] derivates. This guide gives extensive kit hardware overview and describes board configuration options.

Document further describes PN7462AU FW and SW examples package. It gives step by step instruction to install MCUXpresso IDE [4] and to run example application. It is also provided extensive introduction to the PN7462 family software stack [5] and describes each example in detail.

Finally, document describes NFC Cockpit [6], custom Windows application used in prototyping and optimization.

In this document the terms "MIFARE DESFire card", "MIFARE Classic card" and "MIFARE Ultralight card" refer either to a MIFARE DESFire IC-based contactless card, a MIFARE Classic IC-based contactless card or a MIFARE Ultralight IC-based contactless card.

## 1.1 Introduction to PN7462 NFC Controller Development Kits

Both, the OM27462CDK and the OM27462CDKP development kits are parts of the PN7462 family product support package. Development Kits are designed to demonstrate all functionalities of the PN7462 family and easies development of customized applications and antenna design.

#### 1.1.1 OM27462CDK

OM27462CDK Development Kit is based on the PNEV7462B board. Content of the Development Kit is displayed on the following picture.



UM10883

Development Kit contains:

- (1) PNEV7462B board with standard 65x65mm antenna
- (2) 30x50mm antenna with matching components
- (3) 3 PCBs for individual antenna matching
- (4) Sample NFC cards and tags
- (5) 2 USB cables; A to mini and A to micro
- (6) 10 PN7462 samples
- (7) 7.5V DC power supply
- (8) LPC-Link 2 debug adapter (OM13054)

#### 1.1.2 OM27462CDKP

OM27462CDKP Development Kit is based on the PNEV7462C board. Content of the Development Kit is displayed on the following picture.



Development Kit contains:

- (1) PNEV7462C board with standard 65x65mm antenna
- (2) 30x50mm antenna with matching components
- (3) 3 x PCBs for individual antenna matching
- (4) Sample NFC cards and tags
- (5) 2 x USB cables: A to mini and A to micro
- (6) 5 x PN7462AU samples (HVQFN64)

(7) LPC-Link 2 debug adapter (OM13054)



At this point a favorite PC/SC application can be started and tested with cards contained in the kit.

## 2. Hardware overview of the PNEV7462B board

## 2.1 PNEV7462B concept

The basic concept of the PNEV7462B board is to enable hardware and software evaluation of typical PN7462 family design and to support prototyping own antenna circuitry. The supporting NFC Cockpit tool enables antenna tuning, DPC calibration and the related TX and RX optimization in run time.

After successful optimization, register settings can be stored in the PN7462AU EEPROM as well as saved in configuration file and used as input in design time.

PN7462AU FW and SW Examples available on the product page, ranging from POS demo, contact and contactless CCID reader, P2P application, NFC forum related examples, are customized primarily for PNEV7462B/C board and supported by MCUXpresso, Keil or IAR development tools.



## 2.2 PNEV7462B board

The board consists of the following blocks:

- (1) PN7462AU circuitry with reset and download pushbuttons,
- (2) External power supply connector (5.5/2.1 socket) and power supply selector,
- (3) LDO regulator circuit for 3.3V and 5V
- (4) LPCXpresso m-bed expansion circuit
- (5) TDA8026 multiple smart card interface circuit
- (6) Antenna coil and related matching circuit (marked in green and orange)
- (7) Smart card socket (main slot on bottom PCB layer) and SIM size slots on top layer
- (8) 65x65mm antenna coil
- (9) 10-pin Cortex debug connector
- (10) 26-pin shroud GPIO header and USB micro B female connector

(11) Diagnostic LED block connected to PN7462AU

## 2.2.1 Power circuitry

The power circuit consists of the power socket, diode bridge, selection jumper JP41 and two low dropout linear voltage regulators. Power options include USB and LPC-Link 2 but for the best performance external power source is recommended.



#### 2.2.2 PN7462AU block

The main part on the evaluation board is PN7462AU. It features a 32-bit ARM Cortex-M0-based NFC microcontroller offering a one chip solution to build contact and contactless applications.

