mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

PS8551L4

ANALOG OUTPUT TYPE OPTICAL COUPLED ISOLATION AMPLIFIER

DESCRIPTION

The PS8551L4 is an optically coupled isolation amplifier that uses an IC with a high-accuracy sigma-delta A/D converter and a GaAIAs light-emitting diode with high-speed response and high luminance efficiency on the input side, and an IC with a high-accuracy D/A converter on the output side.

The PS8551L4 is designed specifically for high common mode transient immunity (CMTI) and high linearity (nonlinearity). The PS8551L4 is suitable for current sensing in motor drives.

FEATURES

- Non-linearity (NL200 = 0.35% MAX.)
- High common mode transient immunity (CMTI = 10 kV/µs MIN.)
- High isolation voltage (BV = 5 000 Vr.m.s.)
- Gain tolerance (G = 7.76 to 8.24 (±3%))
 Gain: 8 V/V TYP.
- Package: 8-pin DIP lead bending type (Gull-wing) for long creepage distance for surface mount (L4)
- Embossed tape product: PS8551L4-E3 : 1 000 pcs/reel
- Pb-Free product
- · Safety standards
 - UL approved: No. E72422
 - CSA approved: No. CA 101391 (CA5A, CAN/CSA-C22.2 60065, 60950)
 - SEMKO approved: No. 1111155
 - DIN EN60747-5-2 (VDE0884 Part2) approved: No. 40019182 (Option)

APPLICATIONS

- · AC Servo, inverter
- Measurement equipment

The mark <R> shows major revised points.

The revised points can be easily searched by copying an "<R>" in the PDF file and specifying it in the "Find what:" field.

Data Sheet R08DS0039EJ0200 Rev.2.00 Sep 06, 2011

PACKAGE DIMENSIONS (UNIT: mm)

Lead Bending Type (Gull-wing) For Long Creepage Distance For Surface Mount (L4)

PHOTOCOUPLER CONSTRUCTION

Parameter	Unit (MIN.)
Air Distance	8 mm
Outer Creepage Distance	8 mm
Isolation Distance	0.4 mm

<R> MARKING EXAMPLE

ORDERING INFORMATION

Part Number	Order Number	Solder Plating Specification	Packing Style	Safety Standard Approval	Application Part Number*1
PS8551L4	PS8551L4-AX	Pb-Free	Magazine case 50 pcs	Standard products	PS8551L4
PS8551L4-E3	PS8551L4-E3-AX	(Ni/Pd/Au)	Embossed Tape 1 000 pcs/reel	(UL, CSA, SEMKO approved)	
PS8551L4-V	PS8551L4-V-AX		Magazine case 50 pcs	DIN EN60747-5-2	
PS8551L4-V-E3	PS8551L4-V-E3-AX		Embossed Tape 1 000 pcs/reel	(VDE0884 Part2)	
				Approved (Option)	

*1 For the application of the Safety Standard, following part number should be used.

ABSOLUTE MAXIMUM RATINGS (T_A = 25°C, unless otherwise specified)

Parameter	Symbol	Ratings	Unit
Operating Ambient Temperature	TA	-40 to +85	°C
Storage Temperature	Tstg	-55 to+125	°C
Supply Voltage	Vdd1, Vdd2	0 to 5.5	V
Input Voltage	VIN+, VIN-	-2 to V _{DD} 1+0.5	V
2 Seconds Transient Input Voltage	VIN+, VIN-	-6 to V _{DD} 1+0.5	V
Output Voltage	Vout+, Vout-	-0.5 to V _{DD} 2 $+0.5$	V
Isolation Voltage ¹¹	BV	5 000	Vr.m.s.

*1 AC voltage for 1 minute at $T_A = 25^{\circ}$ C, RH = 60% between input and output. Pins 1-4 shorted together, 5-8 shorted together.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	MIN.	MAX.	Unit
Operating Ambient Temperature	TA	-40	85	°C
Supply Voltage	Vdd1, Vdd2	4.5	5.5	V
Input Voltage (Accurate and Linear) ^{*1}	Vin+, Vin-	-200	200	mV

*1 Using $V_{IN-} = 0$ V (to be connected to GND1) is recommended. Avoid using V_{IN-} of 2.5 V or more, because the internal test mode is activated when the voltage V_{IN-} reaches more than 2.5 V.

