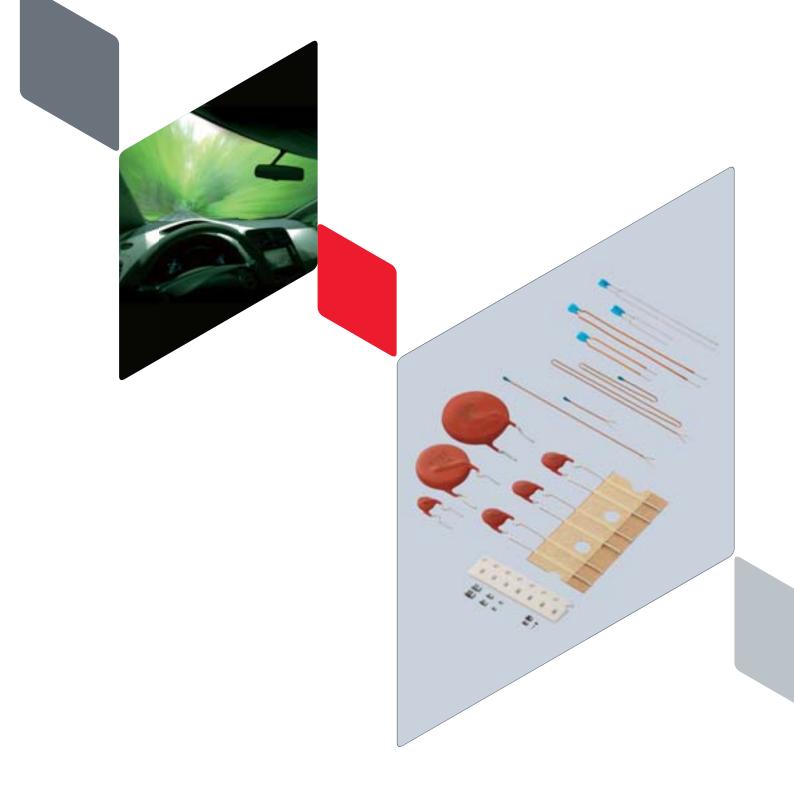
# imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!




# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China





# NTC/PTC Thermistors for Automotive



# EU RoHS Compliant

- All the products in this catalog comply with EU RoHS.
- EU RoHS is "the European Directive 2011/65/EU on the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment."
- For more details, please refer to our website 'Murata's Approach for EU RoHS' (http://www.murata.com/eneu/support/compliance/rohs).

p2

p7

p8

p9

p10

p11

p12

p13

p15

p18

p22

p23

p24

p26

p27

p28

p29

p30

p31

p32

p34

p37

p42

p44

p47

p49

p53

p57

p66

p76

p79

p80

p81

Part Numbering .....

Basic Characteristics of NTC Thermistor .....

Basic Characteristics of POSISTOR<sup>®</sup> .....

NTC Thermistor Chip Type 0402 (1005) Size (Meet AEC-Q200 rev.D)

NTC Thermistor Chip Type 0603 (1608) Size (Meet AEC-Q200 rev.D) 2

8

10

NTC Thermistor Chip Type 0603 (1608) Size for Conductive Glue NTC Thermistors Chip Type Standard Land Pattern Dimensions ..... Temperature Characteristics (Center Value) ···· Specifications and Test Methods ..... NTC Thermistor Thermo String Type for Temperature Sensor Temperature Characteristics (Center Value) .... Specifications and Test Methods NTC Thermistors Temperature Sensor Lead Type Specifications and Test Methods ..... NTC Thermistors Temperature Sensor Lead Insulation Type Specifications and Test Methods ..... NTC Thermistors Temperature Sensor Lead/ Lead Insulation Type Temperature Characteristics (Center Value) ····· NTC Thermistors Chip Type/Thermo String/ Lead Type Package ..... PTC Thermistor (POSISTOR®) for Overheat Sensing Chip Type 0603 (1608) Size (Meet AEC-Q200 rev.D)... Specifications and Test Methods PTC Thermistor (POSISTOR<sup>®</sup>) for Overcurrent Protection Chip Type 0603 (1608) Size (Meet AEC-Q200 rev.D) ····· Specifications and Test Methods PTC Thermistor (POSISTOR®) for Overcurrent Protection Chip Type 0805 (2012) Size (Meet AEC-Q200 rev.D) ····· Specifications and Test Methods POSISTOR<sup>®</sup> Chip Type **Caution/Notice** ···· 10 PTC Thermistor (POSISTOR<sup>®</sup>) for Overcurrent Protection Lead Type ..... Specifications and Test Methods ..... Caution/Notice

Please check the MURATA website (http://www.murata.com/) if you cannot find a part number in this catalog.

POSISTOR<sup>®</sup> Chip Type Package ······ POSISTOR<sup>®</sup> Lead Type Package ······



Product specifications are as of August 2016.

POSISTOR<sup>®</sup>, in this catalog is the trademark of Murata Manufacturing Co., Ltd.



#### Part Numbering

#### NTC Thermistors for Temperature Compensation Chip Type

| (Part Number) | NC | Р | 18 | хн | 103 | J | <b>0</b> S | RB |
|---------------|----|---|----|----|-----|---|------------|----|
|               | 1  | 0 | 8  | 4  | 6   | 6 | 0          | 8  |

#### 1 Product ID

| Product ID |                           |
|------------|---------------------------|
| NC         | NTC Thermistors Chip Type |

#### 2Series

| Code | Series                    |
|------|---------------------------|
| G    | Conductive Glue Series    |
| Р    | Plated Termination Series |
| U    | High Reliability Series   |

#### ODimensions (L x W)

| Code | Dimensions (L x W) | EIA  |
|------|--------------------|------|
| 15   | 1.00 x 0.50mm      | 0402 |
| 18   | 1.60 x 0.80mm      | 0603 |

#### **4**Temperature Characteristics

| Code | Temperature Characteristics   |
|------|-------------------------------|
| WB   | Nominal B-Constant 4050–4099K |
| WD   | Nominal B-Constant 4150-4199K |
| WF   | Nominal B-Constant 4250-4299K |
| WL   | Nominal B-Constant 4450–4499K |
| WM   | Nominal B-Constant 4500–4549K |
| хс   | Nominal B-Constant 3100-3149K |
| XF   | Nominal B-Constant 3250-3299K |
| ХН   | Nominal B-Constant 3350-3399K |
| ХМ   | Nominal B-Constant 3500-3549K |
| XQ   | Nominal B-Constant 3650–3699K |
| XV   | Nominal B-Constant 3900–3949K |
| xw   | Nominal B-Constant 3950–3999K |

#### GResistance

Expressed by three figures. The unit is ohm ( $\Omega$ ). The first and second figures are significant digits, and the third figure expresses the number of zeros that follow the two figures.

| Ex.) | Code | Resistance |
|------|------|------------|
|      | 102  | 1kΩ        |
|      | 103  | 10kΩ       |
|      | 104  | 100kΩ      |

#### **6**Resistance Tolerance

| Code | Resistance Tolerance |
|------|----------------------|
| D    | ±0.5%                |
| E    | ±3%                  |
| F    | ±1%                  |
| J    | ±5%                  |

#### Individual Specifications

Structures and others are expressed by two figures.

| Code | Individual Specifications |
|------|---------------------------|
| □s   | for Automotive            |

#### 8Packaging

| Code | Packaging                           |
|------|-------------------------------------|
| RB   | Paper Taping 4mm Pitch (4000 pcs.)  |
| RC   | Paper Taping 2mm Pitch (10000 pcs.) |

| NTC Thermisto | r for Temperature Sensor Thermo String Typ        | ре |
|---------------|---------------------------------------------------|----|
| (Part Number) | NXF S 15 XH 103 F A 2 F<br><b>1 2 3 6 5 6 6 6</b> |    |
| Product ID    |                                                   | 7  |
| Product ID    |                                                   |    |

| Product ID |                                           |
|------------|-------------------------------------------|
| NXF        | NTC Thermistors Sensor Thermo String Type |
| NXF        | NTC Thermistors Sensor Thermo String      |

#### Individual Specifications

| Code | Individual Specifications |
|------|---------------------------|
| s    | for Automotive            |

#### **3**Chip Dimensions

| <u> </u> |                    |      |
|----------|--------------------|------|
| Code     | Dimensions (L x T) | EIA  |
| 15       | 1.00 x 0.50mm      | 0402 |

#### **4**Temperature Characteristics

| Code | Temperature Characteristics   |  |
|------|-------------------------------|--|
| WB   | Nominal B-Constant 4050–4099K |  |
| WF   | Nominal B-Constant 4250–4299K |  |
| ХН   | Nominal B-Constant 3350–3399K |  |
| XV   | Nominal B-Constant 3900–3949K |  |

