

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

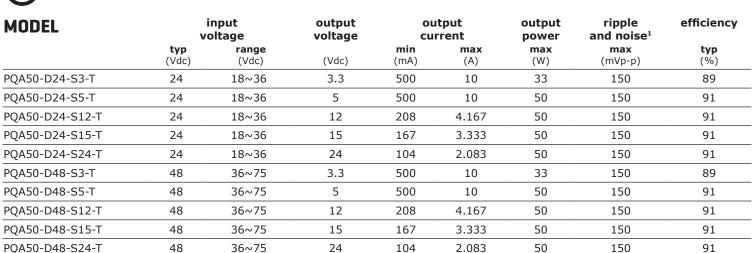
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

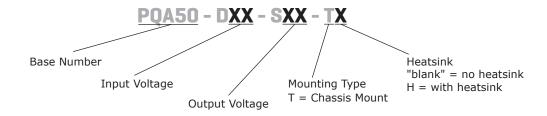
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

date 07/15/2015


page 1 of 7

SERIES: PQA50-T | **DESCRIPTION:** DC-DC CONVERTER

FEATURES


- up to 50 W isolated output
- 2:1 input range (18~36 Vdc, 36~75 Vdc)
- smaller package
- single, regulated output
- 1,500 Vdc isolation
- short circuit, over current, input under voltage protection
- inverse polarity protection
- remote on/off
- operating temperature range (-40~85°C)
- six sided metal shielding
- efficiency up to 91%

Notes: 1. Ripple and noise are measured at 20 MHz BW by "parallel cable" method with 1 μ F ceramic and 10 μ F electrolytic capacitors on the output.

PART NUMBER KEY

INPUT

parameter	conditions/description	min	typ	max	units
anarating input valtage	24 Vdc input models	18	24	36	Vdc
operating input voltage	48 Vdc input models	36	48	75	Vdc
	input under voltage protection				
	24 Vdc input models	18			Vdc
start un voltago	48 Vdc input models	36			Vdc
start-up voltage	input over voltage protection				
	24 Vdc input models			36	Vdc
	48 Vdc input models			75	Vdc
	input under voltage protection				
	24 Vdc input models			16	Vdc
under/over voltage shutdown	48 Vdc input models			32	Vdc
	input over voltage protection				
	24 Vdc input models	40			Vdc
	48 Vdc input models	81			Vdc
	for maximum of 1 second				
surge voltage	24 Vdc input models	-0.7		50	Vdc
	48 Vdc input models	-0.7		100	Vdc
start-up time	nominal input, constant load		10		ms
	models ON (CTRL open or connect TTL hig	h level, 3~12 Vdc)			
CTRL ¹	models OFF (CTRL connect GND or low lev	el, 0~1.2 Vdc)			
	input current (models OFF)		6		mA
filter	pi filter				-

OUTPUT

parameter	conditions/description	min	typ	max	units
line regulation	full load, input voltage from low to high		±0.2	±0.5	%
load regulation	10% to 100% load		±0.5	±1	%
voltage accuracy			±1	±3	%
adjustability			±10		%
switching frequency	PWM mode		320		kHz
transient recovery time	25% load step change		300	500	μs
transient response deviation	25% load step change		±3	±5	%
temperature coefficient	100% load		±0.02		%/°C

PROTECTIONS

parameter	conditions/description	min	typ	max	units
	3.3 Vdc output models		3.9		Vdc
	5 Vdc output models		6.2		Vdc
over voltage protection ²	12 Vdc output models		15		Vdc
	15 Vdc output models		18		Vdc
	24 Vdc output models		30		Vdc
over current protection			135		%
short circuit protection	continuous, automatic recovery, hiccup				
over temperature protection			110		°C

Note 2. Module needs to be re-started after over voltage protection.