Key features are:

- 20 MHz Cortex-M0 core
  - 80/160 kB Flash, 12 kB RAM, 4 kB EEPROM
- State-of-the-art RF interface: Full NFC, EMVCo 2.6
  - Read/Write, Card Emulation & Peer-to-Peer Modes
  - Transmitter current up to 250 mA
  - Full MIFARE family support,
- DPC for optimized antenna performance
- Extensive host and peripheral interfaces
  - Host/slave & master interfaces: I2C, SPI, USB, HSUART, I2CM, SPIM
  - Optional contact interface (PN7462): UART, ISO/IEC 7816, EMVCo 4.3
  - 12 to 21 GPIOs

**UM10883** 



#### 2.2.3 LPCXpresso block

This block provides expansion interface for LPCXpresso MCU board providing standard LPCXpresso/m-bed expansion connector (DIL54). LPCXpresso SPIM and I2CM interfaces are routed to the PN7462AU host interface selector.

Additionally, board features a USB micro B connector (X1) routed to the LPC board USB interface and the LPC board reset circuit. Diagnostic LED1-4 are connected to LPC port pins.

## 2.2.4 Smartcard interface

The PN7462AU integrates contact interface to enable communication with ISO7816 and EMVCo contact smart cards, without the need for an external contact front end. It offers a high level of security for the cards by performing current limitation, short-circuit detection, ESD protection as well as supply supervision. Card slot/contactor is located on the board bottom layer.



## 2.2.5 TDA SAM extension interfaces

The PN7462AU can handle more than one smart card by controlling an extra contact interface TDA8026 product from NXP. In this use case, the PN7462AU is the main controller for the electrical and protocol part for the main card slot, while the secondary slots are electrically controlled by an extra contact front-end interface (TDA), the PN7462AU being the protocol controller for these extra slots. TDA8026 I2C port is connected to the PN7462 I2CM to enable IC configuration.

In this case, several smart cards can be activated at the same time, but the communication with each smart card has to go sequentially: it is not possible to communicate with two smart cards at the same time as there is only one protocol control block for all cards.

TDA8026 is required to handle the smart card electrical interface. The connection between the PN7462AU and the TDA is composed of 2 channels:

- The host interface control, where the PN7462AU is the master, controlling the TDA behavior: card activation, deactivation, TDA configuration (voltage level, clock division, slew rates...)
- The ISO7816 link: the PN7462AU handles the ISO7816 communication protocol and uses the TDA as a level shifter for the clock and I/O signals.

**UM10883** 



UM10883

User manual

## 2.2.6 Antenna coil and related matching circuit

In general, there are two antenna tunings possible with PNEV7462B board:

- asymmetrical
- symmetrical

The asymmetrical tuning is the standard tuning as taken from the existing NXP NFC frontend design recommendations. It uses EMC cut off frequencies >17MHz, which results in an asymmetrical transfer function, but shows a good detuning and loading behavior. The asymmetrical transfer function has some disadvantages regarding the pulse shapes and receiver performance, and requires a slightly reduced Q factor of the antenna coil circuit itself.

Symmetrical coupling is used with DPC (Dynamic Power Control) feature of the PN7462 and offers an improved overall RF performance. This requires the antenna to be "symmetrically" tuned and it requires the AGC to correlate with the driver current ITVDD. and it requires the dynamic power control to be properly calibrated. The DPC Antenna tuning ("symmetrical tuning with DPC) combines the advantages of enough field strength at 4cm with the automatic power control to limit the maximum field strength at a close distance. This tuning assures passing related EMVCo tests.

#### 2.2.6.1 Default board antenna

Default 65x65 mm board antenna is designed to use symmetrical tuning (see Fig 9). This antenna is not an optimal antenna as such, but intends to demonstrate the performance and register settings of the PN7462 under typical design constraints like LCD or another metallic object (e.g. PCB) inside the antenna area. Inside of the antenna area is filed of 10x10 fields simulating metallic object in real application.

UM10883



The antenna connection uses the standard tuning circuit Fig 10. The EMC filter is typically a second order low pass filter as shown in Fig 18, and contains an inductor (L0) and a capacitor (C0). The cut off frequency defines the overall detuning behavior as well as the transfer function of the antenna circuit. For symmetrical (DPC) tuning, EMC filter is designed with a cut off frequency of  $f_{EMC} = 14,8$  MHz, and the antenna impedance is tuned to Z = 20 $\Omega$ .



