

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

PS9309L, PS9309L2

Data Sheet R08DS0047EJ0100 Rev.1.00 Mar 28, 2014

LOW IF TOTEM POLE OUTPUT TYPE HIGH CMR, IPM DRIVER, 6-PIN SDIP PHOTOCOUPLER

DESCRIPTION

The PS9309L and PS9309L2 are optical coupled high-speed, totem pole output (active high output type) isolators containing a GaAlAs LED on the input side and a photodiode and a signal processing circuit on the output side on one chip.

The PS9309L and PS9309L2 are specified high CMR and pulse width distortion with operating temperature. It is suitable for IPM (Intelligent Power Module) drive.

The PS9309L is lead bending type (Gull-wing) for surface mounting. The PS9309L2 is lead bending type for long creepage distance (Gull-wing) for surface mount.

FEATURES

- Totem pole output (Active High Output Type)
- Pulse width distortion ($|t_{PLH} t_{PHL}| = 80 \text{ ns MAX.}$)
- High common mode transient immunity (CM_H, CM_L = ± 15 kV/ μ s MIN.)
- Half size of 8-pin DIP
- Long creepage distance (8 mm MIN.: PS9309L2)
- High isolation voltage (BV = 5 000 Vr.m.s.)
- Embossed tape product: PS9309L-E3, PS9309L2-E3: 2 000 pcs/reel
- Pb-Free product
- · Safety standards
 - UL approved: No. E72422
 - CSA approved: No. CA 101391 (CA5A, CAN/CSA-C22.2 60065, 60950)
- <R> SEMKO approved (EN 60065,EN 60950)
 - DIN EN 60747-5-5 (VDE 0884-5) approved (Option)

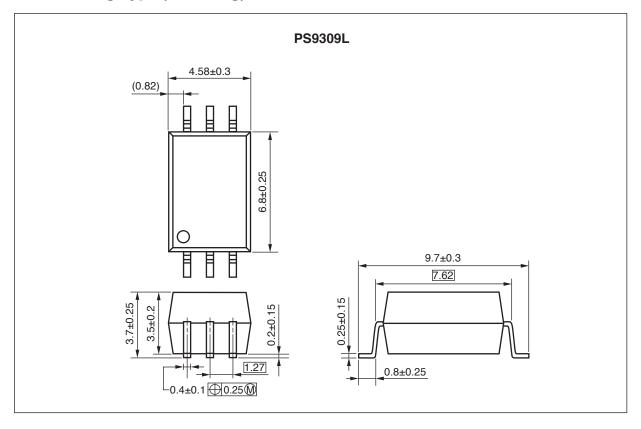
PIN CONNECTION (Top View) 1. Anode 2. NC 3. Cathode 4. GND 5. Vo 6. Vcc

<R>

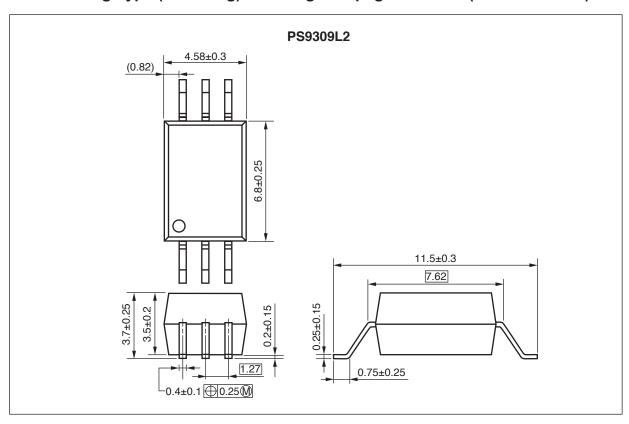
<R>

APPLICATIONS

- IPM Driver
- · General purpose inverter

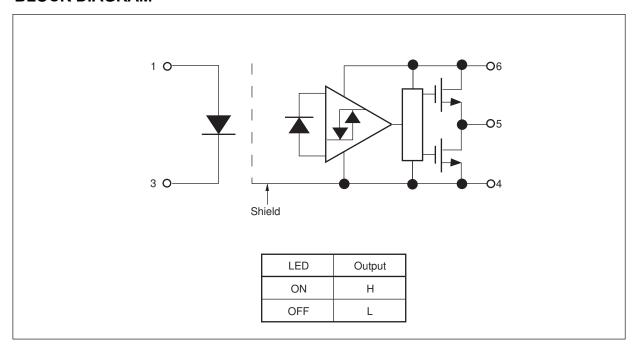

The mark <R> shows major revised points.

