

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of http://www.nxp.com, http://www.nxp.com, http://www.nexperia.com, http://www.nexperia.com)

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use salesaddresses@nexperia.com (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

PSMN2R2-30YLC

N-channel 30 V 2.15m Ω logic level MOSFET in LFPAK using NextPower technology

Rev. 02 — 3 May 2011

Product data sheet

1. Product profile

1.1 General description

Logic level enhancement mode N-channel MOSFET in LFPAK package. This product is designed and qualified for use in a wide range of industrial, communications and domestic equipment.

1.2 Features and benefits

- High reliability Power SO8 package, qualified to 175°C
- Low parasitic inductance and resistance
- Optimised for 4.5V Gate drive utilising NextPower Superjunction technology
- Ultra low QG, QGD, and QOSS for high system efficiencies at low and high loads

1.3 Applications

- DC-to-DC converters
- Lithium-ion battery protection
- Load switching

- Power OR-ing
- Server power supplies
- Sync rectifier

1.4 Quick reference data

Table 1. Quick reference data

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V_{DS}	drain-source voltage	25 °C ≤ T _j ≤ 175 °C		-	-	30	V
I _D	drain current	T_{mb} = 25 °C; V_{GS} = 10 V; see <u>Figure 1</u>	[1]	-	-	100	Α
P _{tot}	total power dissipation	T _{mb} = 25 °C; see Figure 2		-	-	141	W
Tj	junction temperature			-55	-	175	°C
Static cha	aracteristics						
R_{DSon}	drain-source on-state resistance	$V_{GS} = 4.5 \text{ V}; I_D = 25 \text{ A};$ $T_j = 25 \text{ °C}; \text{ see } \frac{\text{Figure } 12}{}$		-	2.3	2.8	mΩ
		$V_{GS} = 10 \text{ V}; I_D = 25 \text{ A};$ $T_i = 25 \text{ °C}; \text{ see } \frac{\text{Figure } 12}{\text{Figure } 12}$		-	1.8	2.15	mΩ

Table 1. Quick reference data ...continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Dynamic	characteristics					
Q_{GD}	gate-drain charge	$V_{GS} = 4.5 \text{ V}; I_D = 25 \text{ A};$ $V_{DS} = 15 \text{ V}; \text{see } \frac{\text{Figure } 14}{\text{Figure } 15};$ see Figure 15	-	8	-	nC
Q _{G(tot)}	total gate charge	$V_{GS} = 4.5 \text{ V}; I_D = 25 \text{ A};$ $V_{DS} = 15 \text{ V}; \text{see } \underline{\text{Figure 14}};$ see $\underline{\text{Figure 15}}$	-	26	-	nC

^[1] Continuous current is limited by package.

2. Pinning information

Table 2. Pinning information

Pin	Symbol	Description	Simplified outline	Graphic symbol
1	S	source		_
2	S	source	mb (D
3	S	source		
4	G	gate	[q]	
mb	D	mounting base; connected to drain	1 2 3 4	mbb076 S
			SOT669 (LFPAK; Power-SO8)	

3. Ordering information

Table 3. Ordering information

Type number	Package		
	Name	Description	Version
PSMN2R2-30YLC	LFPAK; Power-SO8	plastic single-ended surface-mounted package; 4 leads	SOT669

4. Marking

Table 4. Marking codes

Type number	Marking code ^[1]
PSMN2R2-30YLC	2C230L

^{[1] % =} placeholder for manufacturing site code

5. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions		Min	Max	Unit
V_{DS}	drain-source voltage	25 °C ≤ T _j ≤ 175 °C		-	30	٧
V_{DGR}	drain-gate voltage	25 °C \leq T _j \leq 175 °C; R _{GS} = 20 k Ω		-	30	٧
V_{GS}	gate-source voltage			-20	20	٧
I _D	drain current	$V_{GS} = 10 \text{ V}; T_{mb} = 25 \text{ °C}; \text{see } \frac{\text{Figure 1}}{\text{Model}}$	[1]	-	100	Α
		$V_{GS} = 10 \text{ V}; T_{mb} = 100 \text{ °C}; \text{see } \frac{\text{Figure 1}}{\text{Model}}$	[1]	-	100	Α
I _{DM}	peak drain current	pulsed; $t_p \le 10 \mu s$; $T_{mb} = 25 °C$; see <u>Figure 4</u>		-	765	Α
P _{tot}	total power dissipation	T _{mb} = 25 °C; see <u>Figure 2</u>		-	141	W
T _{stg}	storage temperature			-55	175	°C
Tj	junction temperature			-55	175	°C
T _{sld(M)}	peak soldering temperature			-	260	°C
V_{ESD}	electrostatic discharge voltage	MM (JEDEC JESD22-A115)		630	-	٧
Source-drain	diode					
Is	source current	T _{mb} = 25 °C	[1]	-	100	Α
I _{SM}	peak source current	pulsed; $t_p \le 10 \mu s$; $T_{mb} = 25 \text{ °C}$		-	765	Α
Avalanche ruç	ggedness					
E _{DS(AL)S}	non-repetitive drain-source avalanche energy	V_{GS} = 10 V; $T_{j(init)}$ = 25 °C; I_D = 100 A; $V_{sup} \le$ 30 V; R_{GS} = 50 Ω; unclamped; see Figure 3		-	92	mJ

