

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

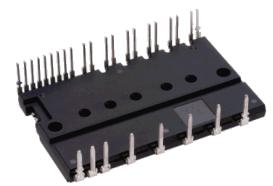
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



< Dual-In-Line Package Intelligent Power Module >

PSS20S71F6

TRANSFER MOLDING TYPE INSULATED TYPE

OUTLINE

MAIN FUNCTION AND RATINGS

- 3 phase DC/AC inverter
- 600V / 20A (CSTBT)
- N-side IGBT open emitter
- Built-in bootstrap diodes with current limiting resistor

APPLICATION

 AC 100~240Vrms(DC voltage:400V or below) class low power motor control

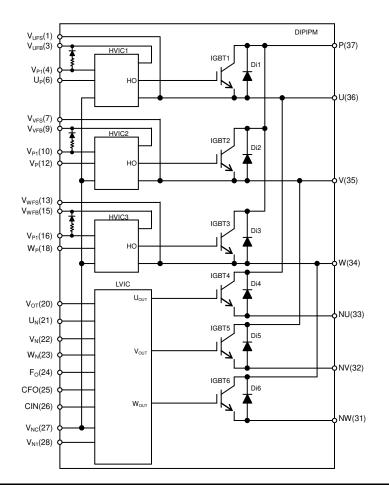
TYPE NAME

PSS20S71F6 With temperature output function

INTEGRATED DRIVE, PROTECTION AND SYSTEM CONTROL FUNCTIONS

• For P-side : Drive circuit, High voltage high-speed level shifting, Control supply under-voltage (UV) protection

• For N-side : Drive circuit, Control supply under-voltage protection (UV), Short circuit protection (SC),


• Fault signaling : Corresponding to SC fault (N-side IGBT), UV fault (N-side supply)

• Temperature output : Outputting LVIC temperature by analog signal

• Input interface : 3, 5V line, Schmitt trigger receiver circuit (High Active)

• UL Recognized : UL1557 File E80276

INTERNAL CIRCUIT

Publication Date: March 2014

TRANSFER MOLDING TYPE

INSULATED TYPE

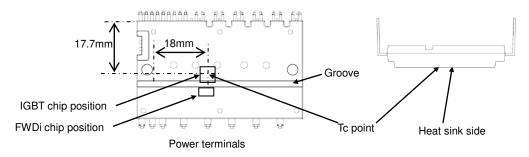
MAXIMUM RATINGS (T_i = 25°C, unless otherwise noted)

INVERTER PART

Symbol	Parameter	Condition	Ratings	Unit
V _{CC}	Supply voltage	Applied between P-NU,NV,NW	450	V
V _{CC(surge)}	Supply voltage (surge)	Applied between P-NU,NV,NW	500	V
V _{CES}	Collector-emitter voltage		600	V
±l _C	Each IGBT collector current	$T_{C}=25^{\circ}C$ (Note	20	Α
±I _{CP}	Each IGBT collector current (peak)	T _C = 25°C, less than 1ms	40	Α
Pc	Collector dissipation	T _C = 25°C, per 1 chip	76.9	W
Tj	Junction temperature		-20~+150	°C

Note1: Pulse width and period are limited due to junction temperature.

CONTROL (PROTECTION) PART


Symbol	Parameter	Condition	Ratings	Unit
V_D	Control supply voltage	Applied between V _{P1} -V _{NC} , V _{N1} -V _{NC}	20	V
V_{DB}	Control supply voltage	Applied between V _{UFB} -V _{UFS} , V _{VFB} -V _{VFS} ,V _{WFB} -V _{WFS}	20	V
V _{IN}	Input voltage	Applied between U _P , V _P , W _P -V _{PC} , U _N , V _N , W _N -V _{NC}	-0.5~V _D +0.5	V
V_{FO}	Fault output supply voltage	Applied between Fo-V _{NC}	-0.5~V _D +0.5	V
I _{FO}	Fault output current	Sink current at F ₀ terminal	1	mA
V _{SC}	Current sensing input voltage	Applied between CIN-V _{NC}	-0.5~V _D +0.5	V

TOTAL SYSTEM

Symbol	Parameter	Condition	Ratings	Unit
V _{CC(PROT)}	Self protection supply voltage limit (Short circuit protection capability)	V _D = 13.5~16.5V, Inverter Part T _i = 125°C, non-repetitive, less than 2μs	400	V
T _C	Module case operation temperature	n temperature Measurement point of Tc is provided in Fig.1		°C
T _{stg}	Storage temperature		-40~+125	°C
V _{iso}	Isolation voltage	60Hz, Sinusoidal, AC 1min, between connected all pins and heat sink plate	2500	V _{rms}