#### GResistance

Expressed by three figures. The unit is  $(\Omega)$ . The first and second figures are significant digits, and the third figure expresses the number of zeros that follow the two figures.

| Ex. | Code | Resistance |
|-----|------|------------|
|     | 103  | 10kΩ       |
|     | 473  | 47kΩ       |
|     | 104  | 100kΩ      |

#### **6**Resistance Tolerance

| Code | Resistance Tolerance |
|------|----------------------|
| F    | ±1%                  |

#### Lead Wire Type

| Code | Lead Wire Type                               |
|------|----------------------------------------------|
| А    | ø0.3 Copper Lead Wire with Polyurethane Coat |

#### <sup>®</sup>Shape of the Lead Wire Kink

| Code | Shape of the Lead Wire Kink |
|------|-----------------------------|
| 1    | The Twist of Lead Wire Type |
| 2    | Standard Type               |

#### Packaging

| Code | Packaging |
|------|-----------|
| В    | Bulk      |

#### Dimensions (Full Length)

|      | 6 /                      |
|------|--------------------------|
| Code | Dimensions (Full Length) |
| 025  | 25mm                     |
| 030  | 30mm                     |
| 040  | 40mm                     |
| 050  | 50mm                     |
| 060  | 60mm                     |
| 070  | 70mm                     |
| 080  | 80mm                     |
| 090  | 90mm                     |
| 100  | 100mm                    |
| 110  | 110mm                    |
| 120  | 120mm                    |
| 130  | 130mm                    |
| 140  | 140mm                    |
| 150  | 150mm                    |
|      |                          |

#### NTC Thermistor for Temperature Sensor/Lead Type NXR S 15 XH 103 F A 1 B 040 (Part Number) 00 6 7 1 4 6 89

1 Product ID

| Product ID |                                 |
|------------|---------------------------------|
| NXR        | NTC Thermistor Sensor/Lead Type |

#### Individual Specifications

| Code | Individual Specifications |
|------|---------------------------|
| s    | Automotive Type           |

#### **3**Chip Dimensions

| -    |                    |
|------|--------------------|
| Code | Dimensions (L x T) |
| 15   | 1.00 x 0.50mm      |

#### Temperature Characteristics

| Code | Temperature Characteristics   |  |
|------|-------------------------------|--|
| ХН   | Nominal B-Constant 3350–3399K |  |
| ХМ   | Nominal B-Constant 3500–3549K |  |
| XV   | Nominal B-Constant 3900–3949K |  |
| WB   | Nominal B-Constant 4050–4099K |  |
| WF   | Nominal B-Constant 4250–4299K |  |

#### **G**Resistance

Expressed by three figures. The unit is ( $\Omega$ ). The first and second figures are significant digits, and the third figure expresses the number of zeros that follow the two figures.

| Ex. | Code | Resistance |
|-----|------|------------|
|     | 202  | 2.0kΩ      |
|     | 103  | 10kΩ       |
|     | 104  | 100kΩ      |

#### 6 Resistance Tolerance

| Code | Resistance Tolerance |  |
|------|----------------------|--|
| F    | ±1%                  |  |
| E    | ±3%                  |  |
| J    | ±5%                  |  |

#### Lead Wire Type

10

| Code | Lead Wire Type                                                                                   |  |
|------|--------------------------------------------------------------------------------------------------|--|
| A    | Lead Type: ø0.4mm Copper-clad Fe Wire, Tinned<br>Lead Insulation Type: ø0.46mm Cu Wire with Coat |  |

#### 8 Shape of the Lead Wire

| Code                                   | Shape of the Lead Wire |  |
|----------------------------------------|------------------------|--|
| 1                                      | Lead Spacing 2.5mm     |  |
| 3                                      | 3 Lead Spacing 5.0mm   |  |
| 5 Lead Spacing 2.5mm (Insulation Type) |                        |  |

#### Packaging

| Code   | Packaging        |  |
|--------|------------------|--|
| А      | Ammo Pack Taping |  |
| B Bulk |                  |  |

#### Dimensions (Full Length)

| Code | Lead Type          | Lead Insulation Type |
|------|--------------------|----------------------|
| 010  | 10mm               | _                    |
| 020  | 20mm               | _                    |
| 025  | -                  | 25mm                 |
| 030  | 30mm               | 30mm                 |
| 035  | -                  | 35mm                 |
| 040  | 40mm               | -                    |
| 016  | 16mm (Taping Type) | -                    |

| PTC Thermistors (POSISTOR $^{\textcircled{B}}$ ) for Overheat Sensing Chip Type |                                               |  |  |
|---------------------------------------------------------------------------------|-----------------------------------------------|--|--|
| (Part Number)                                                                   | PR F 18 BB 471 Q S5 RB<br>• 2 6 6 6 6 6 6 6 6 |  |  |
| Product ID                                                                      |                                               |  |  |
| Product ID                                                                      |                                               |  |  |
| PR                                                                              | PTC Thermistors Chip Type                     |  |  |
| 2 Series                                                                        |                                               |  |  |

#### 2 Series

| Code | Series               |
|------|----------------------|
| F    | for Overheat Sensing |

#### Oimensions (L x W)

| Code | Dimensions (L x W) |
|------|--------------------|
| 18   | 1.60 x 0.80mm      |

#### Temperature Characteristics

| Code | Temperature Characteristics-Curie Point |  |
|------|-----------------------------------------|--|
| AR   | 120°C                                   |  |
| AS   | 130°C                                   |  |
| BA   | 110°C                                   |  |
| BB   | 100°C                                   |  |
| BC   | 90°C                                    |  |
| BD   | 80°C                                    |  |
| BE   | 70°C                                    |  |
| BF   | 60°C                                    |  |
| BG   | 50°C                                    |  |

#### GResistance

Expressed by three figures. The unit is ohm ( $\Omega$ ). The first and second figures are significant digits, and the third figure expresses the number of zeros that follow the two figures.

| Ex.) | Code | Resistance |
|------|------|------------|
|      | 471  | 470Ω       |

#### 6 Resistance Tolerance

| Code Resistance Tolerance |                   | Sensing Temp. Tolerance |
|---------------------------|-------------------|-------------------------|
| Q                         | Special Tolerance | ±5°C                    |
| R                         | Special Tolerance | ±3°C                    |

#### Individual Specifications

| Code | Individual Specifications |
|------|---------------------------|
| S5   | for Automotive            |

#### 8Packaging

| Code | Packaging                            |
|------|--------------------------------------|
| RB   | Paper Taping (4mm Pitch) (4000 pcs.) |

#### PTC Thermistors (POSISTOR<sup>®</sup>) for Overcurrent Protection Chip Type

PTC Thermistors Chip Type

| (Part Number) | PR G 21 AR 420 M S1 RA |
|---------------|------------------------|
|               | 000000000              |
| Product ID    |                        |
| Product ID    |                        |

# PR

#### 2Series

| Code | Series                     |
|------|----------------------------|
| G    | for Overcurrent Protection |

#### 3 Dimensions (L x W)

| Code | Dimensions (L x W) |
|------|--------------------|
| 21   | 2.00 x 1.25mm      |

#### **4**Temperature Characteristics

| Code | Temperature Characteristics |  |  |  |  |  |  |  |
|------|-----------------------------|--|--|--|--|--|--|--|
| AR   | Curie Point 120°C           |  |  |  |  |  |  |  |
| BB   | Curie Point 100°C           |  |  |  |  |  |  |  |
| BC   | Curie Point 90°C            |  |  |  |  |  |  |  |

#### BResistance

Expressed by three-digit alphanumerics. The unit is ohm ( $\Omega$ ). The first and second figures are significant digits, and the third figure expresses the number of zeros that follow the two figures. If there is a decimal point, it is expressed by the capital letter "**R**." In this case, all figures are significant digits.

| Ex.) | Code | Resistance |
|------|------|------------|
|      | 4R7  | 4.7Ω       |
|      | 420  | 42Ω        |

#### **6**Resistance Tolerance

| Code | Resistance Tolerance |  |  |  |  |  |  |
|------|----------------------|--|--|--|--|--|--|
| М    | ±20%                 |  |  |  |  |  |  |
| Q    | Special Tolerance    |  |  |  |  |  |  |

#### Individual Specifications

| Ex.) | Code | Individual Specifications |  |  |  |  |  |
|------|------|---------------------------|--|--|--|--|--|
|      | S1   | for Automotive            |  |  |  |  |  |

#### 8Packaging

| - 00 |                                         |
|------|-----------------------------------------|
| Code | Packaging                               |
| RA   | Embossed Taping (4mm Pitch) (4000 pcs.) |
| RK   | Embossed Taping (4mm Pitch) (3000 pcs.) |