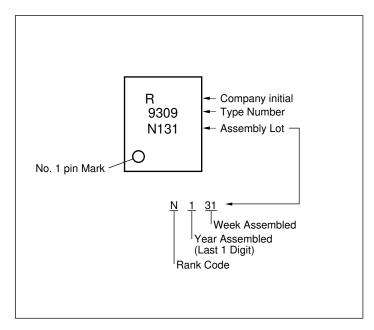
The revised points can be easily searched by copying an "<R>" in the PDF file and specifying it in the "Find what:" field.



PACKAGE DIMENSIONS (UNIT: mm)

Lead Bending Type (Gull-wing) For Surface Mount


Lead Bending Type (Gull-wing) For Long Creepage Distance (Surface Mount)


PHOTOCOUPLER CONSTRUCTION

Parameter	PS9309L	PS9309L2
Air Distance (MIN.)	7 mm	8 mm
Outer Creepage Distance (MIN.)	7 mm	8 mm
Isolation Distance (MIN.)	0.4 mm	0.4 mm

BLOCK DIAGRAM

MARKING EXAMPLE

> ORDERING INFORMATION

Part Number	Order Number	Solder Plating Specification	Packing Style	Safety Standard Approval	Application Part Number ^{*1}
PS9309L PS9309L-E3	PS9309L-AX PS9309L-E3-AX	Pb-Free (Ni/Pd/Au)	20 pcs (Tape 20 pcs cut) Embossed Tape 2 000	Standard products (UL, CSA, SEMKO	PS9309L
F39309L-E3	F39309L-E3-AX	(N/Fu/Au)	pcs/reel	approved)	
PS9309L2	PS9309L2-AX		20 pcs (Tape 20 pcs cut)		PS9309L2
PS9309L2-E3	PS9309L2-E3-AX		Embossed Tape 2 000		
D000001 1/	DOGGGG V AV		pcs/reel		Doogool
PS9309L-V	PS9309L-V-AX		20 pcs (Tape 20 pcs cut)	UL, CSA, SEMKO	PS9309L
PS9309L-V-E3	PS9309L-V-E3-AX		Embossed Tape 2 000	DIN EN 60747-5-5	
			pcs/reel	(VDE 0884-5)	
				approved	
PS9309L2-V	PS9309L2-V-AX		20 pcs (Tape 20 pcs cut)		PS9309L2
PS9309L2-V-E3	PS9309L2-V-E3-AX		Embossed Tape 2 000		
			pcs/reel		

Note: *1. For the application of the Safety Standard, following part number should be used.

ABSOLUTE MAXIMUM RATINGS ($T_A = 25$ °C, unless otherwise specified)

Parameter		Symbol	Ratings	Unit
Diode	Forward Current*1	I _F	20	mA
	Reverse Voltage	V_R	5	V
Detector	Supply Voltage	V _{CC}	-0.5 to +25	V
	Output Voltage	Vo	-0.5 to +25	V
	Output Current	Io	25	mA
	Power Dissipation*2	Pc	210	mW
Isolation Voltage *3		BV	5 000	Vr.m.s.
Operating Ambient Temperature		T _A	-40 to +110	°C
Storage Temperature		T _{stg}	-55 to +125	°C

Notes: *1. Reduced to 0.32 mA/ $^{\circ}$ C at T_A = 70 $^{\circ}$ C or more.

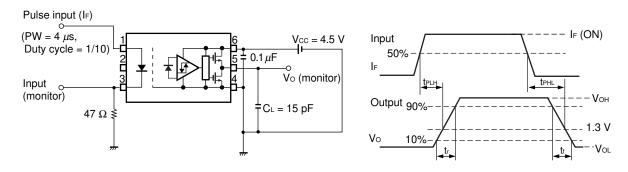
- *2. Reduced to 3.75 mW/ $^{\circ}$ C at T_A = 70 $^{\circ}$ C or more
- *3. AC voltage for 1 minute at T_A = 25°C, RH = 60% between input and output. Pins 1-3 shorted together, 4-6 shorted together.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Supply Voltage	V _{CC}	4.5	15	20	V
Output Voltage	Vo	0		20	V
Forward Current (ON)	I _{F (ON)}	4		10	mA
Forward Voltage (OFF)	V _{F (OFF)}	0		0.8	V