Fig. 1: T_C MEASUREMENT POINT

Control terminals

THERMAL RESISTANCE

Cymbol Dorometer		Condition		Limits			
Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit	
$R_{th(j-c)Q}$	Junction to case thermal	Inverter IGBT part (per 1/6 module)	-	-	1.3	K/W	
$R_{th(i-c)F}$	resistance (Note 2)	Inverter FWDi part (per 1/6 module)	-	-	3.0	K/W	

Note 2: Grease with good thermal conductivity and long-term endurance should be applied evenly with about +100µm~+200µm on the contacting surface of DIPIPM and heat sink. The contacting thermal resistance between DIPIPM case and heat sink Rth(c-f) is determined by the thickness and the thermal conductivity of the applied grease. For reference, Rth(c-f) is about 0.3K/W (per 1/6 module, grease thickness: 20µm, thermal conductivity: 1.0W/m•k).

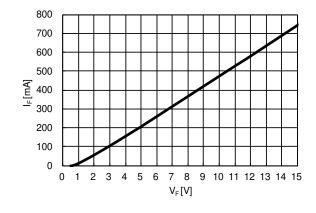
TRANSFER MOLDING TYPE

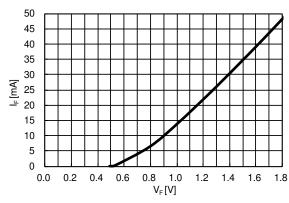
INSULATED TYPE

ELECTRICAL CHARACTERISTICS ($T_j = 25^{\circ}C$, unless otherwise noted) **INVERTER PART**

Cumbal	Parameter	Cond	Condition		Limits		
Symbol	Parameter	Cond			Тур.	Max.	Unit
V	Collector-emitter saturation	V _D =V _{DB} = 15V. V _{IN} = 5V	I _C = 20A, T _j = 25°C	-	1.40	1.90	V
$V_{CE(sat)}$	voltage	V _D =V _{DB} = 13V, V _{IN} = 3V	I _C = 20A, T _j = 125°C	-	1.50	2.00	
V _{EC}	FWDi forward voltage	V _{IN} = 0V, -I _C = 20A		-	1.50	2.00	V
ton				0.95	1.55	2.15	μs
t _{C(on)}		V_{CC} = 300V, V_{D} = V_{DB} = 15V		-	0.50	0.80	μs
t _{off}	Switching times	I _C = 20A, T _j = 125°C, V _{IN} = 0↔5\	: 20A, T _j = 125°C, V _{IN} = 0↔5V		1.75	2.35	μs
$t_{C(off)}$		Inductive Load (upper-lower a	rm)	-	0.40	0.60	μs
t _{rr}				-	0.30	-	μs
1	Collector-emitter cut-off	V V	T _j = 25°C	-	-	1	A
I _{CES} current	ent V _{CE} =V _{CES}	T _i = 125°C	-	-	10	mA	

CONTROL (PROTECTION) PART


Symbol	Parameter	Condition			Limits		Unit	
Syllibol	Farameter	Conc	iitiOTI	Min.	Тур.	Max.	Offic	
1		Total of V _{P1} -V _{NC} , V _{N1} -V _{NC}	$V_D=15V$, $V_{IN}=0V$	-	-	6.00		
I _D	Circuit aurrent	IOIAI OI VP1-VNC, VN1-VNC	V _D =15V, V _{IN} =5V	-	-	6.00	A	
1	Circuit current	Each part of V _{UFB} - V _{UFS} ,	$V_D=V_{DB}=15V$, $V_{IN}=0V$	-	-	0.55	mA	
I _{DB}		V_{VFB} - V_{VFS} , V_{WFB} - V_{WFS}	$V_D=V_{DB}=15V, V_{IN}=5V$	-	-	0.55		
V _{SC(ref)}	Short circuit trip level	V _D = 15V	(Note 3)	0.45	0.48	0.51	V	
UV _{DBt}	P-side Control supply		Trip level	10.0	-	12.0	V	
UV_DBr	under-voltage protection(UV)	T <125°C	Reset level	10.5	-	12.5	V	
UV _{Dt}	N-side Control supply	T _j ≤125°C	Trip level	10.3	-	12.5	V	
UV _{Dr}	under-voltage protection(UV)		Reset level	10.8	-	13.0	V	
V _{OT}	Temperature Output	Pull down R=5kΩ (Note 4)	LVIC Temperature=85°C	2.51	2.64	2.76	V	
V _{FOH}	Foult output voltage	$V_{SC} = 0V$, F_O terminal pulled u	$V_{SC} = 0V$, F_O terminal pulled up to 5V by $10k\Omega$		-	-	V	
V _{FOL}	Fault output voltage	V _{SC} = 1V, I _{FO} = 1mA		-	-	0.95	V	
t _{FO}	Fault output pulse width	C _{FO} =22nF	(Note 5)	1.6	2.4	-	ms	
I _{IN}	Input current	$V_{IN} = 5V$		0.70	1.00	1.50	mA	
V _{th(on)}	ON threshold voltage			-	2.10	2.60		
$V_{th(off)}$	OFF threshold voltage	Applied between U _P , V _P , W _P , I	0.80	1.30	-	V		
$V_{\text{th(hys)}}$	ON/OFF threshold hysteresis voltage				0.80	-		
V_{F}	Bootstrap Di forward voltage	I_F =10mA including voltage drop by limiting resistor (Note 6) 0.5			0.9	1.3	V	
R	Built-in limiting resistance	Included in bootstrap Di	·	16	20	24	Ω	


