

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China







# **NXP Semiconductors**

**Technical Data** 

Document Number: MRFX1K80H Rev. 0, 08/2017

**VRoHS** 

# **RF Power LDMOS Transistor**

# High Ruggedness N-Channel Enhancement-Mode Lateral MOSFET

This high ruggedness device is designed for use in high VSWR industrial, medical, broadcast, aerospace and mobile radio applications. Its unmatched input and output design supports frequency use from 1.8 to 400 MHz.

#### **Typical Performance**

| Frequency<br>(MHz) | Signal Type                      | V <sub>DD</sub><br>(V) | P <sub>out</sub><br>(W) | G <sub>ps</sub><br>(dB) | η <sub>D</sub><br>(%) |
|--------------------|----------------------------------|------------------------|-------------------------|-------------------------|-----------------------|
| 27 (1)             | CW                               | 65                     | 1800 CW                 | 27.8                    | 75.6                  |
| 64                 | Pulse (100 μsec, 10% Duty Cycle) | 65                     | 1800 Peak               | 27.1                    | 69.5                  |
| 81.36              | CW                               | 63                     | 1700 CW                 | 24.5                    | 76.3                  |
| 87.5–108 (2,3)     | CW                               | 60                     | 1600 CW                 | 23.6                    | 82.5                  |
| 123/128            | Pulse (100 μsec, 10% Duty Cycle) | 65                     | 1800 Peak               | 25.9                    | 69.0                  |
| 144                | CW                               | 65                     | 1800 CW                 | 23.5                    | 78.0                  |
| 230 (4)            | Pulse (100 μsec, 20% Duty Cycle) | 65                     | 1800 Peak               | 25.1                    | 75.1                  |
| 325                | Pulse (12 μsec, 10% Duty Cycle)  | 63                     | 1700 Peak               | 22.8                    | 64.9                  |

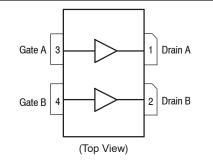
## Load Mismatch/Ruggedness

| Frequency<br>(MHz) | Signal Type             | VSWR                          | P <sub>in</sub><br>(W) | Test<br>Voltage | Result                   |
|--------------------|-------------------------|-------------------------------|------------------------|-----------------|--------------------------|
| 230 (4)            | Pulse<br>(100 μsec, 20% | > 65:1 at all<br>Phase Angles | 14 W Peak<br>(3 dB     | 65              | No Device<br>Degradation |
|                    | Duty Cycle)             |                               | Overdrive)             |                 |                          |

- 1. Data from 27 MHz narrowband reference circuit (page 5).
- 2. Data from 87.5-108 MHz broadband reference circuit (page 10).
- The values shown are the center band performance numbers across the indicated frequency range.
- 4. Data from 230 MHz narrowband production test fixture (page 16).

#### **Features**

- · Unmatched input and output allowing wide frequency range utilization
- · Device can be used single-ended or in a push-pull configuration
- Qualified up to a maximum of 65 V<sub>DD</sub> operation
- Characterized from 30 to 65 V for extended power range
- High breakdown voltage for enhanced reliability
- · Suitable for linear application with appropriate biasing
- Integrated ESD protection with greater negative gate-source voltage range for improved Class C operation
- Lower thermal resistance option in over-molded plastic package: MRFX1K80N
- Included in NXP product longevity program with assured supply for a minimum of 15 years after launch


## **Typical Applications**

- Industrial, scientific, medical (ISM)
  - Laser generation
  - Plasma generation
  - Particle accelerators
  - MRI, RF ablation and skin treatment
  - Industrial heating, welding and drying systems
- · Radio and VHF TV broadcast
- Aerospace
  - VHF omnidirectional range (VOR)
  - HF communications
  - Weather radar

# MRFX1K80H

1.8–400 MHz, 1800 W CW, 65 V WIDEBAND RF POWER LDMOS TRANSISTOR





Note: The backside of the package is the source terminal for the transistor.

Figure 1. Pin Connections



## **Table 1. Maximum Ratings**

| Rating                                                             | Symbol           | Value        | Unit      |
|--------------------------------------------------------------------|------------------|--------------|-----------|
| Drain-Source Voltage                                               | V <sub>DSS</sub> | -0.5, +179   | Vdc       |
| Gate-Source Voltage                                                | V <sub>GS</sub>  | -6.0, +10    | Vdc       |
| Storage Temperature Range                                          | T <sub>stg</sub> | -65 to +150  | °C        |
| Case Operating Temperature Range                                   | T <sub>C</sub>   | -40 to +150  | °C        |
| Operating Junction Temperature Range (1,2)                         | TJ               | -40 to +225  | °C        |
| Total Device Dissipation @ T <sub>C</sub> = 25°C Derate above 25°C | P <sub>D</sub>   | 2247<br>11.2 | W<br>W/°C |

## **Table 2. Thermal Characteristics**

| Characteristic                                                                                                                                                      |                 | Value (2,3) | Unit |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------|------|
| Thermal Resistance, Junction to Case CW: Case Temperature 99°C, 1800 W CW, 65 Vdc, I <sub>DQ(A+B)</sub> = 150 mA, 98 MHz                                            | $R_{\theta JC}$ | 0.09        | °C/W |
| Thermal Impedance, Junction to Case Pulse: Case Temperature 65°C, 1800 W Peak, 100 μsec Pulse Width, 20% Duty Cycle, 65 Vdc, I <sub>DQ(A+B)</sub> = 100 mA, 230 MHz | $Z_{	heta JC}$  | 0.017       | °C/W |