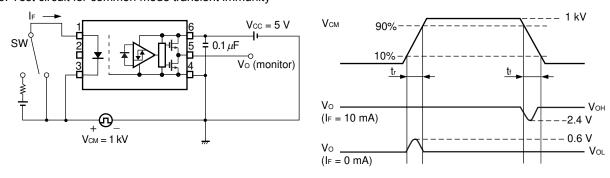
ELECTRICAL CHARACTERISTICS

$(T_A = -40 \text{ to } +110^{\circ}\text{C}, V_{CC} = 4.5 \text{ to } 20 \text{ V}, \text{ unless otherwise specified})$

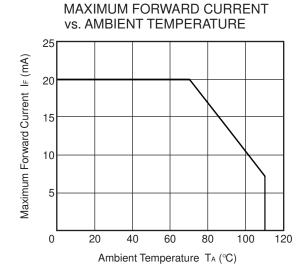

	Parameter	Symbol	Conditions	MIN.	TYP.*1	MAX.	Unit
Diode	Forward Voltage	V_{F}	I _F = 10 mA, T _A = 25°C	1.3	1.55	1.8	V
	Reverse Current	I_R	V _R = 3 V, T _A = 25°C			10	μΑ
	Input Capacitance	Ct	V _F = 0 V, f = 1 MHZ,		30		pF
			T _A = 25°C				
Detector	High Level Output Voltage	V _{OH}	$V_{CC} = 4.5 \text{ V}, I_{O} = -2.6 \text{ mA},$	2.7	3.2		V
			I _F = 4 mA				
			$V_{CC} = 20 \text{ V}, I_{O} = -2.6 \text{ mA},$	17.4	18.6		
			I _F = 4 mA				
	Low Level Output Voltage *2	V_{OL}	$I_O = 3.5 \text{ mA}, I_F = 0 \text{ mA}$		0.25	0.6	V
	High Level Supply Current	I _{CCH}	$V_{CC} = 4.5 \text{ V}, I_F = 4 \text{ mA}$		0.98	3	mA
			$V_{CC} = 20 \text{ V}, I_F = 4 \text{ mA}$		1.32	3	
	Low Level Supply Current	I _{CCL}	$V_{CC} = 4.5 \text{ V}, I_F = 0 \text{ mA}$		1.23	3	mA
			$V_{CC} = 20 \text{ V}, I_F = 0 \text{ mA}$		1.53	3	
	High Level Output Short *3	I _{OSH}	$V_{CC} = 4.5 \text{ V}, V_{O} = \text{GND},$	-7	-45		mA
	Circuit Current		$I_F = 4 \text{ mA}$				
	Low Level Output Short *3	I _{OSL}	$V_{CC} = V_O = 4.5 \text{ V}, V_F = 0 \text{ V}$	7	34		mA
	Circuit Current						
Coupled	Threshold Input Current	I _{FLH}	$V_{CC} = 4.5 \text{ V}, V_O > 2.7 \text{ V},$		1.57	3	mA
·	·		$I_{O} = -2.6 \text{ mA}$				
	Isolation Resistance	R _{I-O}	$V_{I-O} = 1 \text{ kV}_{DC}, RH = 60\%,$	10 ¹¹			Ω
			T _A = 25°C				
	Isolation Capacitance	C_{I-O}	V = 0 V, f = 1 MHz,		0.6		pF
			T _A = 25°C				
	Propagation Delay Time	t_{PHL}	$C_L = 15 \text{ pF},$		124	200	ns
	$(H \rightarrow L)^{*4}$		$I_F = 4 \rightarrow 0 \text{ mA}, V_{THHL} = 1.3 \text{ V}$				
	Propagation Delay Time	t_{PLH}	$C_L = 15 \text{ pF},$		113	200	ns
	$(L \rightarrow H)^{*4}$, ,	$I_F = 0 \rightarrow 4 \text{ mA}, V_{THLH} = 1.3 \text{ V}$				
	Pulse Width Distortion	t _{PLH} -t _{PHL}	$C_L = 15 \text{ pF},$		11	80	ns
	(PWD)		$I_F = 4 \leftrightarrow 0 \text{ mA}$				
	Maximum Propagation					80	
	Delays (PDD)						
	Rise Time (10-90%)*4	t _r	$C_L = 15 \text{ pF},$		24		ns
			$I_F = 0 \rightarrow 4 \text{ mA}$				
	Fall Time (90-10%)*4	t_f	$C_L = 15 \text{ pF},$		3.2		ns
	O M l .	ON4	$I_F = 4 \rightarrow 0 \text{ mA}$	45			1377
	Common Mode	СМн	$V_{CC} = 5 \text{ V}, T_A = 25^{\circ}\text{C},$ $I_F = 4 \text{ mA}, V_{CM} = 1.0 \text{ kV}$	15			kV/ <i>μ</i> s
	Transient Immunity at High Level Output*5		IF = 4 IIIA, VCM = 1.0 KV				
	Common Mode	CML	$V_{CC} = 5 \text{ V}, T_A = 25^{\circ}\text{C},$	15			kV/μs
	Transient Immunity at Low		$I_F = 0 \text{ mA}, V_{CM} = 1.0 \text{ kV}$, i
	Level Output*5			<u> </u>			