#### PTC Thermistors (POSISTOR $^{\textcircled{B}}$ ) for Overcurrent Protection Lead Type

PT GL 4 5 AS 220 K 4B51 B0

|          | 1 | 2 | 8 | 4 | 6 | 6 | 0 | 8 | 9 |
|----------|---|---|---|---|---|---|---|---|---|
| oduct ID |   |   |   |   |   |   |   |   |   |

### 1 Product ID

| Product ID |                 |
|------------|-----------------|
| PT         | PTC Thermistors |

#### 2Series

| Code | Series                               |
|------|--------------------------------------|
| GL   | for Overcurrent Protection Lead Type |

#### Oimensions

| Code | Dimensions                        |  |  |  |  |
|------|-----------------------------------|--|--|--|--|
| 4    | Nominal Body Diameter 4mm Series  |  |  |  |  |
| 5    | Nominal Body Diameter 5mm Series  |  |  |  |  |
| 6    | Nominal Body Diameter 6mm Series  |  |  |  |  |
| 7    | Nominal Body Diameter 7mm Series  |  |  |  |  |
| 9    | Nominal Body Diameter 9mm Series  |  |  |  |  |
| А    | Nominal Body Diameter 10mm Series |  |  |  |  |
| с    | Nominal Body Diameter 12mm Series |  |  |  |  |
| E    | Nominal Body Diameter 14mm Series |  |  |  |  |

#### Individual Specifications

| Code | Individual Specifications |
|------|---------------------------|
| S    | for Automotive            |

#### **⑤**Temperature Characteristics

| Code | Temperature Characteristics |  |  |  |  |
|------|-----------------------------|--|--|--|--|
| AR   | Curie Point 120°C           |  |  |  |  |
| AS   | Curie Point 130°C           |  |  |  |  |

#### 6 Resistance

Expressed by three-digit alphanumeric. The unit is ohm ( $\Omega$ ). The first and second figures are significant digits, and the third figure expresses the number of zeros that follow the two figures. If there is a decimal point, it is expressed by the capital letter "**R**." In this case, all figures are significant digits.

| Ex.) | Code | Resistance |  |  |  |  |  |
|------|------|------------|--|--|--|--|--|
|      | R22  | 0.22Ω      |  |  |  |  |  |
|      | 2R2  | 2.2Ω       |  |  |  |  |  |
|      | 220  | 22Ω        |  |  |  |  |  |

#### Resistance Tolerance

| Code | Resistance Tolerance |
|------|----------------------|
| к    | ±10%                 |
| м    | ±20%                 |

#### Olividual Specifications

| Ex.) | Code | Individual Specifications |  |  |
|------|------|---------------------------|--|--|
|      | 4B51 | Lead Type, others         |  |  |

#### Packaging

| 0 0  |           |
|------|-----------|
| Code | Packaging |
| AO   | Ammo Pack |
| во   | Bulk      |

# Basic Characteristics of NTC Thermistor

#### **Basic Characteristics**

| 1. | Zero-power Resistance of Thermistor: R           |
|----|--------------------------------------------------|
|    | Measured by zero-power in specified ambient      |
|    | temperatures.                                    |
|    | R=R <sub>0</sub> expB (1/T-1/T <sub>0</sub> )(1) |
|    | R: Resistance in ambient temperature T (K)       |
|    | (K: absolute temperature)                        |
|    | Ro: Resistance in ambient temperature To (K)     |
|    | B: B-constant of Thermistor                      |
|    |                                                  |
|    |                                                  |

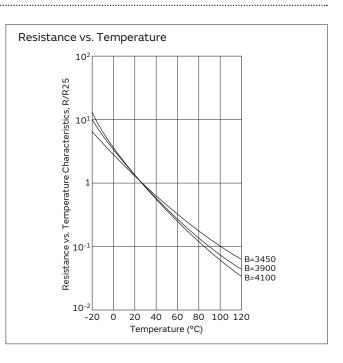
2. B-Constant

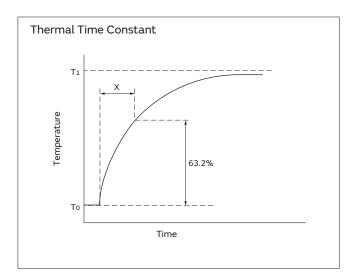
| as (1) formula                    |  |
|-----------------------------------|--|
| B= <b>l</b> n (R/R₀) / (1/T-1/T₀) |  |

#### 3. Thermal Dissipation Constant

When electric power P (mW) is spent in ambient temperature T<sub>1</sub> and thermistor temperature rises T<sub>2</sub>, the formula is as follows; P=C (T<sub>2</sub>-T<sub>1</sub>) .....(3) C: Thermal dissipation constant (mW/°C) Thermal dissipation constant varies with dimensions, measurement conditions, etc.

4. Thermal Time Constant


Period in which Thermistor's temperature will change 63.2% of its temperature difference from ambient temperature  $T_0$  (°C) to  $T_1$  (°C).

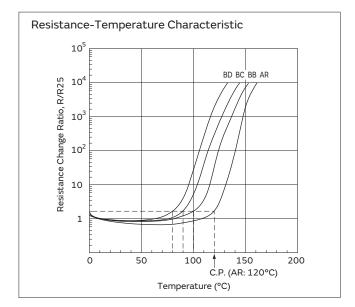

5. Rated Electric Power

Shows necessary electric power for Thermistor's temperature to rise 100°C by self heating in ambient temperature 25°C.

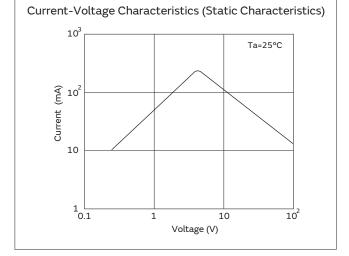
6. Permissive Operating Current

It is possible to keep Thermistor's temperature rising max. 1°C.

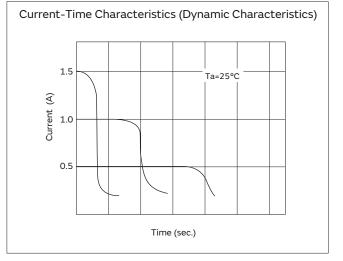





# Basic Characteristics of POSISTOR<sup>®</sup>


#### **Basic Characteristics**

 $\mathsf{POSISTOR}^{\texttt{R}}$  has three main characteristics.


Resistance-Temperature Characteristics
 Although there is a negligible difference between the normal and "Curie Point" temperature, POSISTOR<sup>®</sup> shows almost constant resistance-temperature characteristics. Yet they have resistance-temperature characteristics that cause resistance to sharply increase when the temperature exceeds the Curie Point. The Curie Point (C.P.) is defined as the temperature at which the resistance value is twice the one at 25 °C.



2. Current-Voltage Characteristics (Static Characteristics) This shows the relation between applied voltage when voltage applied to POSISTOR<sup>®</sup> causes balancing of inner heating and outer thermal dissipation and stabilized current. This has both a maximum point of current and constant output power.



 Current-Time Characteristics (Dynamic Characteristics) This shows the relation between current and time before inner heating and outer thermal dissipation arrive at equilibrium state. This features having large initial current and abruptly continuous attenuating portion.



1

# NTC Thermistors for Automotive

Chip Type 0402 (1005) Size (Meet AEC-Q200 rev.D)

0402/0603 sized Chip NTC Thermistors have Ni barrier termination, provide excellent solderability and offer high stability in environment due to unique inner construction.

Available Market is Automotive market where request the high reliability.