**UM10883** 



Table 1 lists components for the "symmetric" matching.

| Table 1. Assembled matching components |                        |       |                                           |  |
|----------------------------------------|------------------------|-------|-------------------------------------------|--|
| General component                      | Component<br>PNEV7462B | Value | Comment                                   |  |
| LO                                     | L4/ L7                 | 470nH | PNEV7462B V2.1-><br>0603LS-471NXJBC       |  |
|                                        |                        |       | <u>PNEV7462B V2.2</u> -><br>36502AR47JTDG |  |
| C0                                     | C28/ C31               | 100pF | C0 split in 3 parallel                    |  |
|                                        | C29/ C32               | 27pF  | capacitors                                |  |
|                                        | C38/ C44               | 120pF |                                           |  |
| C1                                     | C35/ C49               | 33pF  |                                           |  |

| General component | Component<br>PNEV7462B | Value | Comment                              |
|-------------------|------------------------|-------|--------------------------------------|
|                   | C37/ C47               | 1pF   | C1 split in 2 parallel<br>capacitors |
| C21               | C40/ C46               | 120pF |                                      |
| C22               | C41/ C43               | 68pF  |                                      |
| Rs                | R117/ R119             | 2,2Ω  | R₅ split in 2 parallel               |
|                   | R118/ R120             | 2,2Ω  | resistors                            |

Note: Without proper DPC calibration the loading and detuning might exceed the ITVDD limit, if the symmetrical tuning is used. This might destroy the NFC reader IC

#### 2.2.6.2 PCB for individual antenna matching

Development kit contains 3 PCB boards for individual antenna matching. This boards are intended for prototyping custom asymmetrical or symmetrical (DPC) antenna design. Default matching circuit can be replaced by individual antenna matching PCB.

#### 2.3 PNEV7462B board available versions

Following Versions of the PNEV7462B board are available

- PNEV7462B V2.1
- PNEV7462B V2.2

#### 2.3.1 PNEV7462B V2.1

The V2.1 of the customer evaluation board is the initial version of the board that comes with the launch of the PN7462AU chip.



#### 2.3.2 PNEV7462B V2.2

The V2.2 of the customer evaluation board is the replacement and latest version of the customer evaluation board incl. FCC certification. Functionality of the V2.2 is the same as of V2.1.



Design changes V2.1 to V2.2:

- External supply maximum value increased from 7.5V to12V
- Different routing (PNEV7462B V2.1 stays the board reference design which can be obtained from the NXP DocStore [8]). Layout recommendations for NFC readers can be found in AN11090.
- Changed EMC filter components

## 3. Configuration of the PNEV7462B board

## 3.1 Board power settings

There are three power supply options on the PNEV7462B board. It can be powered either from an external off-board power supply on DC power connector, from LPC USB connector X1 and from USB port on connector X3.

Jumper JP41setting (Fig 14) needs to be done to prepare the board for one of the power supply options.



#### 3.1.1 PN7462AU supply options

The boards offer several ways of supplying the PN7462AU IC. The main chip supply (VBUS) can be set to 5V, 3.3 V or USB supply. The corresponding setting is described in Fig 15



## 3.1.2 Power supply status LED

If all jumpers are set correctly, the following LEDs should light green:

3V3, 5 V and VBUS. In Fig 16 the position of the three different LED's is shown.



## 3.1.3 Supply options for PVDD, VUP\_TX and TVDD

The PN7462AU allows different options of supplying PVDD\_IN, PVDDM\_IN as well as for TVDD\_IN and VUP\_TX.

The default setting is to use the internal supply for PVDD as well as TVDD. That means default setting is PVDD\_IN connected to PVDD\_OUT, and TVDD\_IN connected to TVDD\_OUT.

The default setting on the board is marked in Fig 17.