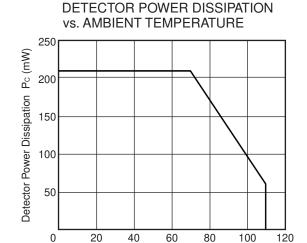
Notes: *1. Typical values at T_A = 25°C

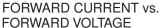
^{*2.} Because V_0 of 2.4 V may be output when the LED current is not input and when output supply of V_{CC} = 4.5 V or less, it is important to confirm the characteristics (operation with the power supply on and off) during design, before using this device.

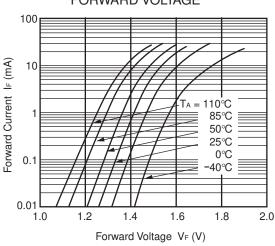

^{*3.} Duration of output short circuit time should not exceed 10 ms.

*4. Test circuit for propagation delay time

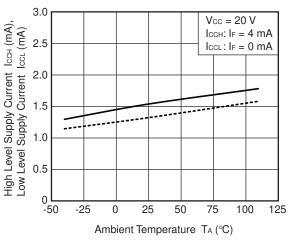

Remark CL includes probe and stray wiring capacitance.

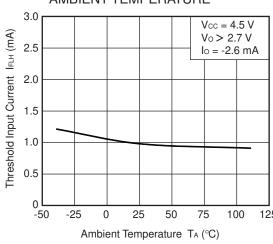

*5. Test circuit for common mode transient immunity

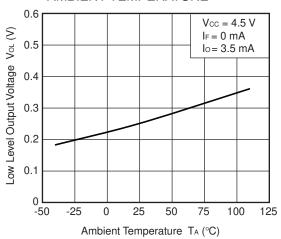



Remark CL includes probe and stray wiring capacitance.

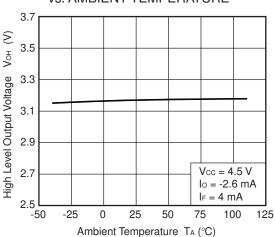
<R> TYPICAL CHARACTERISTICS (T_A = 25°C, unless otherwise specified)



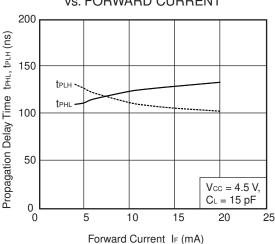



Ambient Temperature TA (°C)

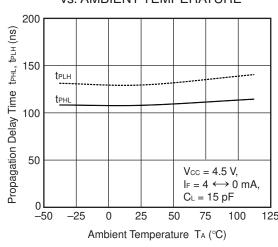
THRESHOLD INPUT CURRENT vs. AMBIENT TEMPERATURE

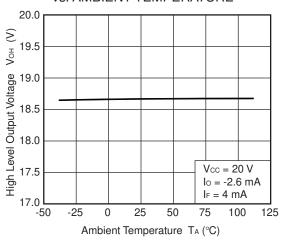


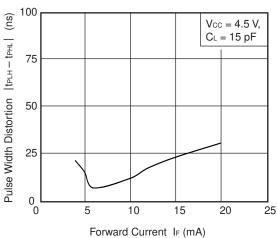
LOW LEVEL OUTPUT VOLTAGE vs. AMBIENT TEMPERATURE

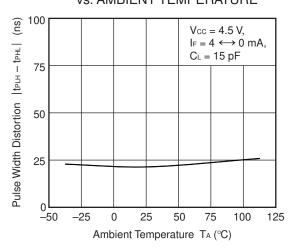


Remark The graphs indicate nominal characteristics.