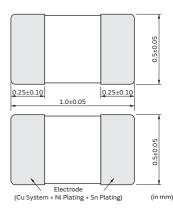
#### Features

- 1. Excellent solderability and high stability in environment
- 2. Excellent long time aging stability
- 3. High accuracy in resistance and B-constant
- 4. Reflow soldering possible
- 5. Lead is not contained in the product
- 6. NCU series are recognized by UL/cUL.
- (UL1434, File No.E137188)

#### Applications

- 1. Car audio, car navigation
- 2. Various engine control units
- 3. Circuits for ETC equipment
- 4. Various motor driving circuits
- 5. Temperature compensation for various circuits

| Part Number     | Resistance<br>(25°C)<br>(ohm) | B-Constant<br>(25-50°C)<br>(K) | B-Constant<br>(25-80°C)<br>(Reference Value) (K) | B-Constant<br>(25-85°C)<br>(Reference Value) (K) | B-Constant<br>(25-100°C)<br>(Reference Value) (K) | Permissive Operating<br>Current (25°C)<br>(mA) | Rated Electric<br>Power (25°C)<br>(mW) | Typical Dissipation<br>Constant (25°C)<br>(mW/°C) |
|-----------------|-------------------------------|--------------------------------|--------------------------------------------------|--------------------------------------------------|---------------------------------------------------|------------------------------------------------|----------------------------------------|---------------------------------------------------|
| NCU15XH103D6SRC | 10k ±0.5%                     | 3380 ±0.7%                     | 3428                                             | 3434                                             | 3455                                              | 0.31                                           | 100                                    | 1                                                 |
| NCU15XH103F6SRC | 10k ±1%                       | 3380 ±1%                       | 3428                                             | 3434                                             | 3455                                              | 0.31                                           | 100                                    | 1                                                 |
| NCU15XH103 GSRC | 10k                           | 3380 ±1%                       | 3428                                             | 3434                                             | 3455                                              | 0.31                                           | 100                                    | 1                                                 |
| NCU15WB473D6SRC | 47k ±0.5%                     | 4050 ±0.5%                     | 4101                                             | 4108                                             | 4131                                              | 0.14                                           | 100                                    | 1                                                 |
| NCU15WB473F6SRC | 47k ±1%                       | 4050 ±1%                       | 4101                                             | 4108                                             | 4131                                              | 0.14                                           | 100                                    | 1                                                 |
| NCU15WB473 6SRC | 47k                           | 4050 ±1%                       | 4101                                             | 4108                                             | 4131                                              | 0.14                                           | 100                                    | 1                                                 |
| NCU15WF104D6SRC | 100k ±0.5%                    | 4250 ±0.5%                     | 4303                                             | 4311                                             | 4334                                              | 0.1                                            | 100                                    | 1                                                 |
| NCU15WF104F6SRC | 100k ±1%                      | 4250 ±1%                       | 4303                                             | 4311                                             | 4334                                              | 0.1                                            | 100                                    | 1                                                 |
| NCU15WF104 6SRC | 100k                          | 4250 ±1%                       | 4303                                             | 4311                                             | 4334                                              | 0.1                                            | 100                                    | 1                                                 |


A blank column is filled with resistance tolerance codes (E:  $\pm 3\%$ , J:  $\pm 5\%$ ).

Rated Electric Power is necessary electric power for Thermistor's temperature to rise 100°C by self heating at 25°C in still air.

Operating Temperature Range: -40°C to +150°C

If there is any additionally electrical characteristics, please contact from close sales office or website.





Detailed are accessable from the following URL. http://www.murata.com/en-global/products/thermistor/ntc/ncu

# NTC Thermistors for Automotive

Chip Type 0603 (1608) Size (Meet AEC-Q200 rev.D)

0402/0603 sized Chip NTC Thermistors have Ni barrier termination, provide excellent solderability and offer high stability in environment due to unique inner construction.

Available Market is Automotive market where request the high reliability.

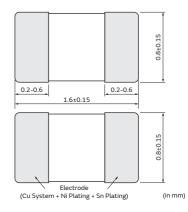
#### Features

- 1. Excellent solderability and high stability in environment
- 2. Excellent long time aging stability
- 3. High accuracy in resistance and B-constant
- 4. Flow/Reflow soldering possible
- 5. Lead is not contained in the product
- 6. NCU series are recognized by UL/cUL.
- (UL1434, File No.E137188)

#### Applications

- 1. Car audio, car navigation
- 2. Various engine control units
- 3. Circuits for ETC equipment
- 4. Various motor driving circuits
- 5. Temperature compensation for various circuits

| Part Number     | Resistance<br>(25°C)<br>(ohm) | B-Constant<br>(25-50°C)<br>(K) | B-Constant<br>(25-80°C)<br>(Reference Value) (K) | B-Constant<br>(25-85°C)<br>(Reference Value) (K) | B-Constant<br>(25-100°C)<br>(Reference Value) (K) | Permissive Operating<br>Current (25°C)<br>(mA) | Rated Electric<br>Power (25°C)<br>(mW) | Typical Dissipation<br>Constant (25°C)<br>(mW/°C) |
|-----------------|-------------------------------|--------------------------------|--------------------------------------------------|--------------------------------------------------|---------------------------------------------------|------------------------------------------------|----------------------------------------|---------------------------------------------------|
| NCU18XH103D6SRB | 10k ±0.5%                     | 3380 ±0.7%                     | 3428                                             | 3434                                             | 3455                                              | 0.31                                           | 100                                    | 1                                                 |
| NCU18XH103F6SRB | 10k ±1%                       | 3380 ±1%                       | 3428                                             | 3434                                             | 3455                                              | 0.31                                           | 100                                    | 1                                                 |
| NCU18XH103 GSRB | 10k                           | 3380 ±1%                       | 3428                                             | 3434                                             | 3455                                              | 0.31                                           | 100                                    | 1                                                 |
| NCU18WB473D6SRB | 47k ±0.5%                     | 4050 ±0.5%                     | 4101                                             | 4108                                             | 4131                                              | 0.14                                           | 100                                    | 1                                                 |
| NCU18WB473F6SRB | 47k ±1%                       | 4050 ±1%                       | 4101                                             | 4108                                             | 4131                                              | 0.14                                           | 100                                    | 1                                                 |
| NCU18WB473 6SRB | 47k                           | 4050 ±1%                       | 4101                                             | 4108                                             | 4131                                              | 0.14                                           | 100                                    | 1                                                 |
| NCU18WF104D6SRB | 100k ±0.5%                    | 4250 ±0.5%                     | 4303                                             | 4311                                             | 4334                                              | 0.1                                            | 100                                    | 1                                                 |
| NCU18WF104F6SRB | 100k ±1%                      | 4250 ±1%                       | 4303                                             | 4311                                             | 4334                                              | 0.1                                            | 100                                    | 1                                                 |
| NCU18WF104 6SRB | 100k                          | 4250 ±2%                       | 4303                                             | 4311                                             | 4334                                              | 0.1                                            | 100                                    | 1                                                 |


A blank column is filled with resistance tolerance codes (E: ±3%, J: ±5%).

Rated Electric Power is necessary electric power for Thermistor's temperature to rise 100°C by self heating at 25°C in still air.

Operating Temperature Range: -40°C to +150°C

If there is any additionally electrical characteristics, please contact from close sales office or website.





Detailed are accessable from the following URL. http://www.murata.com/en-global/products/thermistor/ntc/ncu



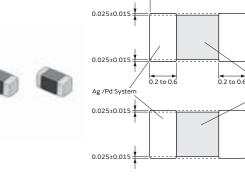
# NTC Thermistors for Automotive

# Chip Type 0603 (1608) Size for Conductive Glue

NCG18, 0603 sized Chip NTC Thermistor enables conductive glue mounting.

#### Features

- 1. Excellent solderability and high stability in environment
- 2. Excellent long time aging stability
- 3. High accuracy in resistance and B-constant
- 4. Glue mounting possible
- 5. Lead is not contained in the product


#### Applications

- 1. Various engine control units
- 2. ABS control unit
- 3. High power devices (IGBT)
- 4. Various circuits requiring low temperature mounting below solder melting point.
- 5. Temperature compensation for various circuits requiring high temperature.

| Part Number     | Resistance<br>(25°C)<br>(ohm) | B-Constant<br>(25-50°C)<br>(K) | B-Constant<br>(25-80°C)<br>(Reference Value) (K) | B-Constant<br>(25-85°C)<br>(Reference Value) (K) | (25-100°C) | Current (25°C) | Rated Electric<br>Power (25°C)<br>(mW) | Typical Dissipation<br>Constant (25°C)<br>(mW/°C) |
|-----------------|-------------------------------|--------------------------------|--------------------------------------------------|--------------------------------------------------|------------|----------------|----------------------------------------|---------------------------------------------------|
| NCG18XH103F0SRB | 10k ±1%                       | 3380 ±1%                       | 3428                                             | 3434                                             | 3455       | 0.31           | 100                                    | 1                                                 |
| NCG18WF104F0SRB | 100k ±1%                      | 4200 ±1%                       | 4255                                             | 4260                                             | 4282       | 0.10           | 100                                    | 1                                                 |

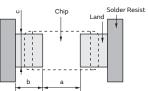
Operating Temperature Range: -55°C to +150°C

Rated Electric Power is necessary electric power for Thermistor's temperature to rise 100°C by self heating at 25°C in still air.