#### **Table 3. ESD Protection Characteristics**

| Test Methodology                      | Class             |
|---------------------------------------|-------------------|
| Human Body Model (per JESD22-A114)    | 2, passes 2500 V  |
| Charge Device Model (per JESD22-C101) | C3, passes 2000 V |

# Table 4. Electrical Characteristics (T<sub>A</sub> = 25°C unless otherwise noted)

| Characteristic                                                                                                 | Symbol               | Min | Тур  | Max | Unit |
|----------------------------------------------------------------------------------------------------------------|----------------------|-----|------|-----|------|
| Off Characteristics (4)                                                                                        |                      |     |      |     |      |
| Gate-Source Leakage Current (V <sub>GS</sub> = 5 Vdc, V <sub>DS</sub> = 0 Vdc)                                 | I <sub>GSS</sub>     | _   | _    | 1   | μAdc |
| Drain-Source Breakdown Voltage (V <sub>GS</sub> = 0 Vdc, I <sub>D</sub> = 100 mAdc)                            | V <sub>(BR)DSS</sub> | 179 | 193  | _   | Vdc  |
| Zero Gate Voltage Drain Leakage Current (V <sub>DS</sub> = 65 Vdc, V <sub>GS</sub> = 0 Vdc)                    | I <sub>DSS</sub>     | _   | _    | 10  | μAdc |
| Zero Gate Voltage Drain Leakage Current (V <sub>DS</sub> = 179 Vdc, V <sub>GS</sub> = 0 Vdc)                   | I <sub>DSS</sub>     | _   | _    | 100 | mAdc |
| On Characteristics                                                                                             |                      |     |      |     |      |
| Gate Threshold Voltage <sup>(4)</sup> (V <sub>DS</sub> = 10 Vdc, I <sub>D</sub> = 740 μAdc)                    | V <sub>GS(th)</sub>  | 2.1 | 2.5  | 2.9 | Vdc  |
| Gate Quiescent Voltage (V <sub>DD</sub> = 65 Vdc, I <sub>D(A+B)</sub> = 100 mAdc, Measured in Functional Test) | V <sub>GS(Q)</sub>   | 2.4 | 2.8  | 3.2 | Vdc  |
| Drain-Source On-Voltage <sup>(4)</sup><br>(V <sub>GS</sub> = 10 Vdc, I <sub>D</sub> = 2.76 Adc)                | V <sub>DS(on)</sub>  | _   | 0.21 | _   | Vdc  |
| Forward Transconductance <sup>(4)</sup> (V <sub>DS</sub> = 10 Vdc, I <sub>D</sub> = 43 Adc)                    | 9fs                  | _   | 44.7 | _   | S    |

- 1. Continuous use at maximum temperature will affect MTTF.
- 2. MTTF calculator available at  $\underline{\text{http://www.nxp.com/RF/calculators}}.$
- 3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.nxp.com/RF and search for AN1955.
- 4. Each side of device measured separately.

(continued)

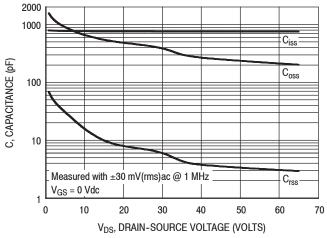
# Table 4. Electrical Characteristics (T<sub>A</sub> = 25°C unless otherwise noted) (continued)

| Characteristic                                                                                          | Symbol           | Min | Тур | Max | Unit |
|---------------------------------------------------------------------------------------------------------|------------------|-----|-----|-----|------|
| Dynamic Characteristics <sup>(1)</sup>                                                                  |                  |     |     |     |      |
| Reverse Transfer Capacitance (V <sub>DS</sub> = 65 Vdc ± 30 mV(rms)ac @ 1 MHz, V <sub>GS</sub> = 0 Vdc) | C <sub>rss</sub> | _   | 2.9 | _   | pF   |
| Output Capacitance<br>(V <sub>DS</sub> = 65 Vdc ± 30 mV(rms)ac @ 1 MHz, V <sub>GS</sub> = 0 Vdc)        | C <sub>oss</sub> | _   | 203 | _   | pF   |
| Input Capacitance (V <sub>DS</sub> = 65 Vdc, V <sub>GS</sub> = 0 Vdc ± 30 mV(rms)ac @ 1 MHz)            | C <sub>iss</sub> | _   | 760 | _   | pF   |

Functional Tests (In NXP Production Test Fixture, 50 ohm system)  $V_{DD}$  = 65 Vdc,  $I_{DQ(A+B)}$  = 100 mA,  $P_{out}$  = 1800 W Peak (360 W Avg.), f = 230 MHz, 100  $\mu$ sec Pulse Width, 20% Duty Cycle

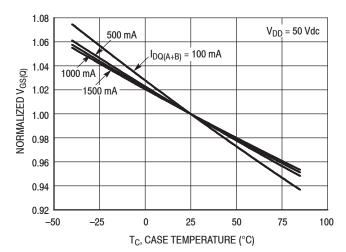
| Power Gain        | G <sub>ps</sub> | 24.0 | 25.1  | 26.5      | dB |
|-------------------|-----------------|------|-------|-----------|----|
| Drain Efficiency  | $\eta_{D}$      | 70.0 | 75.1  | _         | %  |
| Input Return Loss | IRL             | _    | -14.4 | <b>-9</b> | dB |