[1] Continuous current is limited by package.

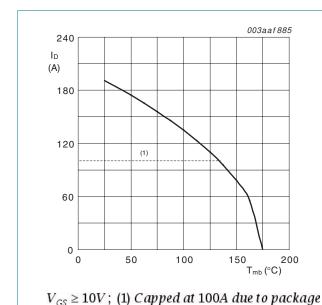


Fig 1. Continuous drain current as a function of mounting base temperature

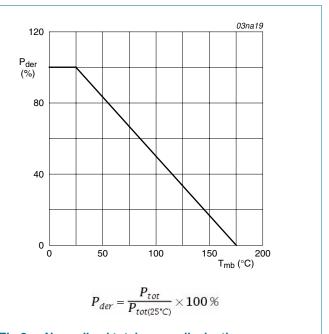


Fig 2. Normalized total power dissipation as a function of mounting base temperature

PSMN2R2-30YLC

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2011. All rights reserved.

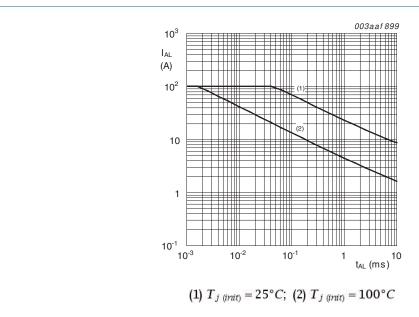
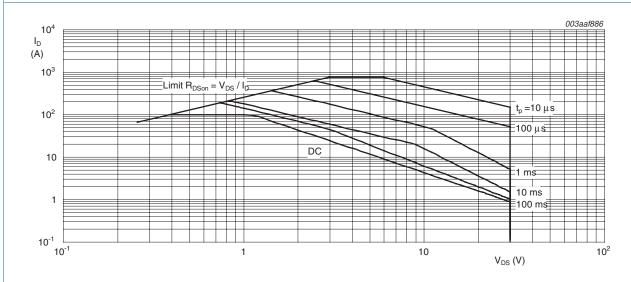



Fig 3. Single pulse avalanche rating; avalanche current as a function of avalanche time

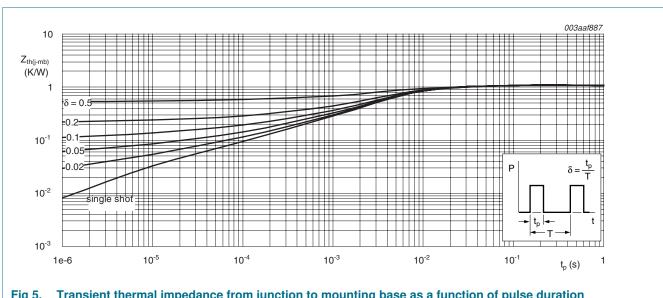

 $T_{mb} = 25$ °C; I_{DM} is a single pulse

Fig 4. Safe operating area; continuous and peak drain currents as a function of drain-source voltage

Thermal characteristics

Table 6. **Thermal characteristics**

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$R_{th(j-mb)}$	thermal resistance from junction to mounting base	see Figure 5	-	0.92	1.06	K/W

Transient thermal impedance from junction to mounting base as a function of pulse duration