0.8±0.15

0.8±0.15


.6±0.15

(in mm)

3

Detailed are accessable from the following URL. http://www.murata.com/en-global/products/thermistor/ntc (in mm)

# NTC Thermistors Chip Type Standard Land Pattern Dimensions



| Part Number | Mounting         | Dimensions (mm) |         |         |         |  |  |
|-------------|------------------|-----------------|---------|---------|---------|--|--|
| Part Number | Methods          | Chip (L x W)    | a       | b       | с       |  |  |
| NCU15       | Reflow Soldering | 1.0 x 0.5       | 0.4     | 0.4-0.5 | 0.5     |  |  |
| NCU18       | Flow Soldering   | 1.6 x 0.8       | 0.6-1.2 | 0.8-0.9 | 0.6-0.8 |  |  |
| NCOIS       | Reflow Soldering | 1.0 × 0.0       | 0.6-1.2 | 0.6-0.7 | 0.6-0.8 |  |  |
| NCG18       | Conductive Glue  | 1.6 x 0.8       | 0.6     | 0.6     | 1.0     |  |  |

12

# NTC Thermistors Chip Type Temperature Characteristics (Center Value)

| Part Number | NCU             | NCU             | NCU WB473D      | NCU WB473       | NCU             | NCU             |
|-------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Resistance  | 10kΩ±0.5%       | 10kΩ            | 47kΩ±0.5%       | 47kΩ            | 100kΩ±0.5%      | 100ΩW           |
| B-Constant  | 3380K±0.7%      | 3380K           | 4050K±0.5%      | 4050K           | 4250K±0.5%      | 4250K           |
| Temp. (°C)  | Resistance (kΩ) |
| -40         | 197.390         | 195.652         | 1690.586        | 1747.920        | 4221.283        | 4397.119        |
| -35         | 149.390         | 148.171         | 1215.318        | 1245.428        | 2995.044        | 3088.599        |
| -30         | 114.340         | 113.347         | 882.908         | 898.485         | 2146.996        | 2197.225        |
| -25         | 88.381          | 87.559          | 647.911         | 655.802         | 1554.599        | 1581.881        |
| -20         | 68.915          | 68.237          | 480.069         | 483.954         | 1136.690        | 1151.037        |
| -15         | 54.166          | 53.650          | 359.009         | 360.850         | 839.019         | 846.579         |
| -10         | 42.889          | 42.506          | 270.868         | 271.697         | 624.987         | 628.988         |
| -5          | 34.196          | 33.892          | 206.113         | 206.463         | 469.678         | 471.632         |
| 0           | 27.445          | 27.219          | 158.126         | 158.214         | 355.975         | 357.012         |
| 5           | 22.165          | 22.021          | 122.267         | 122.259         | 272.011         | 272.500         |
| 10          | 18.010          | 17.926          | 95.256          | 95.227          | 209.489         | 209.710         |
| 15          | 14.720          | 14.674          | 74.754          | 74.730          | 162.559         | 162.651         |
| 20          | 12.099          | 12.081          | 59.075          | 59.065          | 127.057         | 127.080         |
| 25          | 10.000          | 10.000          | 47.000          | 47.000          | 100.000         | 100.000         |
| 30          | 8.309           | 8.315           | 37.636          | 37.643          | 79.222          | 79.222          |
| 35          | 6.939           | 6.948           | 30.326          | 30.334          | 63.167          | 63.167          |
| 40          | 5.824           | 5.834           | 24.583          | 24.591          | 50.677          | 50.677          |
| 45          | 4.911           | 4.917           | 20.043          | 20.048          | 40.904          | 40.904          |
| 50          | 4.160           | 4.161           | 16.433          | 16.433          | 33.195          | 33.195          |
| 55          | 3.539           | 3.535           | 13.545          | 13.539          | 27.091          | 27.091          |
| 60          | 3.024           | 3.014           | 11.223          | 11.209          | 22.224          | 22.224          |
| 65          | 2.593           | 2.586           | 9.345           | 9.328           | 18.323          | 18.323          |
| 70          | 2.233           | 2.228           | 7.818           | 7.798           | 15.184          | 15.184          |
| 75          | 1.929           | 1.925           | 6.571           | 6.544           | 12.635          | 12.635          |
| 80          | 1.673           | 1.669           | 5.548           | 5.518           | 10.566          | 10.566          |
| 85          | 1.455           | 1.452           | 4.704           | 4.674           | 8.873           | 8.873           |
| 90          | 1.270           | 1.268           | 4.004           | 3.972           | 7.481           | 7.481           |
| 95          | 1.112           | 1.110           | 3.422           | 3.388           | 6.337           | 6.337           |
| 100         | 0.976           | 0.974           | 2.936           | 2.902           | 5.384           | 5.384           |
| 105         | 0.860           | 0.858           | 2.528           | 2.494           | 4.594           | 4.594           |
| 110         | 0.759           | 0.758           | 2.184           | 2.150           | 3.934           | 3.934           |
| 115         | 0.673           | 0.672           | 1.893           | 1.860           | 3.380           | 3.380           |
| 120         | 0.598           | 0.596           | 1.646           | 1.615           | 2.916           | 2.916           |
| 125         | 0.532           | 0.531           | 1.436           | 1.406           | 2.522           | 2.522           |
| 130         | 0.476           | 0.474           | 1.256           | 1.227           | 2.190           | 2.190           |
| 135         | 0.426           | 0.424           | 1.102           | 1.075           | 1.907           | 1.907           |
| 140         | 0.383           | 0.381           | 0.969           | 0.945           | 1.665           | 1.665           |
| 145         | 0.344           | 0.342           | 0.854           | 0.831           | 1.459           | 1.459           |
| 150         | 0.311           | 0.309           | 0.755           | 0.735           | 1.282           | 1.282           |

Continued on the following page. earrow 
ea

# NTC Thermistors Chip Type Temperature Characteristics (Center Value)

Continued from the preceding page.  $\searrow$ 

#### For Conductive Glue

|            | NCG18XH103      | NCG18WF104      |
|------------|-----------------|-----------------|
| Resistance | 10ΩW            | 100ΩW           |
| B-Constant | 3380K           | 4200K           |
| Temp. (°C) | Resistance (kΩ) | Resistance (kΩ) |
| -55        | 481.258         | 13019.2917      |
|            | 352.304         | 8807.8909       |
|            | 261.060         | 6042.9955       |
| -40        | 195.661         | 4205.6861       |
|            | 193.001         | 2966.4355       |
|            | 113.351         | 2118.7894       |
| -25        | 87.562          | 1531.3193       |
| -20        | 68.239          | 1118.4222       |
| -15        |                 | 825.5695        |
| -10        | 53.651          |                 |
| -10        | 42.507          | 615.5264        |
|            | 33.893          | 463.1041        |
| 0          | 27.219          | 351.7064        |
| 5          | 22.021          | 269.3046        |
| 10         | 17.926          | 207.8907        |
| 15         | 14.674          | 161.7224        |
| 20         | 12.081          | 126.7225        |
| 25         | 10.000          | 100.0000        |
| 30         | 8.315           | 79.4390         |
| 35         | 6.948           | 63.5094         |
| 40         | 5.834           | 51.0835         |
| 45         | 4.917           | 41.3360         |
| 50         | 4.161           | 33.6281         |
| 55         | 3.535           | 27.5103         |
| 60         | 3.014           | 22.6211         |
| 65         | 2.586           | 18.6920         |
| 70         | 2.228           | 15.5246         |
| 75         | 1.925           | 12.9466         |
| 80         | 1.669           | 10.8488         |
| 85         | 1.452           | 9.1290          |
| 90         | 1.268           | 7.7128          |
| 95         | 1.110           | 6.5455          |
| 100        | 0.974           | 5.5722          |
| 105        | 0.858           | 4.7638          |
| 110        | 0.758           | 4.0868          |
| 115        | 0.672           | 3.5178          |
| 120        | 0.596           | 3.0403          |
| 125        | 0.531           | 2.6336          |
| 130        | 0.474           | 2.2902          |
| 135        | 0.424           | 1.9976          |
| 140        | 0.381           | 1.7475          |
| 145        | 0.342           | 1.5332          |
| 150        | 0.309           | 1.3491          |