SAFETY AND COMPLIANCE

parameter	conditions/description	min	typ	max	units
isolation voltage	input to output at 1 mA for 1 minute	1,500			Vdc
isolation resistance	input to output at 500 Vdc	1,000			MΩ
isolation capacitance	input to output at 100 kHz, 0.1 Vdc		2,000		pF
conducted emissions	CISPR22/EN55022 class B (external circuit r	equired, see figure 1))		
radiated emissions	CISPR22/EN55022 class B (external circuit r	equired, see figure 1))		
ESD	IEC/EN61000-4-2 class B, contact \pm 4kV				
radiated immunity	IEC/EN61000-4-3 class A, 10V/m				
EFT/burst	IEC/EN61000-4-4 class B, ± 2kV (external circuit required, see figure 1)				
surge	IEC/EN61000-4-5 class B, ± 2kV (external circuit required, see figure 1)				
conducted immunity	IEC/EN61000-4-6 class A, 3 Vr.m.s				
voltage dips & interruptions	IEC/EN61000-4-29 class B, 0%-70%				
MTBF	as per MIL-HDBK-217F @ 25°C	1,000,000			hours
RoHS	2011/65/EU				

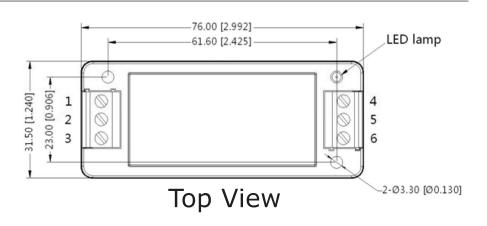
ENVIRONMENTAL

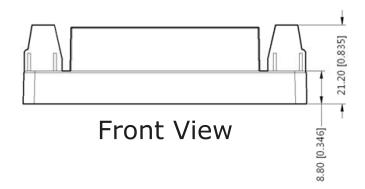
parameter	conditions/description	min	typ	max	units
operating temperature	see derating curve	-40		85	°C
storage temperature		-55		125	°C
storage humidity	non-condensing	5		95	%
case temperature	erature at full load, operating temperature curve range		105	°C	
vibration	10~55 Hz, 30 min. along x, y, and z			10	G

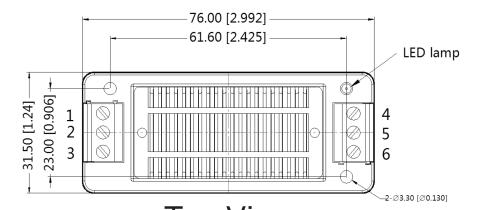
MECHANICAL

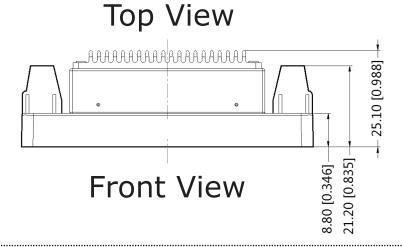
parameter	conditions/description	min	typ	max	units
chassis mount: 76.0 x 31.5 x 21.2 chassis mount with heatsink: 76.0 x 31.5 x 25.1					mm mm
case material	aluminum alloy				
weight	chassis mount chassis mount with heatsink		57 65		g g

MECHANICAL DRAWING


CHASSIS MOUNT

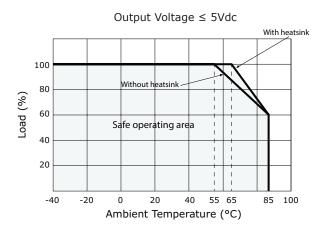

units: mm[inch]

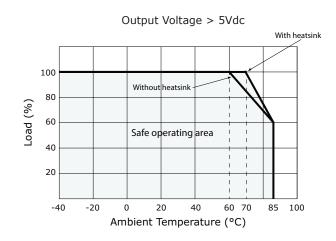

tolerance: $\pm 0.50[\pm 0.020]$


wire range: 24~12 AWG

PIN CONNECTIONS		
PIN	Function	
1	CTRL	
2	GND	
3	Vin	
4	Trim	
5	0V	
6	+Vo	

CHASSIS MOUNT WITH HEATSINK


units: mm[inch]


tolerance: $\pm 0.50[\pm 0.020]$

wire range: 24~12 AWG

PIN CONNECTIONS		
PIN	Function	
1	CTRL	
2	GND	
3	Vin	
4	Trim	
5	0V	
6	+Vo	

DERATING CURVES

EMC RECOMMENDED CIRCUIT

Figure 1

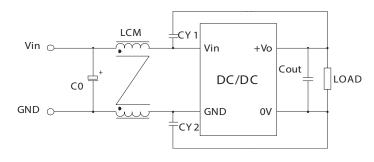


Table 1

Recommended external circuit components				
Vin (Vdc)	24	48		
C0	330µF/50V	330µF/100V		
CY1, CY2	1nF/2kV	1nF/2kV		
LCM	2.2mH	2.2mH		

Note: 1. See Table 3 for Cout values.