# Table 5. Load Mismatch/Ruggedness (In NXP Production Test Fixture, 50 ohm system) I<sub>DQ(A+B)</sub> = 100 mA


| Frequency<br>(MHz) | Signal Type                         | VSWR                          | P <sub>in</sub><br>(W)        | Test Voltage, V <sub>DD</sub> | Result                |
|--------------------|-------------------------------------|-------------------------------|-------------------------------|-------------------------------|-----------------------|
| 230                | Pulse<br>(100 μsec, 20% Duty Cycle) | > 65:1 at all<br>Phase Angles | 14 W Peak<br>(3 dB Overdrive) | 65                            | No Device Degradation |

# **Table 6. Ordering Information**

| Device      | Tape and Reel Information                            | Package     |
|-------------|------------------------------------------------------|-------------|
| MRFX1K80HR5 | R5 Suffix = 50 Units, 56 mm Tape Width, 13-inch Reel | NI-1230H-4S |


<sup>1.</sup> Each side of device measured separately.

#### **TYPICAL CHARACTERISTICS**



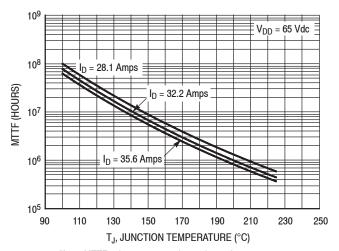

Note: Each side of device measured separately.

Figure 2. Capacitance versus Drain-Source Voltage



| I <sub>DQ</sub> (mA) | Slope (mV/°C) |
|----------------------|---------------|
| 100                  | -3.21         |
| 500                  | -2.79         |
| 1000                 | -2.69         |
| 1500                 | -2.61         |

Figure 3. Normalized  $V_{\mbox{\footnotesize GS}}$  versus Quiescent Current and Case Temperature



**Note:** MTTF value represents the total cumulative operating time under indicated test conditions.

MTTF calculator available at <a href="http://www.nxp.com/RF/calculators">http://www.nxp.com/RF/calculators</a>.

Figure 4. MTTF versus Junction Temperature – CW

# 27 MHz NARROWBAND REFERENCE CIRCUIT – $2.9'' \times 6.9''$ (73 mm $\times$ 175 mm)

Table 7. 27 MHz Narrowband Performance (In NXP Reference Circuit, 50 ohm system)

 $I_{DQ(A+B)} = 200 \text{ mA}, P_{in} = 3 \text{ W}, CW$ 

| Frequency<br>(MHz) | V <sub>DD</sub> (V) | P <sub>out</sub><br>(W) | G <sub>ps</sub><br>(dB) | η <sub>D</sub><br>(%) |
|--------------------|---------------------|-------------------------|-------------------------|-----------------------|
| 27                 | 50                  | 1200                    | 26.0                    | 82.3                  |
|                    | 57.5                | 1520                    | 27.0                    | 80.1                  |
|                    | 65                  | 1800                    | 27.8                    | 75.6                  |

## 27 MHz NARROWBAND REFERENCE CIRCUIT – 2.9" × 6.9" (73 mm × 175 mm)

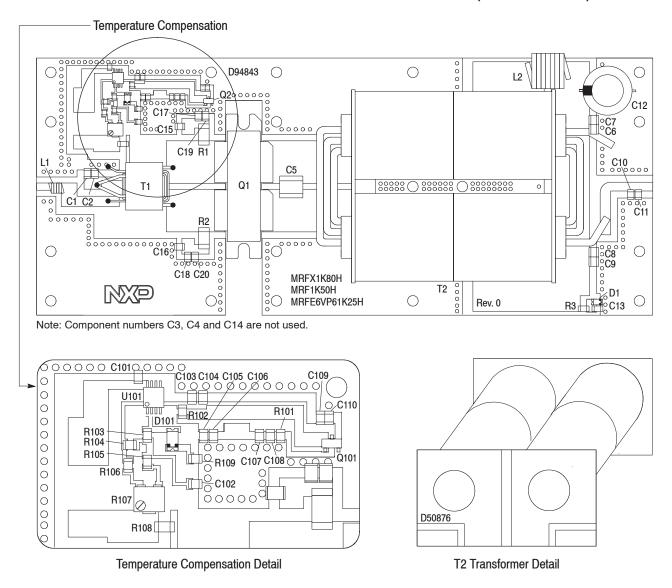



Figure 5. MRFX1K80H Narrowband Reference Circuit Component Layout - 27 MHz

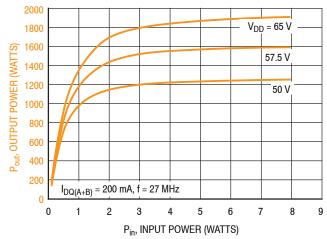

# 27 MHz NARROWBAND REFERENCE CIRCUIT – $2.9'' \times 6.9''$ (73 mm $\times$ 175 mm)

Table 8. MRFX1K80H Narrowband Reference Circuit Component Designations and Values – 27 MHz