7. Characteristics

Table 7. Characteristics

Various Var	Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Voltage Voltage In = 250 μA; Vas = 0 V; T _I = -55 °C 27 · · · V V VSS(th) gate-source threshold voltage In = 1 mA; Vas = Vas; T _I = -25 °C; see Figure 10; see Figure 10; see Figure 10; see Figure 10; see Figure 11 1.05 1.49 1.95 V 1.95 V Ibss drain leakage current Vas = 10 mA; Vas = Vas; T _I = 150 °C 0.5 · · · V 2.25 V Ibss drain leakage current Vas = 30 V; Vas = 0 V; T _I = 25 °C - · · 100 μA μA Ibss gate leakage current Vas = 16 V; Vas = 0 V; T _I = 25 °C - · · 100 μA μA Ibss drain-source on-state resistance Vas = 16 V; Vas = 0 V; T _I = 25 °C - · · · 100 μA νas = 16 V; Vas = 0 V; T _I = 25 °C; - · · · · 100 μA Rose = 16 V; Vas = 0 V; T _I = 25 °C - · · · · 100 μA νas = 16 V; Vas = 0 V; T _I = 25 °C; - · · · · · 100 μA Rose = 16 V; Vas = 0 V; T _I = 25 °C - · · · · · · · · · · · · · · · · · · ·	Static char	racteristics					
Voltage V	V _{(BR)DSS}	drain-source breakdown	$I_D = 250 \mu A; V_{GS} = 0 V; T_i = 25 °C$	30	-	-	٧
See Figure 10; see Figure 11 10 = 10 mA; V _{DS} = V _{GS} ; T _j = 150 °C 0.5 - - V I _D = 1 mA; V _{DS} = V _{GS} ; T _j = 150 °C 0.5 - - 2.25 V I _{DSS} drain leakage current V _{DS} = 30 V; V _{GS} = 0 V; T _j = 25 °C - - 100 μA I _{GSS} gate leakage current V _{GS} = 16 V; V _{DS} = 0 V; T _j = 25 °C - - 100 nA I _{GSS} gate leakage current V _{GS} = 16 V; V _{DS} = 0 V; T _j = 25 °C - - 100 nA I _{GSS} drain-source on-state resistance V _{GS} = 4.5 V; I _D = 25 A; T _j = 25 °C; - 2.3 2.8 mΩ I _{GSS} 4.5 V; I _D = 25 A; T _j = 150 °C; - 2.3 2.8 mΩ I _{GS} = 4.5 V; I _D = 25 A; T _j = 150 °C; - - 4.6 mΩ I _{GS} = 10 V; I _D = 25 A; T _j = 150 °C; - - 4.6 mΩ I _{GS} = 10 V; I _D = 25 A; T _j = 150 °C; - - 3.55 mΩ I _{GS} = 10 V; I _D = 25 A; T _j = 150 °C; - - 3.55 mΩ I _{GS} = 10 V; I _D = 25 A; T _j = 150 °C; - - 3.55 mΩ I _{GS} = 10 V; I _D = 25 A; T _j = 150 °C; - - - 3.55 mΩ I _{GS} = 10 V; I _D = 25 A; T _D = 150 °C; - - - 3.55 mΩ I _{GS} = 10 V; I _D = 25 A; V _{DS} = 15 V; V _{GS} = 10 V; - - 55 - nC I _{GS} = 10 V; I _D = 25 A; V _{DS} = 15 V; V _{GS} = 10 V; - - 55 - nC I _D = 25 A; V _{DS} = 15 V; V _{GS} = 10 V; - - - - - - nC I _D = 25 A; V _{DS} = 15 V; V _{GS} = 4.5 V; - - 26 - nC I _D = 25 A; V _{DS} = 15 V; V _{GS} = 4.5 V; - - - - - nC I _D = 25 A; V _{DS} = 15 V; V _{GS} = 4.5 V; - - - - - nC I _D = 25 A; V _{DS} = 15 V; V _{GS} = 4.5 V; - - - - - nC I _D = 25 A; V _{DS} = 15 V; V _{GS} = 4.5 V; - - - - - nC I _D = 25 A; V _{DS} = 15 V; V _{GS} = 4.5 V; - - - - - nC I _D = 25 A; V _{DS} = 15 V; V _{GS} = 4.5 V; - - - - - nC I _D = 25 A; V _{DS} = 15 V; V _{DS} = 4.5 V; - - - - - nC I _D = 25 A; V _{DS} = 15 V; V _{DS} = 15 V; V _{DS} = 4.5 V; - - - - - nC I _D = 15 V; V _{DS} = 15 V; V _{DS} = 4.5 V; - - - -	,	voltage	$I_D = 250 \mu A; V_{GS} = 0 V; T_i = -55 °C$	27	-	-	V
