

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

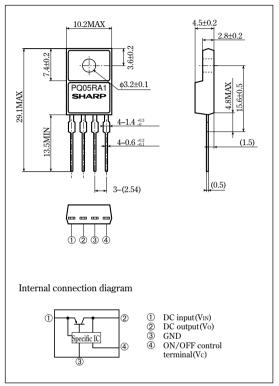
(Unit:mm)

PQ05RA1/PQ05RA11 Series

OFF-state Low Dissipation Current 1A Output, Low Power-Loss Voltage Regulators

Features

- Low power-loss (Dropout voltage:MAX.0.5V)
- Compact resin full-mold package
- OFF-state low dissipation current (Iqs:1µA, 1/10⁴ as compared to former model PQ05RF1)
- Built-in ON/OFF control function


Applications

 Series power supplies for OA and AV equipment such as camcorders, word processors, etc.

■ Model Line-ups

	_		
Output voltage	5V Output	9V Output	12V Output
Output voltage precision:±5%	PQ05RA1	PQ09RA1	PQ12RA1
Output voltage precision:±2.5%	PQ05RA11	PQ09RA11	PQ12RA11

Outline Dimensions

Absolute Maximum Ratings

 $(T_a=25^{\circ}C)$

Parameter	Symbol	Rating	Unit
*1 Input voltage	Vin	35	V
*1 ON/OFF control terminal voltage	Vc	35	V
Output current	Io	1	A
Power dissipation (No heat sink)	P _{D1}	1.5	W
Power dissipation (With infinite heat sink)	P _{D2}	15	W
*2 Junction temperature	Tj	150	°C
Operating temperature	Topr	-20 to +80	°C
Storage temperature	Tstg	-40 to +150	°C
*3 Soldering temperature	Tsol	260	°C

^{*1} All are open except GND and applicable terminals.

SHARP

^{**2} Overheat protection may operate at 125<=Tj<=150°C.</p>

^{*3} For 10s.

Please refer to the chapter " Handling Precautions ".

■ Electrical Characteristics

(Unless otherwise specified condition shall be Io=0.5A, Ta=25°C*4)

Para	meter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Output voltage	PQ05RA1	Vo	-	4.75	5.0	5.25	V
	PQ09RA1			8.55	9.0	9.45	
	PQ12RA1			11.4	12.0	12.6	
	PQ05RA11			4.88	5.0	5.12	
	PQ09RA11			8.78	9.0	9.22	
	PQ12RA11			11.7	12.0	12.3	
Load regulation		RegL	Io=5mA to 1.0A	_	0.1	2.0	%
Line regulation		RegI	* 5	_	0.2	2.5	%
Temperature coeffic	cient of output voltage	TcVo	T _j =0 to 125°C	_	±0.004	-	%/°C
Ripple rejection		RR	Refer to Fig.2	45	55	-	dB
Dropout voltage		Vi-o	*6	ı	ı	0.5	V
ON-state voltage	for control	Vc(on)	_	2.0	1	-	V
ON-state current	for control	Ic(on)	_	_	-	200	μA
*7 OFF-state voltage	for control	Vc (off)	_	_	1	0.8	V
OFF-state current	for control	Ic(off)	Vc=0.4V	ı	ı	2	μA
Quiescent curren	t	I_{q}	Io=0A, V _{IN} =35V	-	1	8	mA
Output OFF-state comsumpion current		I_{qs}	I ₀ =0A, V _{IN} =35V V _C =0.4V	_	_	1	μА

^{*4} PQ05RA1 series:V_{IN}=7V, PQ09RA1 series:V_{IN}=11V, PQ12RA1 series:V_{IN}=14V

PQ09RA1/PQ09RA11: $V_{\rm IN}$ =10 to 20V

PQ12RA1/PQ12RA11: $V_{\rm IN}$ =13 to 23V

Fig.1 Test Circuit

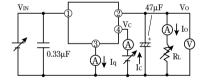


Fig.2 Test Circuit of Ripple Rejection

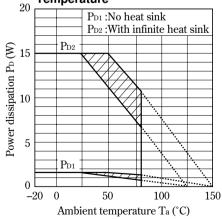
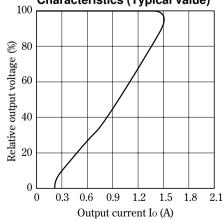
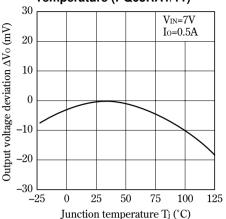




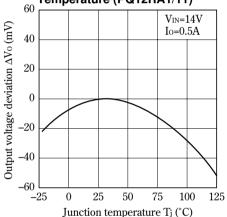
Fig.3 Power Dissipation vs. Ambient Temperature

Note) Oblique line portion: Overheat protection may operate in this area.

Fig.4 Overcurrent Protection
Characteristics (Typical value)



^{*5} PQ05RA1/PQ05RA11:VIN=6 to 16V


^{*6} Input voltage shall be the value when output voltage is 95% in comparison with the initial value.

^{*7} In case of opening control terminal 4, output voltage turns off.