| Part                                  | Description                                             | Part Number           | Manufacturer     |
|---------------------------------------|---------------------------------------------------------|-----------------------|------------------|
| C1, C17, C18                          | 1000 pF Chip Capacitor                                  | ATC100B102JT50XT      | ATC              |
| C2, C15, C16                          | 39 K pF Chip Capacitor                                  | ATC200B393KT50XT      | ATC              |
| C5                                    | 470 pF Chip Capacitor                                   | ATC100C471JT2500XT    | ATC              |
| C6, C8                                | 2.2 μF Chip Capacitor                                   | HMK432B7225KM-T       | Taiyo Yuden      |
| C7, C9, C19, C20                      | 470 pF Chip Capacitor                                   | ATC100B471JT200XT     | ATC              |
| C10, C11                              | 22 pF Chip Capacitor                                    | ATC100B220JT500XT     | ATC              |
| C12                                   | 470 μF, 100 V Electrolytic Capacitor                    | MCGPR100V477M16X32-RH | Multicomp        |
| C13                                   | 1000 pF Chip Capacitor                                  | C2012X7R2E102M        | TDK              |
| D1                                    | Green LED, 1206                                         | LG N971-KN-1          | OSRAM            |
| L1                                    | 82 nH Inductor                                          | 1812SMS-82NJLC        | Coilcraft        |
| L2                                    | 7 Turns, #16 AWG, ID = 10 mm Inductor,<br>Hand Wound    | 8074                  | Belden           |
| Q1                                    | RF Power LDMOS Transistor                               | MRFX1K80H             | NXP              |
| R1, R2                                | 33 Ω, 3 W Chip Resistor                                 | 1-2176070-3           | TE Connectivity  |
| R3                                    | 9.1 kΩ, 1/4 W Chip Resistor                             | CRCW12069K10FKEA      | Vishay           |
| PCB                                   | Arlon TC350 0.030" $\epsilon_r = 3.5$                   | D94843                | MTL              |
| Transformer                           |                                                         |                       |                  |
| T1 Core                               | Multi-Aperture Core, 43 Material                        | 2843000302            | Fair-Rite        |
| T1 Primary                            | 2 Turns, #20 AWG Magnetic Wire                          | 8076                  | Belden           |
| T1 Secondary                          | 1 Turn, #24 AWG Teflon Wire                             | 5854/7 BL005          | Alpha Wire       |
| T2 Core                               | 61 Round Cable Core, x4                                 | 2661102002            | Fair-Rite        |
| T2 Primary                            | Copper Pipe, Type L, ID = 3/8", OD = 1/2", cut to 2.4"  | LH03010               | Mueller          |
| T2 Secondary                          | 3 Turns, #16 AWG PTFE Covered Wire, Twisted             | TEF16                 | RF Parts Company |
| T2 PCB                                | Arlon TC350 0.030" $\epsilon_r = 3.5$ , x2              | D50876                | MTL              |
| Temperature Compensation              |                                                         |                       |                  |
| C101, C102, C104, C106,<br>C108, C110 | 1 μF Chip Capacitor                                     | GRM21BR71H105KA12L    | Murata           |
| C103, C105, C107, C109                | 1 nF Chip Capacitor                                     | C2012X7R2E102M        | TDK              |
| D101                                  | Red LED, 1206                                           | LH N974-KN-1          | OSRAM            |
| Q101                                  | NPN Bipolar Transistor                                  | BC847ALT1G            | ON Semiconductor |
| R101                                  | 2.2 kΩ, 1/8 W Chip Resistor                             | CRCW08052K20JNEA      | Vishay           |
| R102, R109                            | 1.2 kΩ, 1/8 W Chip Resistor                             | CRCW08051K20FKEA      | Vishay           |
| R103                                  | 10 Ω, 1/8 W Chip Resistor                               | RK73H2ATTD10R0F       | KOA Speer        |
| R104                                  | 1 kΩ, 1/8 W Chip Resistor                               | RR1220P-102-D         | Susumu           |
| R105                                  | 3.9 kΩ, 1/8 W Chip Resistor                             | CRCW08053K90JNEA      | Vishay           |
| R106                                  | 200 Ω, 1/8 W Chip Resistor                              | CRCW0805200RJNEA      | Vishay           |
| R107                                  | 5 kΩ Multi-turn Cermet Trimming Potentiometer, 11 Turns | 3224W-1-502E          | Bourns           |
| R108                                  | 10 Ω, 1/4 W Chip Resistor                               | CRCW120610R0JNEA      | Vishay           |
| U101                                  | Voltage Regulator 5 V, Micro8                           | LP2951ACDMR2G         | ON Semiconductor |
| N. D. C. L. MDEVALCOCK                |                                                         |                       |                  |

Note: Refer to MRFX1K80H's printed circuit boards and schematics to download the 27 MHz heatsink drawing.

## **TYPICAL CHARACTERISTICS**



| f<br>(MHz) | V <sub>DD</sub><br>(V) | P1dB<br>(W) | P <sub>sat</sub><br>(W) |
|------------|------------------------|-------------|-------------------------|
|            | 50                     | 825         | 1250                    |
| 27         | 57.5                   | 1010        | 1600                    |
|            | 65                     | 1150        | 1900                    |

Figure 6. CW Output Power versus Input Power and Drain-Source Voltage

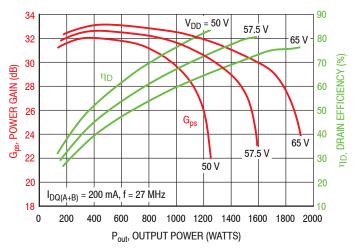



Figure 7. Power Gain and Drain Efficiency versus CW Output Power and Drain-Source Voltage

# 27 MHz NARROWBAND REFERENCE CIRCUIT

| f   | Z <sub>source</sub> | Z <sub>load</sub> |
|-----|---------------------|-------------------|
| MHz | Ω                   | Ω                 |
| 27  | 8.70 + j6.28        | 6.21 + j2.68      |

Z<sub>source</sub> = Test circuit impedance as measured from gate to gate, balanced configuration.