TEST CONFIGURATION

Figure 2

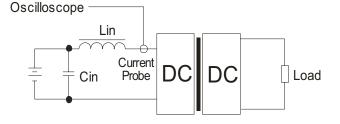


Table 2

External components			
Lin	4.7µH		
Cin	$220\mu\text{F, ESR} < 1.0\Omega$ at 100 kHz		

Note: 1. Input reflected-ripple current is measured with an inductor Lin and Capacitor Cin to simulate source impedance.

APPLICATION NOTES

Requirement on output load

To ensure this module can operate efficiently and reliably, the minimum output load cannot be less than 5% of the full load during operation. If the actual output power is small, please connect a resistor at the output end in parallel to increase the load.

Recommended circuit

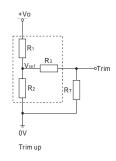
This series has been tested according to the following recommended testing circuit before leaving the factory. This series should be tested under load (see Figure 3). If you want to further decrease the input/output ripple, you can increase capacitance properly or choose capacitors with low ESR (see table 3). However, the capacitance must not exceed the maximum capacitive load or a start-up problem might arise (see table 4).

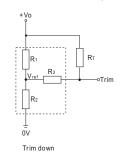
Figure 3 Vin o +Vout Cin⊆ DC DC **GND**

Table 3

Vout (Vdc)	Cin (µF)	Cout (µF)
3.3	100	220
5	100	220
12	100	100
15	100	100
24	100	47

Table 4


Vout (Vdc)	Max. Capacitive Load (μF)
3.3	27000
5	18900
12	3700
15	2000
24	1000


Output Voltage Trimming

Leave open if not used.

Figure 4

Application Circuit for Trim Pin (part in broken line is the interior of models)

Formula for Trim Resistor

up:
$$R_T = \frac{aR_2}{R_2 - a} - R_3$$
 $a = \frac{Vref}{Vo'-Vref} \cdot R_1$

down:
$$R_T = \frac{aR_1}{R_1-a} - R_3$$
 $a = \frac{Vo'-Vref}{Vref} \cdot R_2$

Note: Value for R1, R2, R3, and Vref (see Table 5)

R₊: Trim Resistor

a: User-defined parameter, no actual meanings

Vo': The trim up/down voltage

Vout (Vdc)	R1 (kΩ)	R2 (kΩ)	R3 (kΩ)	Vref (V)
3.3	4.788	2.87	15	1.24
5	2.87	2.87	12.1	2.5
12	11	2.87	22	2.5
15	15	3	22	2.5
24	20	2.308	15	2.5

Table 5

3.3	4.788	2.87	15	1.24
5	2.87	2.87	12.1	2.5
12	11	2.87	22	2.5
15	15	3	22	2.5
24	20	2.308	15	2.5

Notes:

- 1. Minimum load shouldn't be less than 5%, otherwise ripple may increase dramatically. Operation under minimum load will not damage the converter, however, they may not meet all specifications listed.
- 2. Maximum capacitive load is tested at input voltage range and full load.
- 3. All specifications are measured at Ta=Z5°C, humidity<75%, nominal input voltage and rated output load unless otherwise specified.

REVISION HISTORY

rev.	description	date
1.0	initial release	01/21/2014
1.01	updated datasheet	07/15/2015

The revision history provided is for informational purposes only and is believed to be accurate.

Headquarters 20050 SW 112th Ave. Tualatin, OR 97062 **800.275.4899**

Fax 503.612.2383 **cui**.com techsupport@cui.com

CUI offers a two (2) year limited warranty. Complete warranty information is listed on our website.

CUI reserves the right to make changes to the product at any time without notice. Information provided by CUI is believed to be accurate and reliable. However, no responsibility is assumed by CUI for its use, nor for any infringements of patents or other rights of third parties which may result from its use.

CUI products are not authorized or warranted for use as critical components in equipment that requires an extremely high level of reliability. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.