Output Voltage Deviation vs. Junction Temperature (PQ05RA1/11)

Output Voltage Deviation vs. Junction Temperature (PQ12RA1/11)

Output Voltage vs. Input Voltage (PQ09RA1/11)

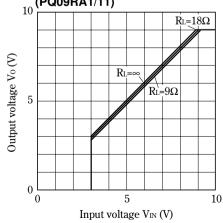


Fig.6 Output Voltage Deviation vs. Junction Temperature (PQ09RA1/11)

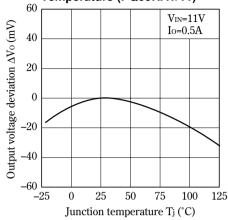


Fig.8 Output Voltage vs. Input Voltage (PQ05RA1/11)

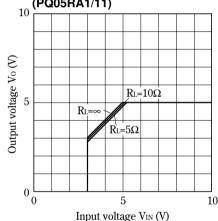


Fig.10 Output Voltage vs. Input Voltage (PQ12RA1/11)

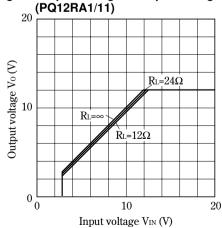


Fig.11 Circuit Operating Current vs. Input Voltage (PQ05RA1/11)

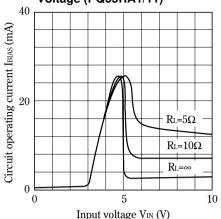


Fig.13 Circuit Operating Current vs. Input Voltage (PQ12RA1/11)

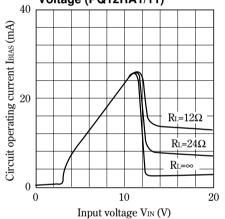


Fig.15 Quiescent Current vs. Junction

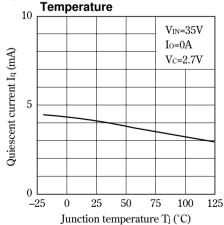


Fig.12 Circuit Operating Current vs. Input Voltage (PQ09RA1/11)

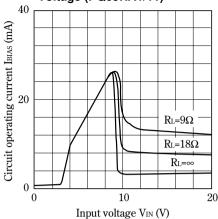


Fig.14 Dropout Voltage vs. Junction Temperature

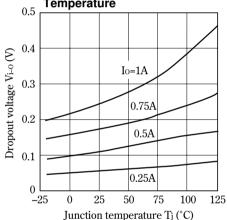


Fig.16 Ripple Rejection vs. Input Ripple Frequency

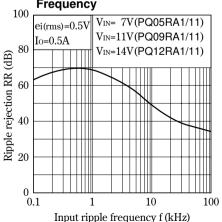


Fig.17 Ripple Rejection vs. Output Current

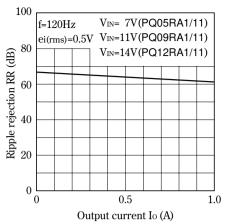


Fig.19 Output Peak Current vs. Input-output Differential Voltage

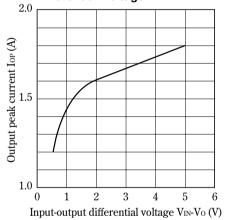
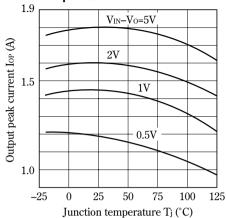
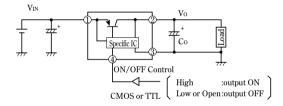




Fig.18 Output Peak Current vs. Junction Temperature

■ Typical Application

NOTICE

- The circuit application examples in this publication are provided to explain representative applications of SHARP
 devices and are not intended to guarantee any circuit design or license any intellectual property rights. SHARP takes
 no responsibility for any problems related to any intellectual property right of a third party resulting from the use of
 SHARP's devices.
- Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device. SHARP
 reserves the right to make changes in the specifications, characteristics, data, materials, structure, and other contents
 described herein at any time without notice in order to improve design or reliability. Manufacturing locations are
 also subject to change without notice.
- Observe the following points when using any devices in this publication. SHARP takes no responsibility for damage
 caused by improper use of the devices which does not meet the conditions and absolute maximum ratings to be used
 specified in the relevant specification sheet nor meet the following conditions:
 - (i) The devices in this publication are designed for use in general electronic equipment designs such as:
 - --- Personal computers
 - --- Office automation equipment
 - --- Telecommunication equipment [terminal]
 - --- Test and measurement equipment
 - --- Industrial control
 - --- Audio visual equipment
 - --- Consumer electronics
 - (ii) Measures such as fail-safe function and redundant design should be taken to ensure reliability and safety when SHARP devices are used for or in connection with equipment that requires higher reliability such as:
 - --- Transportation control and safety equipment (i.e., aircraft, trains, automobiles, etc.)
 - --- Traffic signals
 - --- Gas leakage sensor breakers
 - --- Alarm equipment
 - --- Various safety devices, etc.
 - (iii)SHARP devices shall not be used for or in connection with equipment that requires an extremely high level of reliability and safety such as:
 - --- Space applications
 - --- Telecommunication equipment [trunk lines]
 - --- Nuclear power control equipment
 - --- Medical and other life support equipment (e.g., scuba).
- Contact a SHARP representative in advance when intending to use SHARP devices for any "specific" applications
 other than those recommended by SHARP or when it is unclear which category mentioned above controls the
 intended use.
- If the SHARP devices listed in this publication fall within the scope of strategic products described in the Foreign Exchange and Foreign Trade Control Law of Japan, it is necessary to obtain approval to export such SHARP devices.
- This publication is the proprietary product of SHARP and is copyrighted, with all rights reserved. Under the copyright laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP. Express written permission is also required before any use of this publication may be made by a third party.
- Contact and consult with a SHARP representative if there are any questions about the contents of this publication.