# NTC Thermistors Chip Type Specifications and Test Methods

#### NCU Series (For AEC-Q200 rev.D)

| No. | AEC-Q200 Test Item                        | Specifications AEC-Q200 Test Methods                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|-----|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 1   | Pre-and<br>Post-Stress<br>Electrical Test |                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| 2   | High Temperature<br>Exposure (Storage)    | (*1)<br>• Resistance(R25) change should be less than ±5%.<br>• B-constant(B25/50) change should be less than ±2%.<br>• No visible damage.                                 | Leave continuously according to the following table for         1000 hours.         Operating Temp. Range: -40 to +150°C Type       150±3°C         Operating Temp. Range: -40 to +125°C Type       125±3°C         Measurement at 24±2 hours after test condition.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| 3   | Temperature<br>Cycling                    | <ul> <li>Resistance(R25) change should be less than ±5%.</li> <li>B-constant(B25/50) change should be less than ±2%.</li> <li>No visible damage.</li> </ul>               | Perform 1000 cycles according to the four heat treatments<br>listed in the following table.Step1234Temp. (deg.C)-55+0/-3Room Temp.125+3/-0Room Temp.Time (min.)15±3115±31Measurement at 24±2 hours after test condition.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| 4   | Moisture<br>Resistance                    | <ul> <li>Resistance(R25) change should be less than ±5%.</li> <li>B-constant(B25/50) change should be less than ±2%.</li> <li>No visible damage.</li> </ul>               | Apply the 24-hour heat (25 to 65 °C) and humidity (80 to 98%) treatment shown below, 10 consecutive times.<br>Humidity Humidity Humidity Humidity Humidity 90 to 98% 80 to 98% 90 |  |  |  |  |
| 5   | Biased Humidity                           | (*2)<br>· Resistance(R25) change should be less than ±10%.<br>· B-constant(B25/50) change should be less than ±2%.<br>· No visible damage.                                | 85±2 °C, 85%RH in air for 1000 hours<br>with Permissive Operating Current.<br>Measurement at 24±2 hours after test condition.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| 6   | Operational Life                          | <ul> <li>Resistance(R25) change should be less than ±5%.</li> <li>B-constant(B25/50) change should be less than ±2%.</li> <li>No visible damage.</li> </ul>               | 85±3 °C in air for 1000 hours<br>with Permissive Operating Current.<br>Measurement at 24±2 hours after test condition.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| 7   | External Visual                           | No defects of abnormalities.                                                                                                                                              | Visual Inspection.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| 8   | Physical<br>Dimension                     | Within the specified dimensions.                                                                                                                                          | Using calipers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| 9   | Terminal Strength<br>(Leaded)             | N                                                                                                                                                                         | /A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| 10  | Resistance to<br>Solvents                 | <ul> <li>Resistance(R25) change should be less than ±5%.</li> <li>B-constant(B25/50) change should be less than ±2%.</li> <li>No visible damage.</li> </ul>               | Per MIL-STD-202 Method 215<br>Solvent 1: 1 part (by volume) of isopropyl alcohol<br>3 parts (by volume) of mineral spirits.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| 11  | Mechanical Shock                          | <ul> <li>Resistance(R25) change should be less than ±5%.</li> <li>B-constant(B25/50) change should be less than ±2%.</li> <li>No visible damage.</li> </ul>               | Per MIL-STD-202 Method 213 Test Condition F<br>1500g's, 0.5ms, In 3 directions perpendicularly intersecting<br>each other (total 18 times).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| 12  | Vibration                                 | (*1)<br>· Resistance(R25) change should be less than ±5%.<br>· B-constant(B25/50) change should be less than ±2%.<br>· No visible damage.                                 | Simple harmonic motion between 10Hz to 2.0k Hz and back to 10 Hz of max. amplitude 1.5mm for 20 minutes. This motion should be applied 12 times in each of 3 mutually perpendicular directions (total of 36 times).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| 13  | Resistance to<br>Soldering Heat           | <ul> <li>(*1)</li> <li>Resistance(R25) change should be less than ±5%.</li> <li>B-constant(B25/50) change should be less than ±2%.</li> <li>No visible damage.</li> </ul> | Per MIL-STD-202 Method 210<br>Test Condition B, 260 °C for 10 +/-1 seconds.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |

 $\cdot$  The Test Condition specification (\*1,\*2) is applied to the follow P/N.

P/N: NCU15XH103 SR, NCU15WB473 SR, NCU15WF104 SR, NCU18XH103 SR

(\*1) Resistance(R25) change should be less than 1%

B-constant(B25/50) change should be less than 1%

(\*2) Resistance(R25) change should be less than 5%

B-constant (B25/50) change should be less than 1%

Continued on the following page. earrow

# NTC Thermistors Chip Type Specifications and Test Methods

#### Continued from the preceding page. $\searrow$

| No. | AEC-Q200 Test Item             | Specifications                                                                                                                                              | AEC-Q200 Test Methods                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|-----|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 14  | Thermal Shock                  | <ul> <li>Resistance(R25) change should be less than ±5%.</li> <li>B-constant(B25/50) change should be less than ±2%.</li> <li>No visible damage.</li> </ul> | Perform 300 cycles according to the two heat treatments listed in the following table. (Maximum transfer time is 20 seconds.)         Step       1       2         Temp. (°C)       -55+0/-3       125+3/-0         Time (min.)       15±3       15±3         Measurement at 24±2 hours after test condition.       10 |  |  |  |  |
| 15  | ESD                            | <ul> <li>Resistance(R25) change should be less than ±5%.</li> <li>B-constant(B25/50) change should be less than ±2%.</li> <li>No visible damage.</li> </ul> | Per AEC-Q200-002                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| 16  | Solderability                  | Minimum 95% of the whole electrode surface should be covered with solder.                                                                                   | Per J-STD-002<br>SMD b) Method B @ 215 °C category 3.                                                                                                                                                                                                                                                                  |  |  |  |  |
| 17  | Electrical<br>Characterization | Within the specified tolerance.     Resistance at 25 °C.       B-constant (B25-50)                                                                          |                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| 18  | Flammability                   | N/A                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| 19  | Board Flex                     | (*1)<br>• Resistance(R25) change should be less than ±5%.<br>• B-constant(B25/50) change should be less than ±2%.<br>• No visible damage.                   | Per AEC-Q200-005         Bend the board 2.0mm for 60 seconds.         Use the follow land size.         Type       a       b         NCU15_SRC       0.4       1.2       0.5         NCU18_SRB       0.6       1.8       0.6         (in mm)       (in mm)       (in mm)                                               |  |  |  |  |
| 20  | Terminal Strength<br>(SMD)     | (*1)<br>• Resistance(R25) change should be less than ±5%.<br>• B-constant(B25/50) change should be less than ±2%.<br>• No visible damage.                   | Per AEC-Q200-006         Apply a *17.7N force to the side of device for 60 seconds.         Use follow land size.         *4.9N (NCP15_SRC)         Type       a         NCU15_SRC       0.4         1.5       0.5         NCU18_SRB       1.0         (in mm)       (in mm)                                           |  |  |  |  |

• The Test Condition specification (\*1,\*2) is applied to the follow P/N.
P/N: NCU15XH103□□SR□, NCU15WB473□□SR□, NCU15WF104□□SR□, NCU18XH103□□SR□

(\*1) Resistance(R25) change should be less than 1%

B-constant(B25/50) change should be less than 1%

(\*2) Resistance(R25) change should be less than 5% B-constant(B25/50) change should be less than 1%

# NTC Thermistors Chip Type Specifications and Test Methods

#### NCG18 Series (For Conductive Glue)

| No. | ltem                              | Rating value                                                                                                                                                                  | Method of Examination                                                                                                                                                                                                                                              |
|-----|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | Dry Heat                          | <ul> <li>Resistance(R25)change should be less than ±3%</li> <li>B-constant (B25-50) change should be less than ±1%</li> <li>No visible damage.</li> </ul>                     | 150±3°C in air, for 1000 +48/-0 hours without loading.                                                                                                                                                                                                             |
| 2   | Cold                              | <ul> <li>Resistance (R25)change should be less than ±1%</li> <li>B-constant (B25-50) change should be less than ±1%</li> <li>No visible damage.</li> </ul>                    | -40±3°C in air, for 1000 +48/-0 hours without loading.                                                                                                                                                                                                             |
| 3   | Damp Heat                         |                                                                                                                                                                               | 60±2°C, 90 to 95%RH in air, for 1000 +48/-0 hours without loading.                                                                                                                                                                                                 |
| 4   | High Temperature Load             |                                                                                                                                                                               | 150±3°C in air, with Permissive Operating Current (D.C.<br>0.31mA) for 1000 +48/-0 hours.                                                                                                                                                                          |
| 5   | High Temperature Humidity<br>Load | <ul> <li>Resistance (R25)change should be less than ±3%</li> <li>B-constant (B25-50) change should be less than ±1%</li> <li>No visible damage.</li> </ul>                    | 85±2°C, 85%RH in air, with Permissive Operating Current (D.C.<br>0.31mA) for 1000 +48/-0 hours.                                                                                                                                                                    |
| 6   | Thermal Shock                     |                                                                                                                                                                               | 1000 cycles of the following sequence without loading.StepTemp. (°C)Time (minute)1-55+0/-3152+150+3/-015                                                                                                                                                           |
| 7   | Robustness of Electrode           | • No peeling of the electrodes.                                                                                                                                               | Mount NTC Thermistor with conductive glue on Ceramic substrate, and apply 4.90N of force as shown below.:                                                                                                                                                          |
| 8   | Vibration Resistant               | <ul> <li>Resistance (R25)</li> <li>change should be less than ±1%</li> <li>B-constant (B25-50)</li> <li>change should be less than ±1%</li> <li>No visible damage.</li> </ul> | Solder NTC Thermistor on the Glass Epoxy PCB as shown<br>below.<br>Frequency: 10Hz to 2000Hz to 10Hz (20min.)<br>Max. amplitude: 3.0mm<br>Vibrated for a period of 4hrs. in three (3) directions<br>perpendicularly intersecting each other (for total of 12hrs.). |

• NTC Thermistor should be mounted on the Ceramic substrate with "Standard Land Dimensions" by our recommendable conductive glue (PC3000: Manufactured by Heraeus) and be tested. Thickness of the conductive glue screening should be 50µm.