Z<sub>load</sub> = Test circuit impedance as measured from drain to drain, balanced configuration.

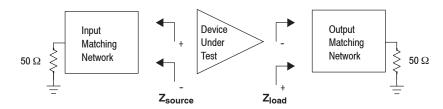



Figure 8. Narrowband Series Equivalent Source and Load Impedance – 27 MHz

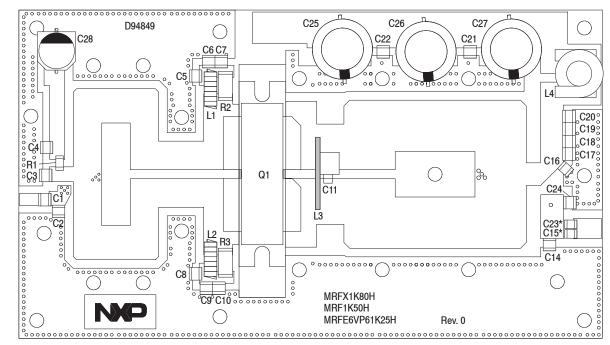

# 87.5–108 MHz BROADBAND REFERENCE CIRCUIT – $2.9'' \times 5.1''$ (73 mm $\times$ 130 mm)

Table 9. 87.5–108 MHz Broadband Performance (In NXP Reference Circuit, 50 ohm system)

 $I_{DQ(A+B)} = 200 \text{ mA}, P_{in} = 7 \text{ W}, CW$ 

| Frequency<br>(MHz) | V <sub>DD</sub> (V) | P <sub>out</sub><br>(W) | G <sub>ps</sub><br>(dB) | η <sub>D</sub><br>(%) |
|--------------------|---------------------|-------------------------|-------------------------|-----------------------|
| 87.5               | 60                  | 1521                    | 23.4                    | 84.9                  |
| 98                 | 60                  | 1600                    | 23.6                    | 82.5                  |
| 108                | 60                  | 1556                    | 23.5                    | 80.0                  |

## 87.5-108 MHz BROADBAND REFERENCE CIRCUIT - 2. 9" x 5.1" (73 mm x 130 mm)



\*C15 and C23 are mounted vertically.

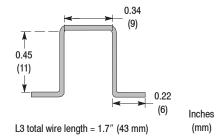



Figure 9. MRFX1K80H 87.5-108 MHz Broadband Reference Circuit Component Layout

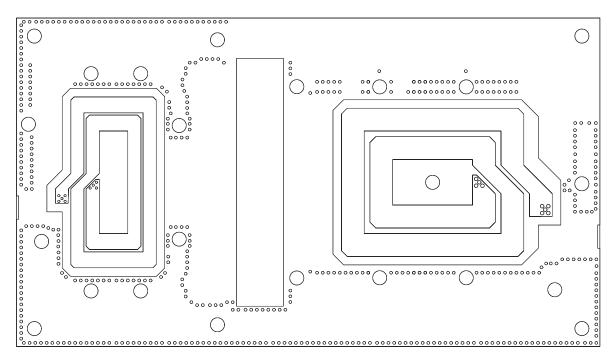



Figure 10. MRFX1K80H 87.5-108 MHz Broadband Reference Circuit Component Layout - Bottom

Table 10. MRFX1K80H 87.5–108 MHz Broadband Reference Circuit Component Designations and Values

| Part                                       | Description                                                                     | Part Number          | Manufacturer            |
|--------------------------------------------|---------------------------------------------------------------------------------|----------------------|-------------------------|
| C1, C3, C6, C9, C18, C19,<br>C20, C21, C22 | 1000 pF Chip Capacitor                                                          | ATC100B102JT50XT     | ATC                     |
| C2                                         | 33 pF Chip Capacitor                                                            | ATC100B330JT500XT    | ATC                     |
| C4, C5, C8                                 | 10 nF Chip Capacitor                                                            | ATC200B103KT50XT     | ATC                     |
| C7, C10, C15, C16, C17, C23                | 470 pF Chip Capacitor                                                           | ATC100B471JT200XT    | ATC                     |
| C11                                        | 100 pF, 300 V Mica Capacitor                                                    | MIN02-002EC101J-F    | CDE                     |
| C14, C24                                   | 12 pF Chip Capacitor                                                            | ATC100B120GT500XT    | ATC                     |
| C25, C26, C27                              | 220 μF, 100 V Electrolytic Capacitor                                            | EEV-FC2A221M         | Panasonic-ECG           |
| C28                                        | 22 μF, 35 V Electrolytic Capacitor                                              | UUD1V220MCL1GS       | Nichicon                |
| L1, L2                                     | 17.5 nH Inductor, 6 Turns                                                       | B06TJLC              | Coilcraft               |
| L3                                         | 1.5 mm Non-Tarnish Silver Plated Copper Wire,<br>Total Wire Length = 1.7"/43 mm | SP1500NT-001         | Scientific Wire Company |
| L4                                         | 22 nH Inductor                                                                  | 1212VS-22NMEB        | Coilcraft               |
| Q1                                         | RF Power LDMOS Transistor                                                       | MRFX1K80H            | NXP                     |
| R1                                         | 10 Ω, 1/4 W Chip Resistor                                                       | CRCW120610R0JNEA     | Vishay                  |
| R2, R3                                     | 33 Ω, 2 W Chip Resistor                                                         | 1-2176070-3          | TE Connectivity         |
| Thermal Pad                                | TG Series Soft Thermal Conductive Pad                                           | TG6050-150-150-5.0-0 | t-Global Technology     |
| PCB                                        | Arlon TC350 0.030", ε <sub>r</sub> = 3.5                                        | D94849               | MTL                     |

Note: Refer to MRFX1K80H's printed circuit boards and schematics to download the 87.5–108 MHz heatsink drawing.