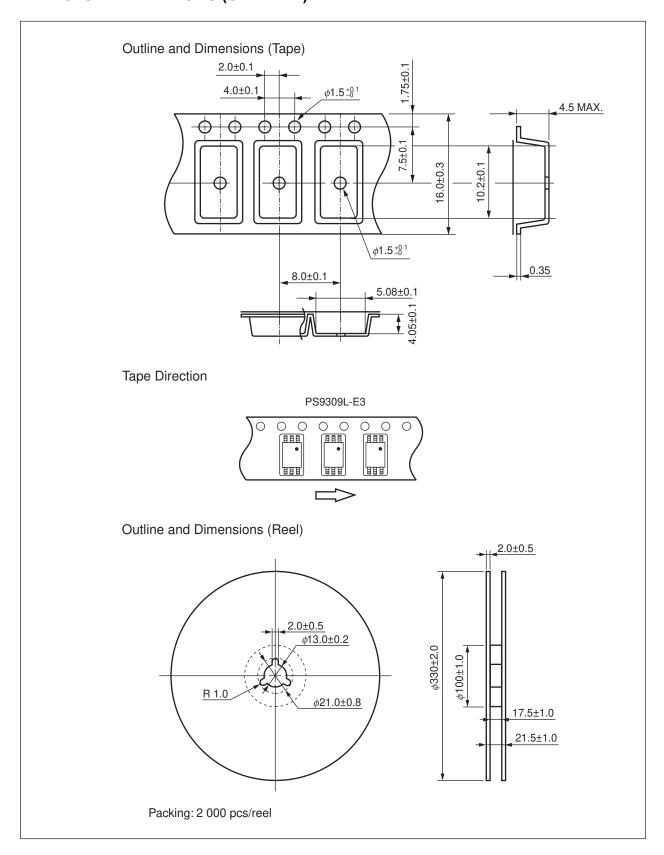

HIGH LEVEL OUTPUT VOLTAGE vs. AMBIENT TEMPERATURE

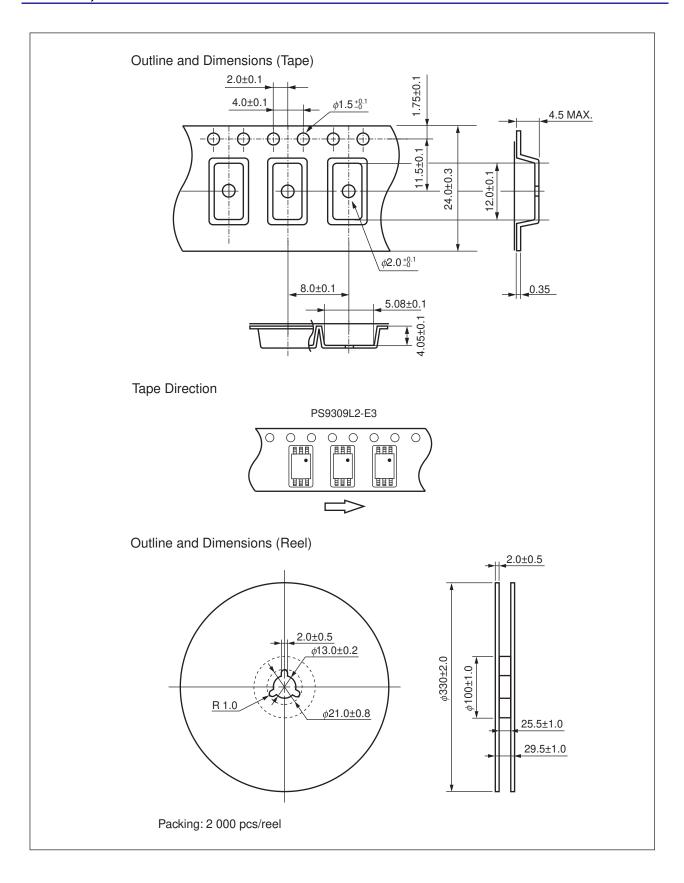

PROPAGATION DELAY TIME vs. FORWARD CURRENT

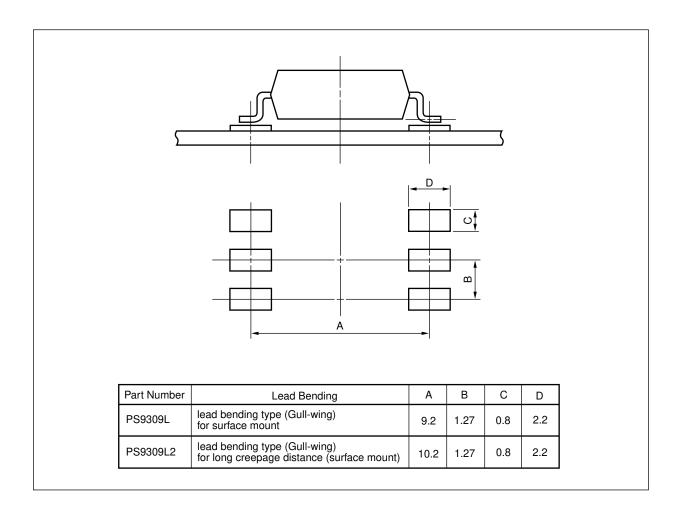

PROPAGATION DELAY TIME vs. AMBIENT TEMPERATURE


HIGH LEVEL OUTPUT VOLTAGE vs. AMBIENT TEMPERATURE

PULSE WIDTH DISTORTION vs. FORWARD CURRENT




PULSE WIDTH DISTORTION vs. AMBIENT TEMPERATURE


Remark The graphs indicate nominal characteristics.

<R> TAPING SPECIFICATIONS (UNIT: mm)

RECOMMENDED MOUNT PAD DIMENSIONS (UNIT: mm)

NOTES ON HANDLING (UNIT: mm) <R>

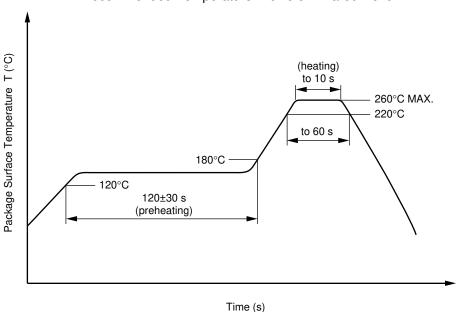
1. Recommended soldering conditions

(1) Infrared reflow soldering

Peak reflow temperature 260°C or below (package surface temperature)

Time of peak reflow temperature 10 seconds or less Time of temperature higher than 220°C 60 seconds or less

Time to preheat temperature from 120 to 180°C $120 \pm 30 \text{ s}$


Number of reflows Three

Flux Rosin flux containing small amount of chlorine (The flux

with a maximum chlorine content of 0.2 Wt% is

recommended.)

Recommended Temperature Profile of Infrared Reflow

(2) Wave soldering

Temperature 260°C or below (molten solder temperature)

Time 10 seconds or less

Preheating conditions 120°C or below (package surface temperature)

Number of times One (Allowed to be dipped in solder including plastic mold portion.)

Rosin flux containing small amount of chlorine (The flux with a maximum chlorine Flux