· R25 means the zero-power resistance at 25°C.

 $\cdot$  B\_{25-50} is calculated by the zero-power resistances of NTC Thermistor at 25°C and at 50°C.

· After each test, NTC Thermistor should be kept for 1 hour at room temperature (normal humidity and normal atmospheric pressure).

Then the resistances ( $R_{25}$  and  $R_{50}$ ) should be measured and the appearance should be visually examined.

• In the case that of R25 or B25-50 changes are greater than the specified value due to the method of mounting with conductive glue, these specifications should be judged by an evaluation with the chip only (not mounting).

.....

# NTC Thermistors Chip Type ①Caution/Notice

### $\triangle$ Caution (Storage and Operating Conditions)

This product is designed for application in an ordinary environment (normal room temperature, humidity and atmospheric pressure). Do not use under the following conditions because all of these factors can deteriorate the product characteristics or cause failures and burn-out.

 Corrosive gas or deoxidizing gas (Chlorine gas, Hydrogen sulfide gas, Ammonia gas, Sulfuric acid gas, Nitric oxide gas, etc.)

### $\triangle$ Caution (Other)

Be sure to provide an appropriate fail-safe function on your product to prevent secondary damages that may be caused by the abnormal function or the failure of our product.

### Notice (Storage and Operating Conditions)

To keep the mounting nature of product from declining, the following storage conditions are recommended.

- 1. Storage condition:
  - Temperature -10 to +40°C

Humidity less than 75%RH (not dewing condition)

2. Storage term:

Use this product within 6 months after delivery by first-in and first-out stocking system.

3. Storage place:

Do not store this product in corrosive gas (Sulfuric acid gas, Chlorine gas, etc.) or in direct sunlight.

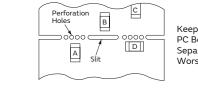
#### Notice (Rating)

Use this product within the specified temperature range.

Higher temperature may cause deterioration of the characteristics or the material quality of this product.

- 2. Volatile or flammable gas
- 3. Dusty conditions
- 4. Under vacuum, or under high or low pressure
- 5. Wet or humid locations
- 6. Places with salt water, oils, chemical liquids or organic solvents
- 7. Strong vibrations
- 8. Other places where similar hazardous conditions exist

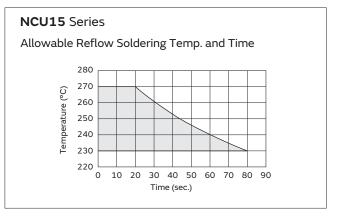
# NTC Thermistors Chip Type ACaution/Notice


#### Notice (Soldering and Mounting) NCU15/18 Series

#### 1. Mounting Position

Choose a mounting position that minimizes the stress imposed on the chip during flexing or bending of the board.




. horizontal to the direction in which stress



Keep this product on the PC Board away from the  $\dot{W}$ orst ← A-C-B-D → Better

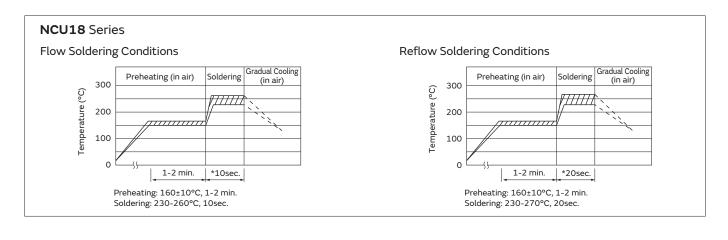
#### 2. Allowable Soldering Temperature and Time

- (a) Solder within the temperature and time combinations, indicated by the slanted lines in the following graphs.
- (b) Excessive soldering conditions may cause dissolution of metalization or deterioration of solder-wetting on the external electrode.
- (c) In the case of repeated soldering, the accumulated soldering time should be within the range shown in the following figures. (For example, Reflow peak temperature: 260°C, twice -> The total accumulated soldering time at 260°C is within 30 seconds.)



#### NCU18 Series Allowable Flow Soldering Temp. and Time Allowable Reflow Soldering Temp. and Time 280 280 270 270 Femperature (°C) Temperature (°C) 260 260 250 250 240 240 230 230 220 220 210 210 0 10 20 30 40 50 60 70 80 90 100110 0 10 20 30 Time (sec.) Time (sec.)

Continued on the following page. 🖊


Note • Please read rating and (LCAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
 • This catalog has only typical specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

# NTC Thermistors Chip Type ①Caution/Notice

Continued from the preceding page.  $\searrow$ 

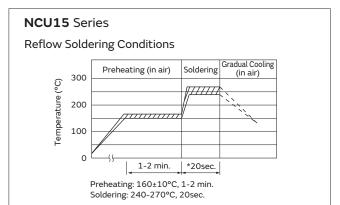
3. Recommendable Temperature Profile for Soldering

- (a) Insufficient preheating may cause a crack on the ceramic body. The difference between preheating temperature and maximum temperature in the profile shall be 100 °C.
- (b) Rapid cooling by dipping in solvent or by other means is not recommended.
- \* In the case of repeated soldering, the accumulated soldering time should be within the range shown in "2. Allowable Soldering Temperature and Time."



- 4. Solder and Flux
  - (1) Solder and Paste
    - (a) Reflow Soldering: NCU15/NCU18 Series
       Use RA/RMA type or equivalent type of solder paste.
       For your reference, we are using the solder paste
       below for any internal tests of this product.
      - RMA9086 90-4-M20 (Sn:Pb=63wt%:37wt%) (Manufactured by Alpha Metals Japan Ltd.)
      - M705-221BM5-42-11
      - (Sn:Ag:Cu=96.5wt%:3.0wt%:0.5wt%)

(Manufactured by Senju Metal Industry Co., Ltd.)


(b) Flow Soldering: NCU18 Series

We are using the following solder paste for any internal tests of this product.

- Sn:Pb=63wt%:37wt%
- Sn:Ag:Cu=96.5wt%:3.0wt%:0.5wt%
- 5. Cleaning Conditions

For removing the flux after soldering, observe the following points in order to avoid deterioration of the characteristics or any change of the external electrodes' quality.

- Please keep mounted parts and the substrate from an occurrence of resonance in ultrasonic cleaning.
- Please do not clean the products in the case of using a non-washed type flux.



(2) Flux

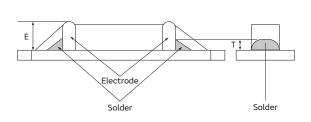
Use rosin type flux in the soldering process. If the flux below is used, some problems might be caused in the product characteristics and reliability. Please do not use these types of flux.

- Strong acidic flux (with halide content exceeding 0.1wt%).
- Water-soluble flux

(\*Water-soluble flux can be defined as non-rosin type flux including wash-type flux and non-wash-type flux.)

|                     | NCU15                                                                       | NCU18                                                                       |  |  |
|---------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|--|--|
| Solvent             | Isopropyl Alcohol                                                           | Isopropyl Alcohol                                                           |  |  |
| Dipping Cleaning    | Less than 5 minutes at<br>room temp. or less than<br>2 minutes at 40°C max. | Less than 5 minutes at<br>room temp. or less than<br>2 minutes at 40°C max. |  |  |
| Ultrasonic Cleaning | Less than 5 minutes<br>20W/ <b>l</b> Frequency of 28<br>to 40kHz.           | Less than 1 minute<br>20W/ <b>2</b> Frequency of<br>several 10 to 100kHz.   |  |  |
| Drying              | After cleaning, promptly dry this product.                                  |                                                                             |  |  |

Continued on the following page. 🖊




# NTC Thermistors Chip Type ACaution/Notice

Continued from the preceding page.  $\searrow$ 

- 6. Printing Conditions of Solder Paste
  - The amount of solder is critical. Standard height of fillet is shown in the table below.
  - Too much soldering may cause mechanical stress, resulting in cracking, mechanical and/or electronic damage.





| Part Number | The Solder Paste Thickness | т         |
|-------------|----------------------------|-----------|
| NCU15       | 150µm                      | 1/3E≦T≦E  |
| NCU18       | 200µm                      | 0.2mm≦T≦E |

7. Adhesive Application and Curing

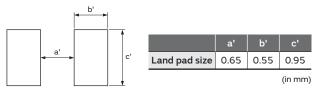

- Thin or insufficient adhesive may result in loose component contact with land during flow soldering.
- Low viscosity adhesive causes chips to slip after mounting.