$ I_D = 1 \text{ mA; } V_{DS} = V_{GS}; T_j = .55 ^{\circ}\text{C} \qquad - \qquad . \qquad 2.25 V \\ I_{DSS} $	$V_{GS(th)}$	gate-source threshold voltage		1.05	1.49	1.95	V
$\begin{array}{llllllllllllllllllllllllllllllllllll$			$I_D = 10 \text{ mA}; V_{DS} = V_{GS}; T_j = 150 \text{ °C}$	0.5	-	-	V
$V_{DS} = 30 \text{ V; } V_{GS} = 0 \text{ V; } T_j = 150 \text{ °C} \qquad - \qquad 100 \qquad \mu A$ $V_{GS} = 16 \text{ V; } V_{DS} = 0 \text{ V; } T_j = 25 \text{ °C} \qquad - \qquad 100 \qquad nA$ $V_{GS} = 16 \text{ V; } V_{DS} = 0 \text{ V; } T_j = 25 \text{ °C} \qquad - \qquad 100 \qquad nA$ $V_{GS} = 16 \text{ V; } V_{DS} = 0 \text{ V; } T_j = 25 \text{ °C} \qquad - \qquad 100 \qquad nA$ $V_{GS} = 16 \text{ V; } V_{DS} = 0 \text{ V; } T_j = 25 \text{ °C} \qquad - \qquad 100 \qquad nA$ $V_{GS} = 16 \text{ V; } V_{DS} = 0 \text{ V; } T_j = 25 \text{ °C} \qquad - \qquad 100 \qquad nA$ $V_{GS} = 10 \text{ V; } V_{DS} = 25 \text{ A; } T_j = 25 \text{ °C;} \qquad - \qquad 2.3 \qquad 2.8 \qquad m\Omega$ $V_{GS} = 10 \text{ V; } D_j = 25 \text{ A; } T_j = 150 \text{ °C;} \qquad - \qquad - \qquad 4.6 \qquad m\Omega$ $V_{GS} = 10 \text{ V; } D_j = 25 \text{ A; } T_j = 150 \text{ °C;} \qquad - \qquad - \qquad 4.6 \qquad m\Omega$ $V_{GS} = 10 \text{ V; } D_j = 25 \text{ A; } T_j = 150 \text{ °C;} \qquad - \qquad - \qquad 3.55 \qquad m\Omega$ $V_{GS} = 10 \text{ V; } D_j = 25 \text{ A; } T_j = 150 \text{ °C;} \qquad - \qquad - \qquad 3.55 \qquad m\Omega$ $V_{GS} = 10 \text{ V; } D_j = 25 \text{ A; } T_j = 150 \text{ °C;} \qquad - \qquad - \qquad 3.55 \qquad m\Omega$ $V_{GS} = 10 \text{ V; } D_j = 25 \text{ A; } T_j = 150 \text{ °C;} \qquad - \qquad - \qquad 3.55 \qquad m\Omega$ $V_{GS} = 10 \text{ V; } D_j = 25 \text{ A; } T_j = 150 \text{ °C;} \qquad - \qquad - \qquad 3.55 \qquad m\Omega$ $V_{GS} = 10 \text{ V; } D_j = 25 \text{ A; } T_j = 150 \text{ °C;} \qquad - \qquad - \qquad - \qquad 3.55 \qquad m\Omega$ $V_{GS} = 10 \text{ V; } D_j = 25 \text{ A; } T_j = 150 \text{ °C;} \qquad - \qquad - \qquad - \qquad 3.55 \qquad m\Omega$ $V_{GS} = 10 \text{ V; } D_j = 25 \text{ A; } T_j = 150 \text{ °C;} \qquad - \qquad - \qquad - \qquad 3.55 \qquad m\Omega$ $V_{GS} = 10 \text{ V; } D_j = 25 \text{ A; } V_{DS} = 15 \text{ V; } V_{GS} = 10 \text{ V;} \qquad - \qquad $			$I_D = 1 \text{ mA}; V_{DS} = V_{GS}; T_j = -55 \text{ °C}$	-	-	2.25	V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	I _{DSS}	drain leakage current	V_{DS} = 30 V; V_{GS} = 0 V; T_j = 25 °C	-	-	1	μΑ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$V_{DS} = 30 \text{ V}; V_{GS} = 0 \text{ V}; T_j = 150 \text{ °C}$	-	-	100	μΑ
Roson drain-source on-state resistance V _{GS} = 4.5 V; I _D = 25 A; T _J = 25 °C; - 2.3 2.8 mΩ see Figure 12 V _{GS} = 4.5 V; I _D = 25 A; T _J = 150 °C; - 4.6 mΩ see Figure 13 V _{GS} = 10 V; I _D = 25 A; T _J = 150 °C; - 1.8 2.15 mΩ see Figure 12 V _{GS} = 10 V; I _D = 25 A; T _J = 150 °C; - 3.55 mΩ see Figure 12 V _{GS} = 10 V; I _D = 25 A; T _J = 150 °C; - 0.8 1.6 Ω Dynamic characteristics	I _{GSS} gate leakage current		V_{GS} = 16 V; V_{DS} = 0 V; T_j = 25 °C	-	-	100	nA
