## : ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!


## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

HIGH DENSITY A.C. INPUT PHOTOTRANSISTOR OPTICALLY COUPLED ISOLATORS


## APPROVALS

- UL recognised, File No.E91231

Package code " EE "

## 'X'SPECIFICATIONAPPROVALS

- VDE 0884 in 3 available lead form :-
- STD
- Gform
- SMD approved to CECC 00802
- Certified to EN60950 by

Nemko-Certificate No.P01102465

## DESCRIPTION

The PS2505-1, PS2505-2, PS2505-4 series of optically coupled isolators consist of two infrared light emitting diodes connected in inverse parallel and NPN silicon photo transistors in space efficient dual in line plastic packages.

## FEATURES

- Options :-

10 mm lead spread - add $G$ after part no. Surface mount - add SM after part no.
Tape\&reel - add SMT\&R after part no.

- High Isolation Voltage ( $5.3 \mathrm{kV}_{\mathrm{RMS}}, 7.5 \mathrm{kV}_{\mathrm{PK}}$ )
- AC or polarity insensitive input
- All electrical parameters $100 \%$ tested
- Custom electrical selections available


## APPLICATIONS

- Computer terminals
- Industrial systems controllers
- Telephone sets, Telephone exchangers
- Signal transmission between systems of different potentials and impedances



ISOCOM COMPONENTS LTD
Unit 25B, Park View Road West,
Park View Industrial Estate, Brenda Road Hartlepool, Cleveland, TS25 1YD
Tel: (01429) 863609 Fax :(01429) 863581

## ABSOLUTEMAXIMUMRATINGS

( $25^{\circ} \mathrm{C}$ unless otherwise specified)

| Storage Temperature | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| :--- | ---: |
| Operating Temperature | $-30^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ |
| Lead Soldering Temperature |  |
| $(1 / 16$ inch $(1.6 \mathrm{~mm})$ from case for 10 secs $) 260^{\circ} \mathrm{C}$ |  |

INPUTDIODE

| Forward Current <br> Power Dissipation | $\pm 50 \mathrm{~mA}$ |
| :--- | :--- |
|  | 70 mW |

## OUTPUTTRANSISTOR

| Collector-emitter Voltage $\mathrm{BV}_{\text {CEO }} —$ | 80 V |
| :--- | :--- |
| Emitter-collector Voltage $\mathrm{BV}_{\text {ECO }} \_$ | 6 V |
| Collector Current | 50 mA |
| Power Dissipation | 150 mW |

## POWERDISSIPATION

```
Total Power Dissipation
    200mW
(derate linearly 2.67mW/ }/\textrm{C}\mathrm{ above 25 ' C)
```

ELECTRICAL CHARACTERISTICS ( $\mathbf{T}_{\mathrm{A}}=\mathbf{2 5}^{\circ} \mathbf{C}$ Unless otherwise noted )

| PARAMETER |  | MIN | TYP | MAX | UNITS | TEST CONDITION |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input | Forward Voltage ( $\mathrm{V}_{\mathrm{F}}$ ) |  | 1.2 | 1.4 | V | $\mathrm{I}_{\mathrm{F}}= \pm 10 \mathrm{~mA}$ |
| Output | Collector-emitter Breakdown $\left(\mathrm{BV}_{\mathrm{CEO}}\right)$ $\left(\mathrm{Note}_{2}\right)$ Emitter-collector Breakdown $\left(\mathrm{BV}_{\mathrm{ECO}}\right)$ Collector-emitter Dark Current $\left(\mathrm{I}_{\mathrm{CEO}}\right)$ | $\begin{aligned} & 80 \\ & 6 \end{aligned}$ |  | 100 | V <br> V <br> nA | $\begin{aligned} & \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CE}}=20 \mathrm{~V} \end{aligned}$ |
| Coupled | Current Transfer Ratio (CTR) (Note 2) PS2505-1, PS2505-2, PS2505-4 <br> Collector-emitter Saturation VoltageV $\mathrm{CE}_{\text {(SAT) }}$ <br> Input to Output Isolation Voltage $\mathrm{V}_{\text {ISo }}$ <br> Input-output Isolation Resistance $\mathrm{R}_{\text {ISO }}$ <br> Output Rise Time tr <br> OutputFall Time tf | 80 <br> 5300 <br> 7500 <br> $5 \times 10^{10}$ | $\begin{aligned} & 4 \\ & 3 \end{aligned}$ | $\begin{aligned} & 600 \\ & 0.3 \end{aligned}$ | $\begin{aligned} & \% \\ & \\ & \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{RMS}} \\ & \mathrm{~V}_{\mathrm{PK}} \\ & \Omega \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \end{aligned}$ | $\begin{aligned} & \pm 5 \mathrm{mAI}_{\mathrm{F}}, 5 \mathrm{~V} \mathrm{~V}_{\mathrm{CE}} \\ & \pm 10 \mathrm{mAI}_{\mathrm{F}}, 2 \mathrm{mAI}_{\mathrm{C}} \end{aligned}$ <br> See note 1 <br> See note 1 $\begin{aligned} & \mathrm{V}_{\mathrm{IO}}=500 \mathrm{~V}(\text { note } 1) \\ & \mathrm{V}_{\mathrm{CE}}=2 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \Omega \end{aligned}$ |

Note 1 Measured with input leads shorted together and output leads shorted together.
Note 2 Special Selections are available on request. Please consult the factory

Collector Power Dissipation vs. Ambient Temperature


Forward Current vs. Ambient Temperature


Collector-emitter Saturation


Collector-emitter Saturation Voltage vs. Forward Current


Collector Current vs. Collector-emitter Voltage


Current Transfer Ratio vs. Forward Current