## TYPICAL CHARACTERISTICS – 87.5–108 MHz, 60 V BROADBAND REFERENCE CIRCUIT

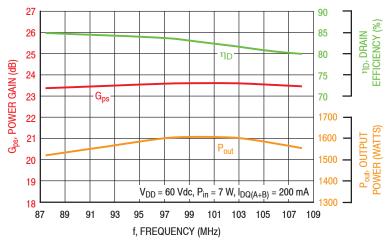



Figure 11. Power Gain, Drain Efficiency and CW Output Power versus Frequency at a Constant Input Power

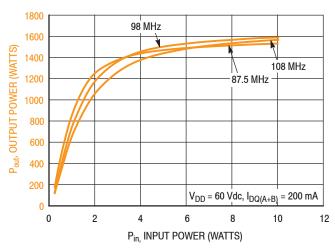



Figure 12. CW Output Power versus Input Power and Frequency

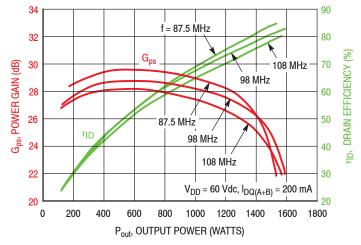



Figure 13. Power Gain and Drain Efficiency versus CW Output Power and Frequency

#### 87.5-108 MHz BROADBAND REFERENCE CIRCUIT



| f<br>MHz | $Z_{source} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $ | Z <sub>load</sub><br>Ω |
|----------|---------------------------------------------------|------------------------|
| 87.5     | 3.69 + j5.19                                      | 3.90 + j4.73           |
| 98       | 3.60 + j4.90                                      | 3.88 + j3.99           |
| 108      | 3.16 + j4.69                                      | 3.35 + j3.95           |

Z<sub>source</sub> = Test circuit impedance as measured from gate to gate, balanced configuration.

Z<sub>load</sub> = Test circuit impedance as measured from drain to drain, balanced configuration.

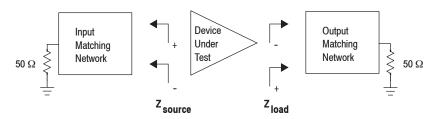
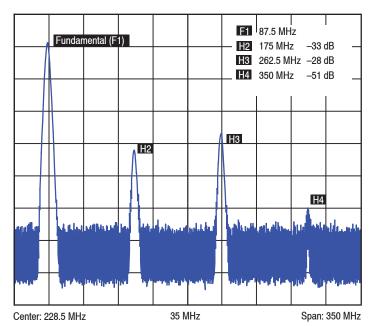
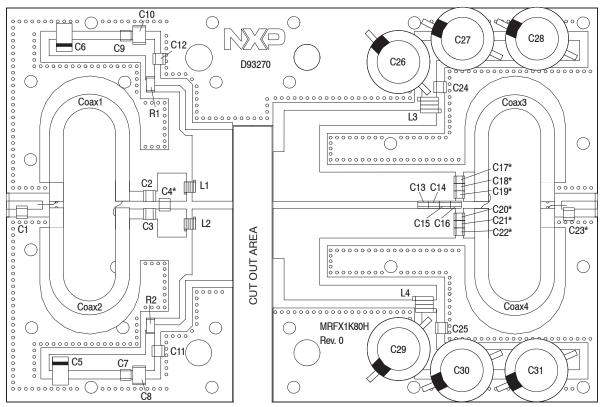




Figure 14. Broadband Series Equivalent Source and Load Impedance – 87.5–108 MHz


# HARMONIC MEASUREMENTS — 87.5–108 MHz BROADBAND REFERENCE CIRCUIT



| H2        | H3          | H4        |
|-----------|-------------|-----------|
| (175 MHz) | (262.5 MHz) | (350 MHz) |
| –33 dB    | –28 dB      |           |

Figure 15. 87.5 MHz Harmonics @ 1300 W CW

# 230 MHz NARROWBAND PRODUCTION TEST FIXTURE – 6.0" × 4.0" (152 mm × 102 mm)



<sup>\*</sup>C4, C17, C18, C19, C20, C21, C22 and C23 are mounted vertically.