See Figure 12 V _{GS} = 4.5 V; I _D = 25 A; T _I = 150 °C;			V_{GS} = -16 V; V_{DS} = 0 V; T_j = 25 °C	-	-	100	nA
$See \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	R_{DSon}			-	2.3	2.8	mΩ
				-	-	4.6	mΩ
				-	1.8	2.15	mΩ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				-	-	3.55	mΩ
$ \begin{array}{c} Q_{G(tot)} \\ Q_{G(tot)} \\ \\ Q_{G(tot)} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	R_{G}	gate resistance	f = 1 MHz	-	8.0	1.6	Ω
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Dynamic c	haracteristics					
$ \frac{\text{see Figure 14}; \text{ see Figure 15}}{I_D = 0 \text{ A; } V_{DS} = 0 \text{ V; } V_{GS} = 10 \text{ V} } - 21 - nC $ \(\text{QGS} \) $ \frac{\text{QGS}}{\text{QGS(th)}} = \frac{1}{1} \frac{1}{1$	$Q_{G(tot)}$	total gate charge		-	55	-	nC
$\begin{array}{c} Q_{GS} & \text{gate-source charge} \\ Q_{GS(th)} & \text{pre-threshold gate-source} \\ \text{charge} \\ \\ Q_{GS(th-pl)} & \text{post-threshold gate-source} \\ \text{charge} \\ \\ Q_{GD} & \text{gate-drain charge} \\ \\ V_{GS(pl)} & \text{gate-source plateau voltage} \\ \\ C_{iss} & \text{input capacitance} \\ \\ C_{oss} & \text{output capacitance} \\ \\ C_{rss} & \text{reverse transfer capacitance} \\ \\ V_{DS} = 15 \text{ V}; V_{GS} = 0 \text{ V}; f = 1 \text{ MHz}; \\ T_j = 25 \text{ °C}; \text{ see Figure 16} \\ C_{rss} & \text{reverse transfer capacitance} \\ V_{DS} = 15 \text{ V}; V_{GS} = 0 \text{ V}; f = 1 \text{ MHz}; \\ T_j = 25 \text{ °C}; \text{ see Figure 16} \\ C_{rss} & \text{reverse transfer capacitance} \\ C_{rss} & \text{turn-on delay time} \\ C_{rse} & \text{rise time} \\ C_{rse} & \text{turn-off delay time} \\ C_{rse} & turn-off delay t$				-	26	-	nC
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			$I_D = 0 A; V_{DS} = 0 V; V_{GS} = 10 V$	-	21	-	nC
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Q _{GS}	gate-source charge		-	7.3	-	nC
$\begin{array}{c} \text{Charge} \\ \text{Q}_{GD} \qquad \text{gate-drain charge} \\ \text{V}_{GS(pl)} \qquad \text{gate-source plateau voltage} \qquad \begin{array}{c} I_D = 25 \text{ A; V}_{DS} = 15 \text{ V; see } \underline{\text{Figure 14;}} \\ \text{see } \underline{\text{Figure 15}} \\ \text{C}_{iss} \qquad \text{input capacitance} \\ \text{C}_{oss} \qquad \text{output capacitance} \\ \text{C}_{rss} \qquad \text{reverse transfer capacitance} \\ \text{T}_j = 25 ^{\circ}\text{C; see } \underline{\text{Figure 16}} \\ \text{T}_{j} = 25 ^{\circ}\text{C; see } \underline{\text{Figure 16}} \\ \text{Figure 16} \\ \text{C}_{rss} \qquad \text{reverse transfer capacitance} \\ \text{T}_{d(on)} \qquad \text{turn-on delay time} \\ \text{T}_{r} \qquad \text{rise time} \\ \text{T}_{r} \qquad \text{rise time} \\ \text{T}_{d(off)} \qquad \text{turn-off delay time} \\ \text{T}_{d(off)} \qquad \text{T}_{r} \qquad \text{T}_{r}$	Q _{GS(th)}		see <u>Figure 14</u> ; see <u>Figure 15</u>	-	5.2	-	nC