content of 0.2 Wt% is recommended.)

(3) Soldering by Soldering Iron

Peak Temperature (lead part temperature) 350°C or below

Time (each pins) 3 seconds or less

Flux Rosin flux containing small amount of chlorine (The flux with a

maximum chlorine content of 0.2 Wt% is recommended.)

(a) Soldering of leads should be made at the point 1.5 to 2.0 mm from the root of the lead

(4) Cautions

 Fluxes Avoid removing the residual flux with freon-based and chlorine-based cleaning solvent.

2. Cautions regarding noise

Be aware that when voltage is applied suddenly between the photocoupler's input and output at startup, the output transistor may enter the on state, even if the voltage is within the absolute maximum ratings.

USAGE CAUTIONS

- 1. This product is weak for static electricity by designed with high-speed integrated circuit so protect against static electricity when handling.
- 2. By-pass capacitor of more than 0.1 μ F is used between V_{CC} and GND near device. Also, ensure that the distance between the leads of the photocoupler and capacitor is no more than 10 mm.
- 3. Pin 2 (which is an NC^{*1} pin) can either be connected directly to the GND pin on the LED side or left open. Unconnected pins should not be used as a bypass for signals or for any other similar purpose because this may degrade the internal noise environment of the device.
 - Note: *1. NC: Non-Connection (No Connection).
- 4. Avoid storage at a high temperature and high humidity.

