imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

SERIES: PQMC1-S | DESCRIPTION: DC-DC CONVERTER

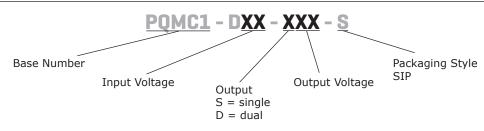
FEATURES

- 1 W isolated output
- smaller package
- single/dual regulated output
- 1,500 Vdc isolation
- short circuit protection
- temperature range (-40~105°C)
- high efficiency at light load

.....

• efficiency up to 81%

ROHS


MODEL		nput oltage	output voltage		itput rrent	output power	ripple and noise ¹	efficiency
	typ (Vdc)	range (Vdc)	(Vdc)	min (mA)	max (mA)	max (W)	max (mVp-p)	typ (%)
PQMC1-D5-S5-S	5	4.5~9	5	10	200	1	75	72
PQMC1-D5-S12-S	5	4.5~9	12	4	83	1	75	76
PQMC1-D5-S15-S	5	4.5~9	15	3	67	1	75	75
PQMC1-D5-D5-S	5	4.5~9	±5	±5	±100	1	75	73
PQMC1-D5-D12-S	5	4.5~9	±12	±2	±42	1	75	76
PQMC1-D5-D15-S	5	4.5~9	±15	±2	±33	1	75	75
PQMC1-D12-S3-S	12	9~18	3.3	15	303	1	75	75
PQMC1-D12-S5-S	12	9~18	5	10	200	1	75	77
PQMC1-D12-S9-S	12	9~18	9	6	111	1	75	79
PQMC1-D12-S12-S	12	9~18	12	4	83	1	75	80
PQMC1-D12-S15-S	12	9~18	15	3	67	1	75	80
PQMC1-D12-D5-S	12	9~18	±5	±5	±100	1	75	78
PQMC1-D12-D12-S	12	9~18	±12	±2	±42	1	75	81
PQMC1-D12-D15-S	12	9~18	±15	±2	±33	1	75	80
PQMC1-D24-S3-S	24	18~36	3.3	15	303	1	75	75
PQMC1-D24-S5-S	24	18~36	5	10	200	1	75	77
PQMC1-D24-S12-S	24	18~36	12	4	83	1	75	81
PQMC1-D24-S15-S	24	18~36	15	3	67	1	75	79
PQMC1-D24-S24-S	24	18~36	24	2	42	1	75	77
PQMC1-D24-D5-S	24	18~36	±5	±5	±100	1	75	80
PQMC1-D24-D12-S	24	18~36	±12	±2	±42	1	75	80
PQMC1-D24-D15-S	24	18~36	±15	±2	±33	1	75	80
PQMC1-D48-S3-S	48	36~75	3.3	15	303	1	75	75
PQMC1-D48-S5-S	48	36~75	5	10	200	1	75	76
PQMC1-D48-S12-S	48	36~75	12	4	83	1	75	81
PQMC1-D48-S15-S	48	36~75	15	3	67	1	75	80

CUI Inc | SERIES: PQMC1-S | DESCRIPTION: DC-DC CONVERTER

MODEL		nput oltage	output voltage		tput rent	output power	ripple and noise ¹	efficiency
(CONTINUED)	typ (Vdc)	range (Vdc)	(Vdc)	min (mA)	max (mA)	max (W)	typ (mVp-p)	typ (%)
PQMC1-D48-D5-S	48	36~75	±5	±5	±100	1	75	76
PQMC1-D48-D12-S	48	36~75	±12	±2	±42	1	75	80
PQMC1-D48-D15-S	48	36~75	±15	±2	±33	1	75	80

Notes: 1. ripple and noise are measured at 20 MHz BW by "parallel cable" method with 1 µF ceramic and 10 µF electrolytic capacitors on the output.

PART NUMBER KEY

INPUT

parameter	conditions/description	min	typ	max	units
	5 Vdc input models	4.5	5	9	Vdc
operating input voltage	12 Vdc input models	9	12	18	Vdc
operating input voltage	24 Vdc input models	18	24	36	Vdc
	48 Vdc input models	36	48	75	Vdc
	5 Vdc input models	3.5	4	4.5	Vdc
start-up voltage	12 Vdc input models	4.5	8	9	Vdc
	24 Vdc input models	11	16	18	Vdc
	48 Vdc input models	24	33	36	Vdc
	for maximum of 1 second				
	5 Vdc input models	-0.7		12	Vdc
surge voltage	12 Vdc input models	-0.7		25	Vdc
	24 Vdc input models	-0.7		50	Vdc
	48 Vdc input models	-0.7		100	Vdc
filter	capacitance filter				
	models ON (CTRL open or insulated)				
CTRL ²	models OFF (connect voltage, current into CTRL is $5{\sim}10$ mA)				

Notes: 2. See application notes on page 5.