$\begin{array}{c} V_{GS(pl)} \\ V_{GS(pl)} \\ \end{array} \begin{array}{c} \text{gate-source plateau voltage} \\ \end{array} \begin{array}{c} I_D = 25 \text{ A; } V_{DS} = 15 \text{ V; see } \underline{\text{Figure 14}}; \\ \text{see } \underline{\text{Figure 15}} \\ \end{array} \begin{array}{c} - \\ \end{array} \begin{array}{c} 2.43 \\ \end{array} \begin{array}{c} - \\ \end{array} \begin{array}{c} V \\ \end{array} \begin{array}{c} V \\ \end{array} \begin{array}{c} C_{iss} \\ \end{array} \begin{array}{c} \text{input capacitance} \\ \end{array} \begin{array}{c} V_{DS} = 15 \text{ V; } V_{GS} = 0 \text{ V; } f = 1 \text{ MHz;} \\ \end{array} \begin{array}{c} - \\ \end{array} \begin{array}{c} 3310 \\ - \\ \end{array} \begin{array}{c} - \\ \end{array} DF \\ \end{array} \begin{array}{c} C_{oss} \\ \end{array} \begin{array}{c} \text{output capacitance} \\ \end{array} \begin{array}{c} V_{DS} = 15 \text{ V; } S_{C} = 0 \text{ V; } S_{C} = 1 \text{ MHz;} \\ \end{array} \begin{array}{c} - \\ \end{array} DF \\ \end{array} \begin{array}{c} - \\ $	Q _{GS(th-pl)}			-	2.1	-	nC
$\begin{array}{c} V_{GS(pl)} \\ V_{GS(pl)} \\ \end{array} \begin{array}{c} \text{gate-source plateau voltage} \\ \end{array} \begin{array}{c} I_D = 25 \text{ A; } V_{DS} = 15 \text{ V; see } \underline{\text{Figure 14}}; \\ \text{see } \underline{\text{Figure 15}} \\ \end{array} \begin{array}{c} - \\ \end{array} \begin{array}{c} 2.43 \\ \end{array} \begin{array}{c} - \\ \end{array} \begin{array}{c} V \\ \end{array} \begin{array}{c} V \\ \end{array} \begin{array}{c} C_{iss} \\ \end{array} \begin{array}{c} \text{input capacitance} \\ \end{array} \begin{array}{c} V_{DS} = 15 \text{ V; } V_{GS} = 0 \text{ V; } f = 1 \text{ MHz;} \\ \end{array} \begin{array}{c} - \\ \end{array} \begin{array}{c} 3310 \\ - \\ \end{array} \begin{array}{c} - \\ \end{array} DF \\ \end{array} \begin{array}{c} C_{oss} \\ \end{array} \begin{array}{c} \text{output capacitance} \\ \end{array} \begin{array}{c} V_{DS} = 15 \text{ V; } S_{C} = 1 \text{ MHz;} \\ \end{array} \begin{array}{c} - \\ \end{array}$	Q_{GD}	gate-drain charge		-	8	-	nC
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$V_{GS(pl)}$	gate-source plateau voltage		-	2.43	-	V
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C _{iss}	input capacitance		-	3310	-	pF
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		output capacitance	T _j = 25 °C; see <u>Figure 16</u>	-	651	-	pF
t_r rise time $R_{G(ext)} = 4.7 \Omega$ - 36 - ns $t_{d(off)}$ turn-off delay time - 47 - ns	C _{rss}	reverse transfer capacitance		-	239	-	pF
t_r rise time $R_{G(ext)} = 4.7 \Omega$ - 36 - ns $t_{d(off)}$ turn-off delay time - 47 - ns	t _{d(on)}	turn-on delay time		-	26	-	ns
o(on)		rise time		-	36	-	ns
	t _{d(off)}	turn-off delay time		-	47	-	ns
		fall time		-	23	-	ns