Figure 16. MRFX1K80H Narrowband Test Fixture Component Layout – 230 MHz

Table 11. MRFX1K80H Narrowband Test Fixture Component Designations and Values - 230 MHz

| Part                         | Description                                           | Part Number           | Manufacturer |
|------------------------------|-------------------------------------------------------|-----------------------|--------------|
| C1, C2, C3                   | 22 pF Chip Capacitor                                  | ATC100B220JT500XT     | ATC          |
| C4                           | 27 pF Chip Capacitor                                  | ATC100B270JT500XT     | ATC          |
| C5, C6                       | 22 μF, 35 V Tantalum Capacitor                        | T491X226K035AT        | Kemet        |
| C7, C9                       | 0.1 μF Chip Capacitor                                 | CDR33BX104AKWS        | AVX          |
| C8, C10                      | 220 nF Chip Capacitor                                 | C1812C224K5RACTU      | Kemet        |
| C11, C12, C24, C25           | 1000 pF Chip Capacitor                                | ATC100B102JT50XT      | ATC          |
| C13                          | 24 pF Chip Capacitor                                  | ATC800R240JT500XT     | ATC          |
| C14, C15, C16                | 20 pF Chip Capacitor                                  | ATC800R200JT500XT     | ATC          |
| C17, C18, C19, C20, C21, C22 | 240 pF Chip Capacitor                                 | ATC100B241JT200XT     | ATC          |
| C23                          | 7.5 pF Chip Capacitor                                 | ATC100B7R5CT500XT     | ATC          |
| C26, C27, C28, C29, C30, C31 | 470 μF, 100 V Electrolytic Capacitor                  | MCGPR100V477M16X32-RH | Multicomp    |
| Coax1, 2, 3, 4               | 25 $\Omega$ Semi Rigid Coax Cable, 2.2" Shield Length | UT-141C-25            | Micro-Coax   |
| L1, L2                       | 5 nH Inductor, 2 Turns                                | A02TJLC               | Coilcraft    |
| L3, L4                       | 6.6 nH Inductor, 2 Turns                              | GA3093-ALC            | Coilcraft    |
| R1, R2                       | 10 Ω, 1/4 W Chip Resistor                             | CRCW120610R0JNEA      | Vishay       |
| PCB                          | Arlon AD255A 0.030", $\epsilon_{r} = 2.55$            | D93270                | MTL          |

# TYPICAL CHARACTERISTICS — 230 MHz, T<sub>C</sub> = 25°C PRODUCTION TEST FIXTURE

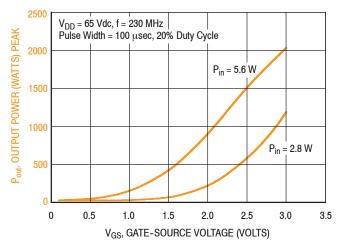



Figure 17. Output Power versus Gate-Source Voltage at a Constant Input Power

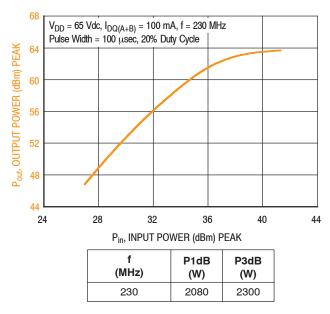



Figure 18. Output Power versus Input Power

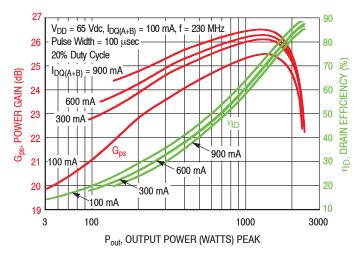



Figure 19. Power Gain and Drain Efficiency versus Output Power and Quiescent Current

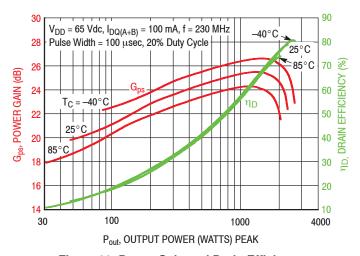



Figure 20. Power Gain and Drain Efficiency versus Output Power

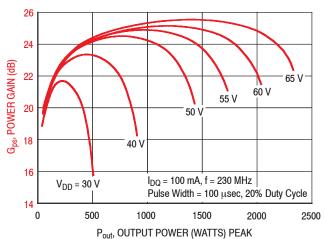



Figure 21. Power Gain versus Output Power and Drain-Source Voltage

MRFX1K80H

# 230 MHZ NARROWBAND PRODUCTION TEST FIXTURE

| f   | Z <sub>source</sub> | Z <sub>load</sub> |
|-----|---------------------|-------------------|
| MHz | Ω                   | Ω                 |
| 230 | 1.1 + j2.7          | 2.2 + j2.9        |

Z<sub>source</sub> = Test fixture impedance as measured from gate to gate, balanced configuration.

Z<sub>load</sub> = Test fixture impedance as measured from drain to drain, balanced configuration.

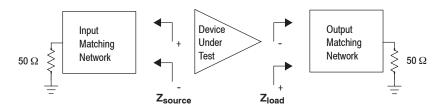
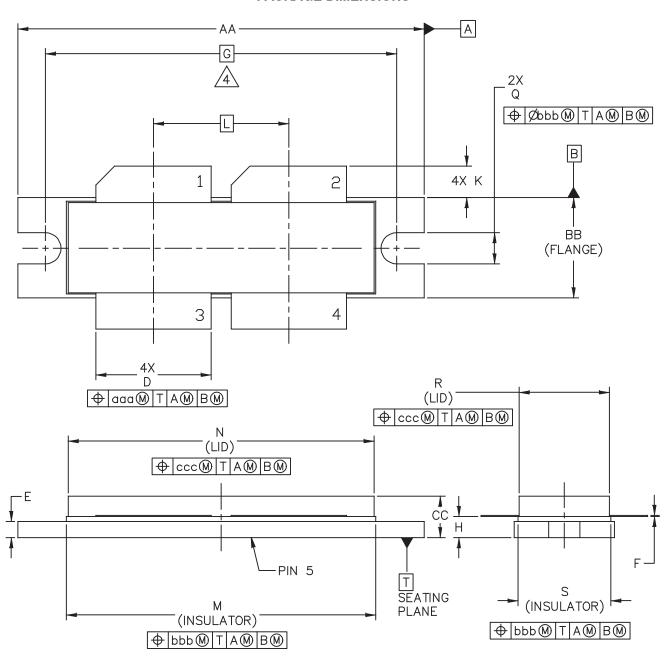