OUTPUT

parameter	conditions/description	min	typ	max	units
line regulation	full load, input voltage from low to high		±0.2	±0.5	%
load regulation	5% to 100% load		±0.4	±0.75	%
voltage accuracy	5% to 100% load		±1	±3	%
no-load voltage accuracy			±1.5	±5	%
voltage balance ³	dual output, balanced loads		±0.3	±0.5	%
switching frequency	100% load, nominal input voltage, PFM mode		200		kHz
transient recovery time	25% load step change		0.5	2	ms
transient response deviation	25% load step change		±2.5	±5	%
temperature coeffecient	100% load		±0.02	±0.03	%/°C

Notes: 3. For dual output models, unbalanced loads should not exceed ±5%. If ±5% is exceeded, it may not meet all specifications.

PROTECTIONS

parameter	conditions/description	min	typ	max	units
short circuit protection	automatic recovery				

SAFETY AND COMPLIANCE

parameter	conditions/description	min	typ	max	units		
isolation voltage	input to output for 1 minute at 1 mA max.	1,500			Vdc		
isolation resistance	input to output at 500 Vdc	1,000			MΩ		
conducted emissions	CISPR22/EN55022, class B (external circuit requ	CISPR22/EN55022, class B (external circuit required, see Figure 1-b)					
radiated emissions	CISPR22/EN55022, class B (external circuit requ	uired, see Figure 1	b)				
ESD	IEC/EN61000-4-2, class B, contact ± 4kV						
radiated immunity	IEC/EN61000-4-3, class A, 10V/m						
EFT/burst	IEC/EN61000-4-4, class B, ± 2kV (external circ	IEC/EN61000-4-4, class B, \pm 2kV (external circuit required, see Figure 1-a)					
surge	IEC/EN61000-4-5, class B, ± 2kV (external circ	uit required, see F	igure 1-a)				
conducted immunity	IEC/EN61000-4-6, class A, 3 Vr.m.s						
voltage dips & interruptions	IEC/EN61000-4-29, class B, 0%-70%						
MTBF	as per MIL-HDBK-217F @ 25°C	1,000,000			hours		
RoHS	2011/65/EU						

ENVIRONMENTAL

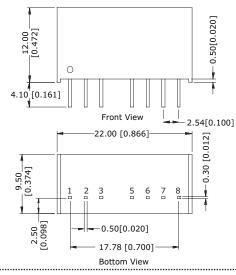
parameter	conditions/description	min	typ	max	units
operating temperature	see derating curve	-40		105	°C
storage temperature		-55		125	°C
storage humidity	non-condensing			95	%
temperature rise	at full load, Ta=25°C		25		°C

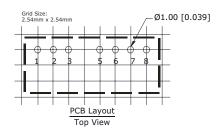
SOLDERABILITY

parameter	conditions/description	min	typ	max	units
hand soldering	1.5 mm from case for 10 seconds			300	°C
wave soldering	see wave soldering profile			260	°C

MECHANICAL

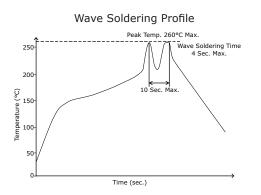
parameter	conditions/description	min	typ	max	units
dimensions	22.00 x 9.50 x 12.00 (0.866 x 0.374 x 0.472 inch)				mm
case material	plastic (UL94-V0)				
weight			4.9		g

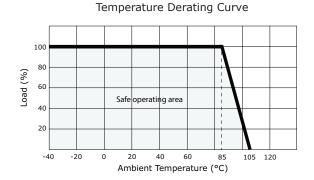

MECHANICAL DRAWING

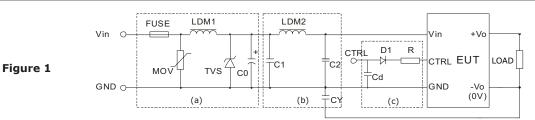

units: mm[inch] tolerance: $\pm 0.25[\pm 0.010]$ pin section tolerance: $\pm 0.10[\pm 0.004]$

PIN CONNECTIONS					
PIN	Single Output	Dual Output			
1	GND	GND			
2	Vin	Vin			
3	Ctrl	Ctrl			
5	NC	NC			
6	+Vo	+Vo			
7	0V	0V			
8	CS	-Vo			
NC: No Connection					

NC: No Connection

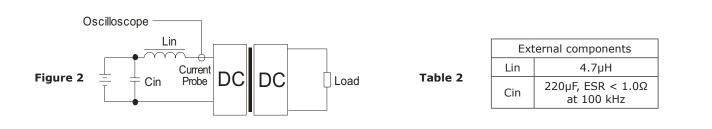

.....