**UM10883** 



To change settings, the corresponding shortcut resistors (marked in Fig 17) needs to be placed to the corresponding position (default settings are marked in green):

| Table 2. Supply options |          |
|-------------------------|----------|
| Supply options          |          |
| VUP_TX                  | 3V3      |
|                         | 5V       |
|                         | VBUS     |
|                         | EXT      |
| TVDD_IN                 | TVDD_OUT |
|                         | 3V3      |
|                         | 5V       |
|                         | VBUS     |
|                         | EXT      |
| PVDD_IN                 | 3V3      |
|                         | PVDD_OUT |
| PVDDM_IN                | 3V3      |
|                         | PVDD_OUT |
|                         |          |

#### Note:

If PVDD is externally supplied, the Jumper 42 (PVDD\_OUT) needs to be set. By setting this Jumper the PVDD\_OUT is shorted to GND and the PN7462AU turns off the PVDD LDO.

## 3.2 Host interface configuration

The PN7462AU supports interfacing one out of the four different host: USB 2.0 full speed with USB 3.0 hub connection capability, HSUART for serial communication, supporting standards speeds from 9600 bit/s to 115200 bit/s, and faster speed up to 1.288 Mbit/s, SPI with half duplex and full duplex capability with speeds up to 7 Mbit/s and I2C supporting standard mode, fast mode and high-speed mode with multiple address support.

The PN7462AU connects to host through four pads with alternate function: ATX A. ATX B, ATX C and ATX D. The ATX pads are routed at the JP32 10-pin header, according the following table:

| Table 3. | PN7462 HIF pins           |          |  |
|----------|---------------------------|----------|--|
| Pin name | Description               | JP32 pin |  |
| ATX_A    | HSU_RX/I2C_SCL/SPI_NSS    | 1        |  |
| ATX_B    | HSU_TX/I2C_SDA/SPI_MOSI   | 3        |  |
| ATX_C    | HSU_RTS_N/SPI_MISO/USB_DP | 5        |  |
| ATX_D    | HSU_CTS_N/SPI_MOSI/USB_DM | 7        |  |

## -----

#### 3.2.1.1 USB Host Interface configuration

The yellow marked jumpers on the following picture shows how the board needs to be set for using the USB host interface of the chip. The USB micro connector X3 is located in the lower right corner of the board.



#### 3.2.1.2 I2C Host Interface configuration

The yellow marked jumpers (Fig 18) needs to be set for using the I2C host interface of the chip with LPCXpresso expansion board. This will connect the I<sup>2</sup>C SCL of the PN7462AU to the I/O P0 (28) and also the I<sup>2</sup>C SDA of the PN7462AU to the I/O P0(27) of the LPCXpresso board.

UM10883



In case that external host needs to be connected to the PN7462 over I<sup>2</sup>C interface then corresponding I<sup>2</sup>C interface lines can be accessed directly on the JP32 according the Table 3 and additional jumper configuration is not needed.

#### 3.2.1.3 SPI Host Interface configuration

The yellow marked jumpers (Fig 20) needs to be set for using the SPI host interface of the chip. This will connect the SPI\_MOSI of the PN7462AU to the I/O P0(18), SPI\_MISO to the I/O P0(17), SCK to the I/O P0(15), and also the NSS of the PN7642AU to the I/O P0(16) of the LPCXpresso board.



In case that external host needs to be connected to the PN7462 over SPI interface then corresponding SPI interface lines can be accessed directly on the JP32 according the Table 3 and additional jumper configuration is not needed.

UM10883

#### 3.2.1.4 HSUART Interface configuration

The yellow marked jumpers (Fig 21) needs to be set to select HSUART host interface. This will connect the UART\_RX of the PN7462AU to the I/O P0(0), UART\_TX of the PN7462AU to the I/O P0(1) of the LPCXpresso board extension m-bed connector.



In case that external host needs to be connected to the PN7462 over HSUART interface then corresponding HSUART interface lines (RX, TX, CTS, RTS) can be accessed directly on the JP32 according the Table 3 and additional jumper configuration is not needed.

#### 3.2.2 Debug interface

The PNEV7462B board is equipped with a SWD interface. The SWD 10-pin Cortex connector is placed in the bottom left corner of the board. LPC-Link 2 standalone debug probe can be used to flash or debug application on the PN7462AU as illustrated on the Fig 22.