Figure 22. Narrowband Series Equivalent Source and Load Impedance – 230 MHz

# **PACKAGE DIMENSIONS**



|        | NXP SEMICONDUCTORS N.V. ALL RIGHTS RESERVED  MECHANICAL OU |  | TLINE   | PRINT      | VERSION NO | T TO SC | ALE |    |
|--------|------------------------------------------------------------|--|---------|------------|------------|---------|-----|----|
| TITLE: |                                                            |  | DOCUMEN | NT NO: 98  | ASB16977C  | RE      | :V: | G  |
| N      | II-1230-4H                                                 |  | STANDAF | RD: NON-J  | IEDEC      |         |     |    |
|        |                                                            |  | S0T1787 | <b>—</b> 1 | (          | 03 MAR  | 201 | 16 |

# NOTES:

- 1. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: INCH
- 3. DIMENSION H IS MEASURED . 030 INCH (0.762 MM) AWAY FROM PACKAGE BODY.

4.

RECOMMENDED BOLT CENTER DIMENSION OF 1.52 INCH (38.61 MM) BASED ON M3 SCREW.

|        | l IN                                                    | CH    | MIL   | LIMETER |                       |         | INCH          | MILLIN     | METER    |
|--------|---------------------------------------------------------|-------|-------|---------|-----------------------|---------|---------------|------------|----------|
| DIM    | MIN                                                     | MAX   | MIN   | MAX     | DIM                   | MIN     | MAX           | MIN        | MAX      |
| AA     | 1.615                                                   | 1.625 | 41.02 | 41.28   | N                     | 1.218   | 1.242         | 30.94      | 31.55    |
| BB     | .395                                                    | .405  | 10.03 | 10.29   | Q                     | .120    | .130          | 3.05       | 3.30     |
| cc     | .170                                                    | .190  | 4.32  | 4.83    | R                     | .355    | .365          | 9.02       | 9.27     |
| D      | .455                                                    | .465  | 11.56 | 11.81   | S                     | .365    | .375          | 9.27       | 9.53     |
| E      | .062                                                    | .066  | 1.57  | 1.68    |                       |         |               |            |          |
| F      | .004                                                    | .007  | 0.10  | 0.18    |                       |         |               |            |          |
| G      | 1.400                                                   | BSC   | 35.   | .56 BSC | aaa                   | .013    |               | .013 0.33  |          |
| Н      | .082                                                    | .090  | 2.08  | 2.29    | bbb                   |         | .010          | 010 0.25   |          |
| K      | .117                                                    | .137  | 2.97  | 3.48    | ccc                   |         | .020 0.51     |            | .51      |
| L      | .540                                                    | BSC   | 13.   | .72 BSC |                       |         |               |            |          |
| М      | 1.219                                                   | 1.241 | 30.96 | 31.52   |                       |         |               |            |          |
|        |                                                         |       |       |         |                       |         |               |            |          |
|        |                                                         |       |       |         |                       |         |               |            |          |
| (      | © NXP SEMICONDUCTORS N.V. ALL RIGHTS RESERVED MECHANICA |       |       |         | L 0U1                 | LINE    | PRINT VERS    | SION NOT T | O SCALE  |
| TITLE: | :                                                       |       |       |         |                       | DOCUMEN | IT NO: 98ASB1 | 6977C      | REV: G   |
|        | NI-1230-4H                                              |       |       |         |                       | STANDAR | D: NON-JEDEC  | 2          |          |
|        |                                                         |       |       |         | SOT1787-1 03 MAR 2016 |         |               |            | MAR 2016 |

# PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS

Refer to the following resources to aid your design process.

#### **Application Notes**

- · AN1908: Solder Reflow Attach Method for High Power RF Devices in Air Cavity Packages
- · AN1955: Thermal Measurement Methodology of RF Power Amplifiers

#### **Engineering Bulletins**

• EB212: Using Data Sheet Impedances for RF LDMOS Devices

## Software

- Electromigration MTTF Calculator
- RF High Power Model
- .s2p File

#### **Development Tools**

• Printed Circuit Boards

## To Download Resources Specific to a Given Part Number:

- 1. Go to <a href="http://www.nxp.com/RF">http://www.nxp.com/RF</a>
- 2. Search by part number
- 3. Click part number link
- 4. Choose the desired resource from the drop down menu

#### **REVISION HISTORY**

The following table summarizes revisions to this document.

| Revision | Date      | Description                   |
|----------|-----------|-------------------------------|
| 0        | Aug. 2017 | Initial release of data sheet |

#### How to Reach Us:

Home Page: nxp.com

Web Support: nxp.com/support

Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: <a href="https://nxp.com/SalesTermsandConditions">nxp.com/SalesTermsandConditions</a>.

NXP and the NXP logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners.

© 2017 NXP B.V.