DERATING CURVES

EMC RECOMMENDED CIRCUIT



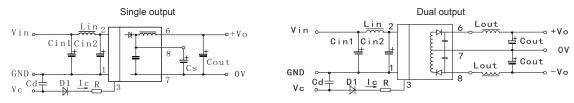
Recommended external circuit components					
Vin (Vdc)	5	12	24	48	
FUSE	choo	ose according to p	practical input cur	rent	
MOV			S14K35	S14K60	
LDM1			56µH	56µH	
TVS	SMCJ13A	SMCJ28A	SMCJ48A	SMCJ90A	
C0	680µF/16V	680µF/25V	330µF/50V	330µF/100V	
C1	4.7µF/50V	4.7µF/50V	4.7µF/100V	4.7µF/100V	
LDM2	12µH	12µH	12µH	12µH	
C2	4.7µF/50V	4.7µF/50V	4.7µF/50V	4.7µF/100V	
CY	1nF/2kV	1nF/2kV	1nF/2kV	1nF/2kV	
D1	RB160M-60/1A	RB160M-60/1A	RB160M-60/1A	RB160M-60/1A	
R	Fo	Follows: $R = \frac{V_c - V_D - 1.0}{I_c} - 300$			
Cd	47nF/100V	47nF/100V	47nF/100V	47nF/100V	

Note: Figure 1-c is on/off control circuit. See page 5 for details.

TEST CONFIGURATION

Table 1

Note: Input reflected-ripple current is measured with an inductor Lin and Capacitor Cin to simulate source impedance.


APPLICATION NOTES

Output load requirement

To ensure this module can operate efficiently and reliably, the minimum output load may not be less than 5% of the full load during operation. If the actual output power is low, connect a resistor at the output end in parallel to increase the load.

Recommended circuit 2.

This series has been tested according to the following recommended testing circuit before leaving the factory. This series should be tested under load (see Figure 3 and Table 3). If you want to further decrease the input/output ripple, you can increase the capacitance accordingly or choose capacitors with low ESR. However, the capacitance of the output filter capacitor must be appropriate. If the capacitance is too high, a startup problem might arise. For every channel of the output, to ensure safe and reliable operation, the maximum capacitance must be less than the maximum capacitive load (see Table 4).

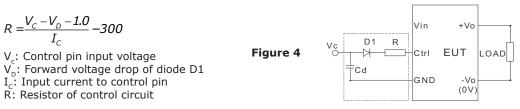
Figure	3
--------	---

Cin2 Lin Cs¹ Cd Vin Cin1 Cout Lout² (µF) (Vdc) (µF) (µH) (µF) (µF) (µH) (nF/V)5 100 47 4.7~12 10~22 100 2.2~10 47/100 4.7~12 12 100 47 10~22 100 2.2~10 47/100 100 24 10 1 4.7~12 10~22 2.2~10 47/100 48 10 1 4.7~12 10~22 100 $2.2 \sim 10$ 47/100

Table 3

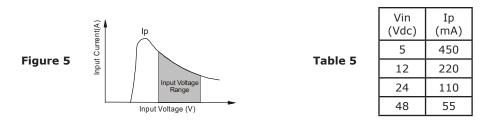
Table 4

Single Vout (Vdc)	Max. Capacitive Load (µF)	Dual Vout (Vdc)	Max. Capacitive Load ¹ (µF)
3.3	2700		
5	2200	5	1000
9	1800		
12	1000	12	470
15	680	15	330
24	470		
Note:	1. For each output.		


1. For each output.

3. **CTRL Terminal**

1. For single output only 2. For dual output only


Note

When open or applied high impedance, the converter will turn on. When it's pulled high, the converter will shutdown. The input current should between 5~10mA. Exceeding the maximum 20mA will cause permanent damage to the converter. The value for R can be derived as follows:

4 Input Current

When it is used in an unregulated condition, make sure that the input fluctuations and ripple voltage do not exceed the module standard. Refer to Figure 5 and Table 5 for the startup current of this dc-dc module.

1. Minimum load shouldn't be less than 5%, otherwise ripple may increase dramatically. Operation under minimum load will not damage the converter, however, they may Note: not meet all specifications listed.

2. Maximum capacitive load is tested at input voltage range and full load.

^{3.} All specifications are measured at Ta=25°C, humidity<75%, nominal input voltage and rated output load unless otherwise specified.

REVISION HISTORY

rev.	description	date
1.0	initial release	03/20/2013
1.01	added models, updated spec	10/14/2014

The revision history provided is for informational purposes only and is believed to be accurate.

.....

Headquarters 20050 SW 112th Ave. Tualatin, OR 97062 800.275.4899

Fax 503.612.2383 cui.com techsupport@cui.com

CUI offers a two (2) year limited warranty. Complete warranty information is listed on our website.

.....

CUI reserves the right to make changes to the product at any time without notice. Information provided by CUI is believed to be accurate and reliable. However, no responsibility is assumed by CUI for its use, nor for any infringements of patents or other rights of third parties which may result from its use.

.....

CUI products are not authorized or warranted for use as critical components in equipment that requires an extremely high level of reliability. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.