<R> SPECIFICATION OF VDE MARKS LICENSE DOCUMENT

Parameter	Symbol	Spec.	Unit
Climatic test class (IEC 60068-1/DIN EN 60068-1)		40/110/21	
Dielectric strength			
maximum operating isolation voltage	U_IORM	1 130	V_{peak}
Test voltage (partial discharge test, procedure a for type test and random test)	U_pr	1 808	V_{peak}
$U_{pr} = 1.6 \times U_{IORM.}, P_d < 5 pC$			
Test voltage (partial discharge test, procedure b for all devices)	U_pr	2 119	V_{peak}
$U_{pr} = 1.875 \times U_{IORM.}, P_d < 5 pC$			
Highest permissible overvoltage	U_TR	8 000	V_{peak}
Degree of pollution (DIN EN 60664-1 VDE0110 Part 1)		2	
Comparative tracking index (IEC 60112/DIN EN 60112 (VDE 0303 Part 11))	CTI	175	
Material group (DIN EN 60664-1 VDE0110 Part 1)		III a	
Storage temperature range	T _{stg}	-55 to +125	°C
Operating temperature range	T _A	-40 to +110	°C
Isolation resistance, minimum value			
V_{IO} = 500 V dc at T_A = 25°C	Ris MIN.	10 ¹²	Ω
V _{IO} = 500 V dc at T _A MAX. at least 100°C	Ris MIN.	10 ¹¹	Ω
Safety maximum ratings (maximum permissible in case of fault, see thermal			
derating curve)			
Package temperature	Tsi	175	°C
Current (input current I _F , Psi = 0)	lsi	400	mA
Power (output or total power dissipation)	Psi	700	mW
Isolation resistance		_	
V_{IO} = 500 V dc at T_A = Tsi	Ris MIN.	10 ⁹	Ω

Gal	IITI	n

GaAs Products

This product uses gallium arsenide (GaAs).

GaAs vapor and powder are hazardous to human health if inhaled or ingested, so please observe the following points.

- Follow related laws and ordinances when disposing of the product. If there are no applicable laws and/or ordinances, dispose of the product as recommended below.
 - Commission a disposal company able to (with a license to) collect, transport and dispose of materials that contain arsenic and other such industrial waste materials.
- 2. Exclude the product from general industrial waste and household garbage, and ensure that the product is controlled (as industrial waste subject to special control) up until final disposal.
- Do not burn, destroy, cut, crush, or chemically dissolve the product.
- Do not lick the product or in any way allow it to enter the mouth.

Revision History

PS9309L, PS9309L2 Data Sheet

		Description		
Rev.	Date	Page	Summary	
0.01	Feb 14, 2012	_	First edition issued	
1.00	Mar 28, 2014	p.1	Modification of FEATURES	
		p.4	Modification of ORDERING INFORMATION	
		p.8 to 9	Addition of TYPICAL CHARACTERISTICS	
		p.10 to 11	Modification of TAPING SPECIFICATIONS	
		p.13	Addition of NOTES ON HANDLING	
		p.15	Modification of SPECIFICATION OF VDE MARKS LICENCE DOCUMENT	

NOTICE

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. California Eastern Laboratories and Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 2. California Eastern Laboratories has used reasonable care in preparing the information included in this document, but California Eastern Laboratories does not warrant that such information is error free. California Eastern Laboratories and Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 3. California Eastern Laboratories and Renesas Electronics do not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of California Eastern Laboratories or Renesas Electronics or others.
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. California Eastern Laboratories and Renesas Electronics assume no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc. "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc. Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. California Eastern Laboratories and Renesas Electronics product for which the product is not intended by California Eastern Laboratories or Renesas Electronics.
- 6. You should use the Renesas Electronics products described in this document within the range specified by California Eastern Laboratories, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. California Eastern Laboratories shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a California Eastern Laboratories sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. California Eastern Laboratories and Renesas Electronics assume no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- 10. It is the responsibility of the buyer or distributor of California Eastern Laboratories, who distributes, disposes of, or otherwise places the Renesas Electronics product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, California Eastern Laboratories and Renesas Electronics assume no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of California Eastern Laboratories.
- 12. Please contact a California Eastern Laboratories sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- NOTE 1: "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- NOTE 2: "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.
- NOTE 3: Products and product information are subject to change without notice.

CEL Headquarters • 4590 Patrick Henry Drive, Santa Clara, CA 95054 • Phone (408) 919-2500 • www.cel.com

For a complete list of sales offices, representatives and distributors,
Please visit our website: www.cel.com/contactus