6 of 15

Table 7. Characteristics ... continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Q _{oss}	output charge	$V_{GS} = 0 \text{ V}; V_{DS} = 15 \text{ V}; f = 1 \text{ MHz};$ $T_j = 25 \text{ °C}$	-	18.4	-	nC
Source-dra	in diode					
V_{SD}	source-drain voltage	$I_S = 25 \text{ A}$; $V_{GS} = 0 \text{ V}$; $T_j = 25 \text{ °C}$; see Figure 17	-	8.0	1.1	V
t _{rr}	reverse recovery time	$I_S = 25 \text{ A}; dI_S/dt = -100 \text{ A/}\mu\text{s};$	-	37	-	ns
Q _r	recovered charge	$V_{GS} = 0 \text{ V}; V_{DS} = 15 \text{ V}$	-	37	-	nC
t _a	reverse recovery rise time	$V_{GS} = 0 \text{ V}; I_S = 25 \text{ A};$	-	21	-	ns
t _b	reverse recovery fall time	$dI_S/dt = -100 A/\mu s; V_{DS} = 15 V;$ see Figure 18	-	16	-	ns

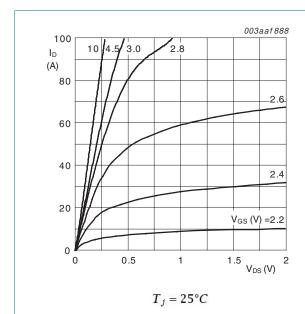


Fig 6. Output characteristics; drain current as a function of drain-source voltage; typical values

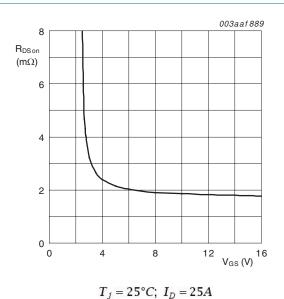


Fig 7. Drain-source on-state resistance as a function of gate-source voltage; typical values

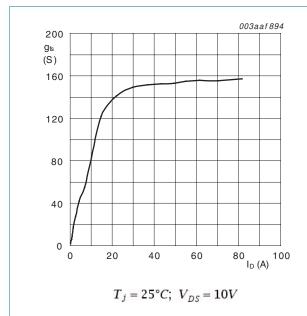


Fig 8. Forward transconductance as a function of drain current; typical values

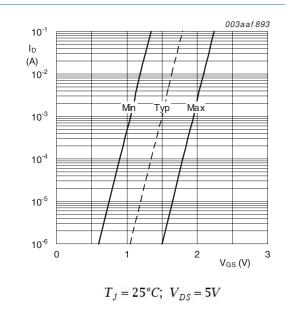


Fig 10. Sub-threshold drain current as a function of gate-source voltage

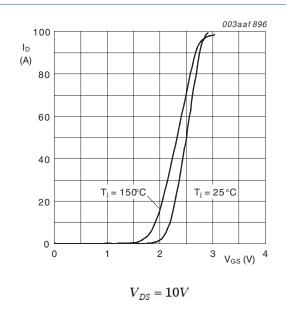


Fig 9. Transfer characteristics; drain current as a function of gate-source voltage; typical values

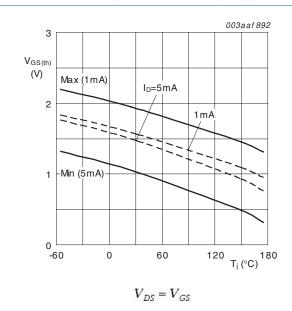


Fig 11. Gate-source threshold voltage as a function of junction temperature

2

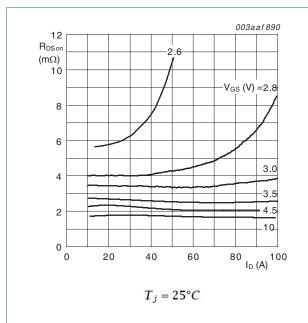


Fig 12. Drain-source on-state resistance as a function of drain current; typical values

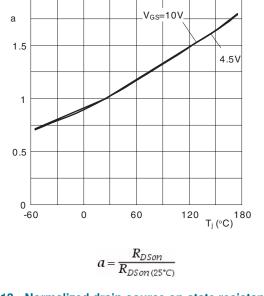


Fig 13. Normalized drain-source on-state resistance factor as a function of junction temperature

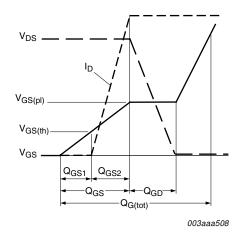
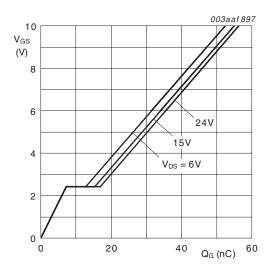



Fig 14. Gate charge waveform definitions

 $T_j = 25^{\circ}C; \ I_D = 25A$

Fig 15. Gate-source voltage as a function of gate charge; typical values

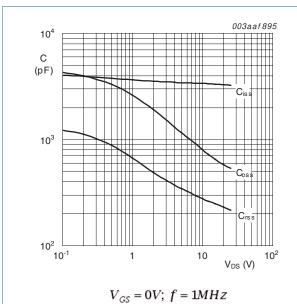


Fig 16. Input, output and reverse transfer capacitances as a function of drain-source voltage; typical values