ELECTRICAL CHARACTERISTICS (DC Characteristics)

(TYP.: $T_A = 25^{\circ}C$, $V_{IN+} = V_{IN-} = 0 V$, $V_{DD}1 = V_{DD}2 = 5 V$,

MIN., MAX.: refer to RECOMMENDED OPERATING CONDITIONS, unless otherwise specified)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input Offset Voltage	Vos	T _A = 25°C	-2	0.3	2	mV
			-3		3	
Input Offset Voltage Drift vs. Temperature	dVos/dTA	T _A = 25 to +85°C		3	10	μV/°C
Gain ¹¹	G	$-200 \text{ mV} \le \text{V}_{\text{IN+}} \le 200 \text{ mV},$ T _A = 25°C	7.76	8	8.24	V/V
Gain Drift vs. Temperature	dG/dT₄			0.00087		V/V°C
Vout Non-linearity (200 mV) ^{*2}	NL200	$-200 \text{ mV} \le \text{V}_{\text{IN+}} \le 200 \text{ mV}$		0.021	0.35	%
Vout Non-linearity (200 mV) Drift vs. Temperature	dNL200/dT _A			0.0002		%/°C
Vout Non-linearity (100 mV) ^{*2}	NL100	$-100 \text{ mV} \le \text{V}_{\text{IN+}} \le 100 \text{ mV}$		0.014	0.2	%
Maximum Input Voltage before Vout Clipping	V _{IN+} MAX.			308		mV
Input Supply Current	loo1	V _{IN+} = 400 mV		16	20	mA
Output Supply Current	IDD2	V _{IN+} = -400 mV		10	16	mA
Input Bias Current	lin+	$V_{IN+} = 0V$		-0.5	5	μA
Input Bias Current Drift vs. Temperature	dIIN+/dTA			0.45		nA/°C
Low Level Saturated Output Voltage	Vol	V _{IN+} = -400 mV		1.29		V
High Level Saturated Output Voltage	Vон	V _{IN+} = 400 mV		3.8		V
Output Voltage ($V_{IN+} = V_{IN-} = 0 V$)	Vосм	$V_{IN+} = V_{IN-} = 0 V$	2.2	2.55	2.8	V
Output Short-circuit Current	losc			18.6		mA
Equivalent Input Resistance	Rin			320		kΩ
Vout Output Resistance	Rout			15		Ω
Input DC Common-Mode Rejection Ratio ^{'3}	CMRRIN			76		dB

- <R>
- *1 The differential output voltage (V_{OUT+} V_{OUT-}) with respect to the differential input voltage (V_{IN+} V_{IN-}), where V_{IN+} = -200 mV to 200 mV and V_{IN-} = 0 V) is measured under the circuit shown in Fig. 2 NL200, G Test Circuit. Upon the resulting chart, the gain is defined as the slope of the optimum line obtained by using the method of least squares.

*2 The differential output voltage (V_{OUT+} - V_{OUT-}) with respect to the differential input voltage (V_{IN+} - V_{IN-}) is measured under the circuit shown in Fig. 2 NL200, G Test Circuit. Upon the resulting chart, the optimum line is obtained by using the method of least squares. Non-linearity is defined as the ratio (%) of the optimum line obtained by dividing [Half of the peak to peak value of the (residual) deviation] by [full-scale differential output voltage]. For example, if the differential output voltage is 3.2 V, and the peak to peak value of the (residual) deviation is 22.4 mV, while the input V_{IN+} is ±200 mV, the output non-linearity is obtained as follows:

NL200 = 22.4/(2 × 3 200) = 0.35%

*3 CMRR_{IN} is defined as the ratio of the differential signal gain (when the differential signal is applied between the input pins) to the common-mode signal gain (when both input pins are connected and the signal is applied). This value is indicated in dB.