## 4. Hardware overview of the PNEV7462C board

## 4.1 PNEV7462C board concept

The basic concept of the PNEV7462C board is to enable hardware and software evaluation of typical PN7462 family design and to support prototyping own antenna circuitry. The supporting NFC Cockpit tool enables antenna tuning, DPC calibration and the related TX and RX optimization in run time.

After successful optimization, register settings can be stored in the EEPROM as well as saved in configuration file and used as input in design time.

<u>PN7462AU FW and SW Examples</u> available on the product page, ranging from POS demo, contact and contactless CCID reader, P2P application, NFC forum related examples, are customized primarily for PNEV7462B/C board and supported by MCUXpresso, Keil or IAR development tools.

## 4.2 PNEV7462C board overview



The board consists of the following blocks:

- 1. PN7462AU circuitry with reset and download pushbuttons and power configurations
- 2. External power supply connector (5.5/2.1 socket) and power supply selector
- 3. Power supply status LEDs for 3.3V and 5V
- 4. Antenna matching circuit and antenna connector
- 5. 65x65mm antenna coil
- 6. HIF (host interface) SPI, I2C and USART pins
- 7. SWD interface (10-pin Cortex debug connector)

- 8. GPIO header and LEDs
- 9. USB interface micro USB connector X3

Note: on the bottom side is placed smartcard connector

#### 4.2.1 Power circuitry

The power circuit consists of the power socket, diode bridge, selection jumper JP2 and two low dropout linear voltage regulators. Power options include USB and External but for the best performance external power source is recommended.



#### 4.2.2 PN7462AU block

The main part on the evaluation board is PN7462AU. It features a 32-bit ARM Cortex-M0-based NFC microcontroller offering a one chip solution to build contact and contactless applications.

Key features are:

- 20 MHz Cortex-M0 core
  - 80/160 kB Flash, 12 kB RAM, 4 kB EEPROM
- State-of-the-art RF interface: Full NFC, EMVCo 2.6
  - Read/Write, Card Emulation & Peer-to-Peer Modes
  - Transmitter current up to 250 mA
  - Full MIFARE family support,
- DPC for optimized antenna performance
- Extensive host and peripheral interfaces
  - Host/slave & master interfaces: I2C, SPI, USB, HSUART, I2CM, SPIM
  - Optional contact interface (PN7462): UART, ISO/IEC 7816, EMVCo 4.3
  - 12 to 21 GPIOs

**UM10883** 



#### 4.2.3 Smartcard interface

The PN7462AU integrates contact interface to enable communication with ISO7816 and EMVCo contact smart cards, without the need for an external contact front end. It offers a high level of security for the cards by performing current limitation, short-circuit detection, ESD protection as well as supply supervision. Card slot/contactor is located on the board bottom side.



## 4.2.4 Antenna coil and related matching circuit

In general, there are two antenna tunings possible with the board:

- asymmetrical
- symmetrical

The asymmetrical tuning is the standard tuning as taken from the existing NXP NFC frontend design recommendations. It uses EMC cut off frequencies >17MHz, which results in an asymmetrical transfer function, but shows a good detuning and loading behavior. The asymmetrical transfer function has some disadvantages regarding the pulse shapes and receiver performance, and requires a slightly reduced Q factor of the antenna coil circuit itself.

Symmetrical coupling is used with DPC (Dynamic Power Control) feature of the PN7462AU and offers an improved overall RF performance. This requires the antenna to be "symmetrically" tuned and it requires the AGC to correlate with the driver current ITVDD. and it requires the dynamic power control to be properly calibrated. The DPC Antenna tuning ("symmetrical tuning with DPC) combines the advantages of enough field strength at 4cm with the automatic power control to limit the maximum field strength at a close distance. This tuning assures passing related EMVCo tests.

#### 4.2.4.1 Default board antenna

Default 65x65 mm board antenna is designed to use symmetrical tuning (see Fig 9). This antenna is not an optimal antenna as such, but intends to demonstrate the performance and register settings of the PN7462 under typical design constraints like LCD or another metallic object (e.g. PCB) inside the antenna area. Inside of the antenna area is filed of 10x10 fields simulating metallic object in real application.

UM10883

User manual

**COMPANY PUBLIC**