#### Notice (Mounting) NCG18 Series

In your mounting process, observe the following points in order to avoid deterioration of the characteristics or destruction of this product. The mounting quality of this product may also be affected by the mounting conditions, shown in the points below.

1. Recommendable Land Size

Too small a land size parameter 'a' may cause an electric short mode of this product by conductive glue expanding on the surface of this product on mounting.




2. Recommendable Conductive Glue

· PC3000 (Manufactured by Heraeus)

#### Notice (Handling)

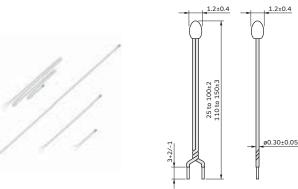
The ceramic of this product is fragile, and care must be taken not to load an excessive press-force or to give a shock at handling. Such forces may cause cracking or chipping. 3. Screening Conditions of Conductive glue (1) Recommendable Screening Size



- (2) Recommendable thickness of conductive glue screening shall be 50μm.
- (3) Too much conductive glue gives an electric short mode of this product by conductive glue expanding on the surface of this product on mounting.
- There is a possibility of unexpected failure in your mounting process, caused by mounting conditions.
   Please evaluate whether this product is correctly mounted under your mounting conditions.

# NTC Thermistors for Automotive

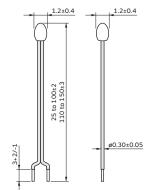
# Thermo String Type for Temperature Sensor


This product is a small flexible lead type NTC Thermistor with a small head and a thin lead wire.

#### Features

- 1. High accuracy and high sensibility temperature sensing is available in a small and highly accurate NTC Thermistor.
- 2. Narrow space temperature sensing is available from the small sensing head and the thin lead wire.
- 3. Flexibility and a wide variety of lengths (25 mm to 150mm)
- enables the design of flexible temperature sensing architectures.
- 4. This product is compatible with our 0402 (EIA) size chip Thermistor.
- 5. Excellent long-time aging stability
- This is a halogen-free product.\*
   \* Cl= max.900ppm,
  - Br=max.900ppm and Cl+Br=max.1500ppm
- 7. Lead is not contained in the product.

#### Applications


- 1. Car audio, car navigation
- 2. Various engine control units
- 3. Circuits for ETC equipment
- 4. Various motor driving circuits
- 5. Temperature compensation for various circuits



The full length 25mm, 30 to 150mm interval 10mm.

NXFS15\_1B Type (twist)

(in mm)



The full length 25mm, 30 to 150mm interval 10mm. (in mm)

NXFS15\_2B Type (without twist)

Detailed are accessable from the following URL. http://www.murata.com/en-global/products/thermistor/ntc/nxf

| Part Number     | Resistance<br>(25°C)<br>(ohm) | B-Constant<br>(25-50°C)<br>(K) | B-Constant<br>(25-80°C)<br>(Reference Value) (K) | B-Constant<br>(25-85°C)<br>(Reference Value) (K) | B-Constant<br>(25-100°C)<br>(Reference Value) (K) | Operating Current<br>for Sensor (25°C)<br>(mA) | Rated Electric<br>Power (25°C)<br>(mW) | Typical Dissipation<br>Constant (25°C)<br>(mW/°C) | Thermal Time<br>Constant<br>(25°C) (s) |
|-----------------|-------------------------------|--------------------------------|--------------------------------------------------|--------------------------------------------------|---------------------------------------------------|------------------------------------------------|----------------------------------------|---------------------------------------------------|----------------------------------------|
| NXFS15XH103FAB  | 10k ±1%                       | 3380 ±1%                       | 3428                                             | 3434                                             | 3455                                              | 0.12                                           | 7.5                                    | 1.5                                               | 4                                      |
| NXFS15XV103FABB | 10k ±1%                       | 3936 ±1%                       | 3971                                             | 3977                                             | 3988                                              | 0.12                                           | 7.5                                    | 1.5                                               | 4                                      |
| NXFS15WB473FABB | 47k ±1%                       | 4050 ±1%                       | 4101                                             | 4108                                             | 4131                                              | 0.06                                           | 7.5                                    | 1.5                                               | 4                                      |
| NXFS15WF104FA B | 100k ±1%                      | 4250 ±1%                       | 4303                                             | 4311                                             | 4334                                              | 0.04                                           | 7.5                                    | 1.5                                               | 4                                      |

□ is filled with lead shape (1: twist, 2: without twist).

□□□ is filled with total-length codes. (25mm, 30-150mm interval 10mm, ex. 050=50mm)

Operating Current for Sensor raises Thermistor's temperature by 0.1°C.

Rated Electric Power is necessary electric power for Thermistor's temperature to rise 5°C by self heating at 25°C in still air. Operating Temperature Range: -40°C to +125°C

muRata

### NTC Thermistors Thermo String Type Temperature Characteristics (Center Value)

| Part Number | NXFS15XH103              | NXFS15XV103              | NXFS15WB473              | NXFS15WF104              |
|-------------|--------------------------|--------------------------|--------------------------|--------------------------|
| Resistance  | 10kΩ                     | 10kΩ                     | 47kΩ                     | 100kΩ                    |
| B-Constant  | 3380K                    | 3936K                    | 4050K                    | 4250K                    |
| Temp. (°C)  | Resistance (k $\Omega$ ) | Resistance (k $\Omega$ ) | Resistance ( $k\Omega$ ) | Resistance (k $\Omega$ ) |
| -40         | 197.388                  | 337.503                  | 1690.590                 | 4221.280                 |
| -35         | 149.395                  | 243.332                  | 1215.320                 | 2995.040                 |
| -30         | 114.345                  | 177.496                  | 882.908                  | 2147.000                 |
| -25         | 88.381                   | 130.859                  | 647.911                  | 1554.600                 |
| -20         | 68.915                   | 97.428                   | 480.069                  | 1136.690                 |
| -15         | 54.166                   | 73.230                   | 359.009                  | 839.019                  |
| -10         | 42.889                   | 55.529                   | 270.868                  | 624.987                  |
| -5          | 34.196                   | 42.467                   | 206.113                  | 469.678                  |
| 0           | 27.445                   | 32.747                   | 158.126                  | 355.975                  |
| 5           | 22.165                   | 25.450                   | 122.267                  | 272.011                  |
| 10          | 18.010                   | 19.932                   | 95.256                   | 209.489                  |
| 15          | 14.720                   | 15.727                   | 74.754                   | 162.559                  |
| 20          | 12.099                   | 12.498                   | 59.075                   | 127.057                  |
| 25          | 10.000                   | 10.000                   | 47.000                   | 100.000                  |
| 30          | 8.309                    | 8.054                    | 37.636                   | 79.222                   |
| 35          | 6.939                    | 6.529                    | 30.326                   | 63.167                   |
| 40          | 5.824                    | 5.324                    | 24.583                   | 50.677                   |
| 45          | 4.911                    | 4.366                    | 20.043                   | 40.904                   |
| 50          | 4.160                    | 3.601                    | 16.433                   | 33.195                   |
| 55          | 3.539                    | 2.985                    | 13.545                   | 27.091                   |
| 60          | 3.024                    | 2.488                    | 11.223                   | 22.224                   |
| 65          | 2.593                    | 2.083                    | 9.345                    | 18.323                   |
| 70          | 2.233                    | 1.752                    | 7.818                    | 15.184                   |
| 75          | 1.929                    | 1.480                    | 6.571                    | 12.635                   |
| 80          | 1.673                    | 1.256                    | 5.548                    | 10.566                   |
| 85          | 1.455                    | 1.070                    | 4.704                    | 8.873                    |
| 90          | 1.270                    | 0.916                    | 4.004                    | 7.481                    |
| 95          | 1.112                    | 0.787                    | 3.422                    | 6.337                    |
| 100         | 0.976                    | 0.679                    | 2.936                    | 5.384                    |
| 105         | 0.860                    | 0.588                    | 2.528                    | 4.594                    |
| 110         | 0.759                    | 0.512                    | 2.184                    | 3.934                    |
| 115         | 0.673                    | 0.446                    | 1.893                    | 3.380                    |
| 120         | 0.598                    | 0.391                    | 1.646                    | 2.916                    |
| 125         | 0.532                    | 0.343                    | 1.436                    | 2.522                    |

R03E.pdf Oct.6,2016