ELECTRICAL CHARACTERISTICS (AC Characteristics)

(TYP.: $T_A = 25^{\circ}C$, $V_{IN+} = V_{IN-} = 0 V$, $V_{DD}1 = V_{DD}2 = 5 V$,

MIN., MAX.: refer to RECOMMENDED OPERATING CONDITIONS, unless otherwise specified)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Vout Bandwidth (-3 dB)	fc	$V_{IN+} = 200 \text{ mV}_{p-p}$, sine wave	50	100		kHz
Vout Noise	Νουτ	$V_{IN+} = 0 V$		31.5		mVr.m.s.
VIN to VOUT Signal Delay (50 to 10%)	tPD10	$V_{IN+} = 0$ to 150 mV step		2.03	3.3	μs
VIN to VOUT Signal Delay (50 to 50%)	tPD50			4.01	5.6	
VIN to VOUT Signal Delay (50 to 90%)	tPD90			6.02	9.9	
Vout Rise Time/Fall Time (10 to 90%)	tr/tf	$V_{IN+} = 0$ to 150 mV step		3.53	6.6	μs
Common Mode Transient Immunity	CMTI	Vсм = 0.5 kV, T _A = 25°С	10	25		kV/μs
Power Supply Noise Rejection ^{*2}	PSR	f = 1 MHz		100		mVr.m.s.

*1 CMTI is tested by applying a pulse that rises and falls suddenly (V_{CM} = 0.5 kV) between GND1 on the input side and GND2 on the output side (pins 4 and 5) by using the circuit shown in Fig. 9 CMTI Test Circuit. CMTI is defined at the point where the differential output voltage (V_{OUT+} - V_{OUT-}) fluctuates 200 mV (>1 μs) or more from the average output voltage.

*2 This is the value of the transient voltage at the differential output when 1 V_{p-p}, 1 MHz, and 40 ns rise/fall time square wave is applied to both V_{DD}1 and V_{DD}2.

TEST CIRCUIT

TYPICAL CHARACTERISTICS (TA = 25°C, unless otherwise specified)

INPUT OFFSET VOLTAGE vs. SUPPLY VOLTAGE VIN+ = VIN- = 0 V

GAIN vs. SUPPLY VOLTAGE

Supply Voltage VDD (V)

NON-LINEARITY vs. SUPPLY VOLTAGE

Remark The graphs indicate nominal characteristics.

SUPPLY CURRENT vs. INPUT VOLTAGE

^{-25 0 25 50 75} Ambient Temperature T_A (°C)

 $V_{IN+} = 0$ to 150 mV step

0 -50

100

TAPING SPECIFICATIONS (UNIT: mm)

RECOMMENDED MOUNT PAD DIMENSIONS (UNIT: mm)

NOTES ON HANDLING

1. Recommended soldering conditions

- (1) Infrared reflow soldering
 - · Peak reflow temperature 260°C or below (package surface temperature)
 - · Time of peak reflow temperature
 - Time of temperature higher than 220°C
 - Time to preheat temperature from 120 to 180°C
 - Number of reflows
 - Flux

- 10 seconds or less
- 60 seconds or less
- 120±30 s Three

Rosin flux containing small amount of chlorine (The flux with a maximum chlorine content of 0.2 Wt% is recommended.)

Recommended Temperature Profile of Infrared Reflow

(2) Wave soldering

Temperature

- Time
- Preheating conditions
- Number of times
- Flux

120°C or below (package surface temperature) One (Allowed to be dipped in solder including plastic mold portion.) Rosin flux containing small amount of chlorine (The flux with a maximum chlorine content of 0.2 Wt% is recommended.)

(3) Soldering by Soldering Iron

Peak Temperature (lead part temperature)	350°C or below
Time (each pins)	3 seconds or less
• Flux	Rosin flux containing small amount of chlorine (The flux with a
	maximum chlorine content of 0.2 Wt% is recommended.)

260°C or below (molten solder temperature)

10 seconds or less

(a) Soldering of leads should be made at the point 1.5 to 2.0 mm from the root of the lead

(4) Cautions

Fluxes

Avoid removing the residual flux with freon-based and chlorine-based cleaning solvent.

2. Cautions regarding noise

Be aware that when voltage is applied suddenly between the photocoupler's input and output at startup, the output transistor may enter the on state, even if the voltage is within the absolute maximum ratings.

USAGE CAUTIONS

- 1. This product is weak for static electricity by designed with high-speed integrated circuit so protect against static electricity when handling.
- 2. Board designing
 - (1) By-pass capacitor of more than 0.1 μ F is used between Vcc and GND near device. Also, ensure that the distance between the leads of the photocoupler and capacitor is no more than 10 mm.
 - (2) Keep the pattern connected the input (VIN+, VIN-) and the output (VOUT+, VOUT-), respectively, as short as possible.
 - (3) Do not connect any routing to the portion of the frame exposed between the pins on the package of the photocoupler. If connected, it will affect the photocoupler's internal voltage and the photocoupler will not operate normally.
 - (4) Because the maximum frequency of the signal input to the photocoupler must be lower than the allowable frequency band, be sure to connect an anti-aliasing filter (an RC filter with R = 68 Ω and C = 0.01 μ F, for example).
 - (5) The signals output from the PS8551 include noise elements such as chopping noise and quantization noise generated internally. Therefore, be sure to restrict the output frequency to the required bandwidth by adding a low-pass filter function (an RC filter with R =10 kΩ and C = 150 pF, for example) to the operational amplifier (post amplifier) in the next stage to the PS8551.
- 3. Avoid storage at a high temperature and high humidity.

