: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

HIGH DENSITY MOUNTING PHOTODARLINGTON OPTICALLY COUPLED ISOLATORS

APPROVALS

- ULrecognised, File No.E91231

'X'SPECIFICATIONAPPROVALS

- VDE 0884 in 3 available lead form : -
-STD
- G form
- SMD approved to CECC 00802
- Certified to EN60950 by the following Test Bodies :-
Nemko-Certificate No.P01102465
Fimko-Certificate No. FI18162
Semko-Reference No.0202041/01-25
Demko-Certificate No. 311161-01
- BSI approved - Certificate No. 8001

DESCRIPTION

The PS2502-1,PS2502-2,PS2502-4 series of optically coupled isolators consist of infrared light emitting diodes and NPN silicon photodarlingtons in space efficient dual in line plastic packages.

FEATURES

- Options :-

10 mm lead spread - add G after part no. Surface mount - add SM after part no. Tape\&reel - add SMT\&R after part no.

- High Current Transfer Ratio ($200 \% \mathrm{~min}$)
- High Isolation Voltage $\left(5.3 \mathrm{kV}_{\mathrm{RMS}}, 7.5 \mathrm{kV}_{\mathrm{PK}}\right)$
- All electrical parameters 100% tested
- Custom electrical selections available

APPLICATIONS

- Computer terminals
- Industrial systems controllers
- Measuring instruments
- Signal transmission between systems of different potentials and impedances

ISOCOM COMPONENTS LTD

Unit 25B, Park View Road West,
Park View Industrial Estate, Brenda Road
Hartlepool, Cleveland, TS25 1YD
Tel: (01429) 863609 Fax :(01429) 863581

ABSOLUTE MAXIMUM RATINGS

($25^{\circ} \mathrm{C}$ unless otherwise specified)

Storage Temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature	$-30^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Lead Soldering Temperature	
$(1 / 16$ inch $(1.6 \mathrm{~mm})$ from case for 10 secs $) 260^{\circ} \mathrm{C}$	

INPUT DIODE

Forward Current	50 mA
Reverse Voltage	6 V
Power Dissipation	70 mW

OUTPUT TRANSISTOR

Collector-emitter Voltage $\mathrm{BV}_{\text {CEO }}$	-	40 V
Emitter-collector Voltage $\mathrm{BV}_{\text {ECO }} _$	6 V	
Power Dissipation	150 mW	

POWER DISSIPATION

> Total Power Dissipation $\quad 200 \mathrm{~mW}$ (derate linearly $2.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$)

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Unless otherwise noted)

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{PARAMETER} \& MIN \& TYP \& MAX \& UNITS \& TEST CONDITION \\
\hline Input \& \begin{tabular}{l}
Forward Voltage \(\left(\mathrm{V}_{\mathrm{F}}\right)\) \\
Reverse Current (\(\mathrm{I}_{\mathrm{R}}\))
\end{tabular} \& \& 1.2 \& \[
\begin{aligned}
\& 1.4 \\
\& 10
\end{aligned}
\] \& \begin{tabular}{l}
V \\
\(\mu \mathrm{A}\)
\end{tabular} \& \[
\begin{aligned}
\& \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \\
\& \mathrm{~V}_{\mathrm{R}}=4 \mathrm{~V}
\end{aligned}
\] \\
\hline Output \& Collector-emitter Breakdown \(\left(\mathrm{BV}_{\mathrm{CEO}}\right)\)
\((\mathrm{Note} 2))\)
Emitter-collector Breakdown \(\left(\mathrm{BV}_{\mathrm{ECO}}\right)\) \& \begin{tabular}{l}
40 \\
6
\end{tabular} \& \& \& \begin{tabular}{l}
V \\
V
\end{tabular} \& \[
\begin{aligned}
\& I_{C}=0.5 \mathrm{~mA} \\
\& \mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A}
\end{aligned}
\] \\
\hline Coupled \& \begin{tabular}{l}
Current Transfer Ratio (CTR) (Note 2) \\
Collector-emitterSaturation VoltageV \(\mathrm{V}_{\mathrm{CE} \text { (SAT) }}\) \\
Input to Output Isolation Voltage \(\mathrm{V}_{\text {ISo }}\) \\
Input-output Isolation Resistance \(\mathrm{R}_{\text {ISo }}\) \\
Output Rise Time tr \\
OutputFall Time tf
\end{tabular} \& \[
\begin{aligned}
\& 200 \\
\& \\
\& 5300 \\
\& 7500 \\
\& 5 \times 10^{10}
\end{aligned}
\] \& \begin{tabular}{l}
2000 \\
60 \\
53
\end{tabular} \& 1.0

300

250 \& \begin{tabular}{l}
\%

V

$\mathrm{V}_{\text {RMS }}$

V_{PK}

Ω

$\mu \mathrm{s}$

$\mu \mathrm{s}$

 \&

$$
1 \mathrm{mAI}_{\mathrm{F}}, 2 \mathrm{VV}_{\mathrm{CE}}
$$

$$
1 \mathrm{~mA}_{\mathrm{F}}, 2 \mathrm{~mA}_{\mathrm{C}}
$$

See note 1

See note 1

$$
\mathrm{V}_{\mathrm{IO}}=500 \mathrm{~V}(\text { note } 1)
$$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{CE}}=2 \mathrm{~V}, \\
& \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \Omega
\end{aligned}
$$

\end{tabular}

\hline
\end{tabular}

Note 1 Measured with input leads shorted together and output leads shorted together.
Note 2 Special Selections are available on request. Please consult the factory.

Collector Power Dissipation vs. Ambient Temperature

Forward Current vs. Ambient Temperature

Collector-emitter Saturation Voltage vs. Ambient Temperature

Collector-emitter Saturation Voltage vs. Forward Current

Collector Current vs. Collector-emitter Voltage

Relative Current Transfer Ratio
vs. Ambient Temperature