Fig 17. Source current as a function of source-drain voltage; typical values

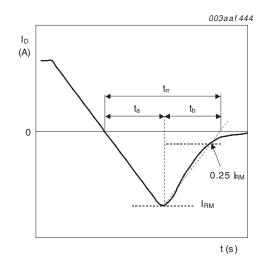
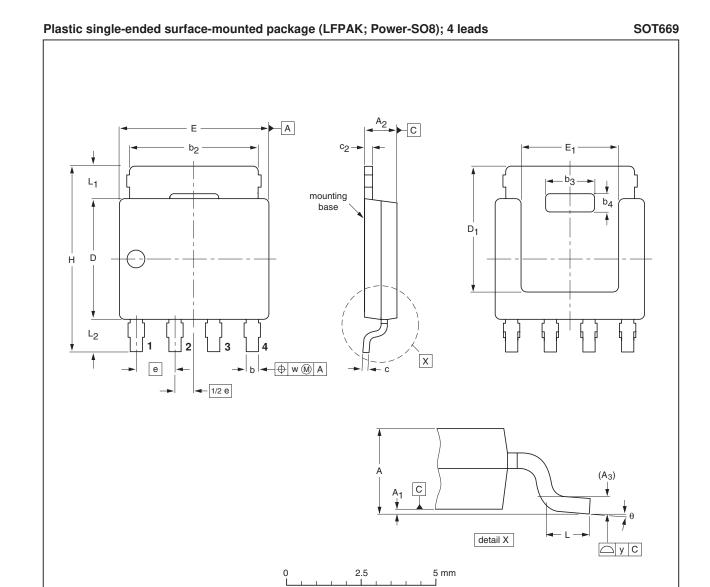



Fig 18. Reverse recovery timing definition

8. Package outline

DIMENSIONS (mm are the original dimensions)

UNIT	Α	A ₁	A ₂	A ₃	b	b ₂	b ₃	b ₄	С	c ₂	D ⁽¹⁾	D ₁ ⁽¹⁾ max	E ⁽¹⁾	E ₁ ⁽¹⁾	е	Н	L	L ₁	L ₂	w	у	θ
mm	1.20 1.01	0.15 0.00	1.10 0.95	0.25	0.50 0.35	4.41 3.62	2.2 2.0	0.9 0.7	0.25 0.19	0.30 0.24	4.10 3.80	4.20	5.0 4.8	3.3 3.1	1.27	6.2 5.8	0.85 0.40	1.3 0.8	1.3 0.8	0.25	0.1	8° 0°

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE
SOT669		MO-235			06-03-16 11-03-25

Fig 19. Package outline SOT669 (LFPAK; Power-SO8)

PSMN2R2-30YLC

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2011. All rights reserved.

9. Revision history

Table 8. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes					
PSMN2R2-30YLC v.2	20110503	Product data sheet	-	PSMN2R2-30YLC v.1					
Modifications:	Status changed from preliminary to product.Various changes to content.								
PSMN2R2-30YLC v.1	20110317	Preliminary data sheet	-	-					

10. Legal information

10.1 Data sheet status

Document status [1] [2]	Product status [3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

10.2 Definitions

Preview — The document is a preview version only. The document is still subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet

10.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

PSMN2R2-30YLC

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2011. All rights reserved.

PSMN2R2-30YLC

N-channel 30 V 2.15mΩ logic level MOSFET in LFPAK using NextPower

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

10.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Adelante, Bitport, Bitsound, CoolFlux, CoReUse, DESFire, EZ-HV, FabKey, GreenChip, HiPerSmart, HITAG, I²C-bus logo, ICODE, I-CODE, ITEC, Labelution, MIFARE, MIFARE Plus, MIFARE Ultralight, MoReUse, QLPAK, Silicon Tuner, SiliconMAX, SmartXA, STARplug, TOPFET, TrenchMOS, TriMedia and UCODE — are trademarks of NXP B.V.

 $\ensuremath{\mathbf{HD}}$ $\ensuremath{\mathbf{Radio}}$ logo — are trademarks of iBiquity Digital Corporation.

11. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

PSMN2R2-30YLC

N-channel 30 V $2.15m\Omega$ logic level MOSFET in LFPAK using NextPower

12. Contents

1	Product profile
1.1	General description1
1.2	Features and benefits1
1.3	Applications1
1.4	Quick reference data1
2	Pinning information2
3	Ordering information2
4	Marking
5	Limiting values3
6	Thermal characteristics5
7	Characteristics6
8	Package outline
9	Revision history12
10	Legal information13
10.1	Data sheet status
10.2	Definitions
10.3	Disclaimers
10.4	Trademarks14
11	Contact information 14

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.