SPECIFICATION OF VDE MARKS LICENSE DOCUMENT

Parameter	Symbol	Spec.	Unit
Climatic test class (IEC 60068-1/DIN EN 60068-1)		40/085/21	
Dielectric strength maximum operating isolation voltage Test voltage (partial discharge test, procedure a for type test and random test) $U_{pr} = 1.5 \times U_{IORM}, P_d < 5 pC$	Uiorm Upr	1 130 1 695	V _{peak} V _{peak}
Test voltage (partial discharge test, procedure b for all devices) U_{pr} = 1.875 \times U_{IORM}, Pd < 5 pC	Upr	2 119	Vpeak
Highest permissible overvoltage	Utr	8 000	Vpeak
Degree of pollution (DIN EN 60664-1 VDE0110 Part 1)		2	
Comparative tracking index (IEC 60112/DIN EN 60112 (VDE 0303 Part 11))	CTI	175	
Material group (DIN EN 60664-1 VDE0110 Part 1)		III a	
Storage temperature range	Tstg	–55 to +125	°C
Operating temperature range	TA	-40 to +85	°C
Isolation resistance, minimum value $V_{IO} = 500 \text{ V dc at } T_A = 25^{\circ}\text{C}$ $V_{IO} = 500 \text{ V dc at } T_A MAX. at least 100^{\circ}\text{C}$	Ris MIN. Ris MIN.	10 ¹² 10 ¹¹	Ω Ω
Safety maximum ratings (maximum permissible in case of fault, see thermal derating curve) Package temperature Current (input current ls Psi = 0)	Tsi	175	°C mA
Power (output or total power dissipation) Isolation resistance $V_{IO} = 500 V dc at T_A = Tsi$	Psi Ris MIN.	700 10°	mW

Caution GaAs Products	This product uses gallium arsenide (GaAs). GaAs vapor and powder are hazardous to human health if inhaled or ingested, so please observe the following points.
	• Follow related laws and ordinances when disposing of the product. If there are no applicable laws and/or ordinances, dispose of the product as recommended below.
	 Commission a disposal company able to (with a license to) collect, transport and dispose of materials that contain arsenic and other such industrial waste materials.
	2. Exclude the product from general industrial waste and household garbage, and ensure that the product is controlled (as industrial waste subject to special control) up until final disposal.
	Do not burn, destroy, cut, crush, or chemically dissolve the product.
	Do not lick the product or in any way allow it to enter the mouth.

Revision History

PS8551L4 Data Sheet

		Description		
Rev.	Date	Page	Summary	
_	Sep 2007	_	Previous No. :PN10670EJ01V0DS	
1.00	Jun 14, 2011	Throughout	Preliminary Data Sheet -> Data Sheet	
		Throughout	Safety standards approved	
		p.3	Modification of MARKING EXAMPLE	
			Addition of ORDERING INFORMATION	
		p.4	Modification of ABSOLUTE MAXIMUM RATINGS	
			Modification of RECOMMENDED OPERATING CONDITIONS	
		p.5	Modification of ELECTRICAL CHARACTERISTICS (DC Characteristics)	
		p.6	Modification of SWITCHING CHARACTERISTICS (ADC Characteristics)	
		pp.7 to 9	Addition of TEST CIRCUIT	
		pp.10, 11	Addition of TYPICAL CHARACTERISTICS	
		p.13	Addition of RECOMMENDED MOUNT	
		p.15	Modification of USAGE CAUTIONS	
		p.16	Addition of SPECIFICATION OF VDE MARKS LICENSE DOCUMENT	
2.00	Sep 06, 2011	p.3	Modification of MARKING EXAMPLE	
		p.5	Modification of ELECTRICAL CHARACTERISTICS (DC Characteristics) CMRRIN	