Note 3 : SC protection works only for N-side IGBT. Please select the external shunt resistance such that the SC trip-level is less than 2.0 times of the current rating.

4 : DIPIPM don't shutdown IGBTs and output fault signal automatically when temperature rises excessively. When temperature exceeds the protective level that user defined, controller (MCU) should stop the DIPIPM. Temperature of LVIC vs. VOT output characteristics is described in Fig. 3.

6 : The characteristics of bootstrap Di is described in Fig.2.

Fig. 2 Characteristics of bootstrap Di V_F-I_F curve (@Ta=25°C) including voltage drop by limiting resistor (Right chart is enlarged chart.)

^{5 :} Fault signal Fo outputs when SC or UV protection works. Fo pulse width is different for each protection modes. At SC failure, Fo pulse width is a fixed width which is specified by the capacitor connected to C_{FO} terminal. (C_{FO}=9.1 x 10⁻⁶ x t_{FO} [F]), but at UV failure, Fo outputs continuously until recovering from UV state. (But minimum Fo pulse width is the specified time by C_{FO}.)

Fig. 3 Temperature of LVIC vs. VoT output characteristics

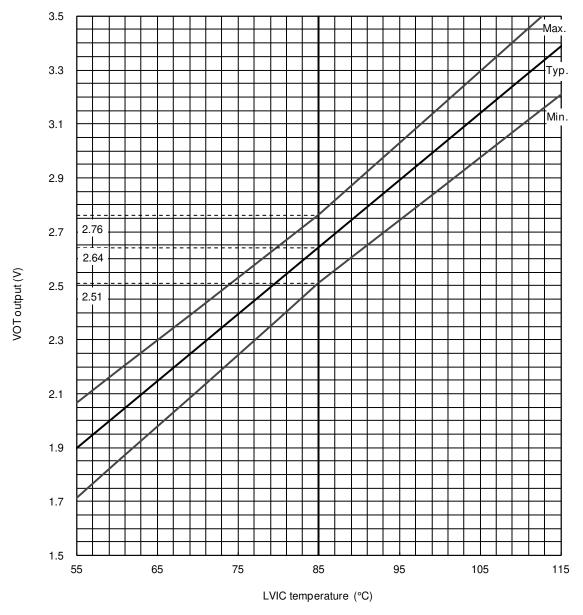
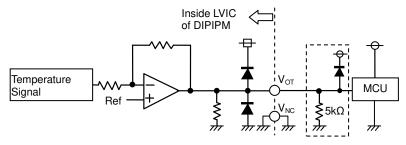
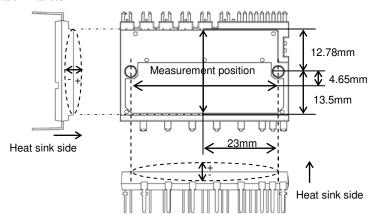



Fig. 4 V_{OT} output circuit

- (1) It is recommended to insert $5k\Omega$ (5.1 $k\Omega$ is recommended) pull down resistor for getting linear output characteristics at low temperature below room temperature. When the pull down resistor is inserted between V_{OT} and V_{NC} (control GND), the extra circuit current, which is calculated approximately by V_{OT} output voltage divided by pull down resistance, flows as LVIC circuit current continuously. In the case of using V_{OT} for detecting high temperature over room temperature only, it is unnecessary to insert the pull down resistor.
- (2) In the case of using V_{OT} with low voltage controller like 3.3V MCU, V_{OT} output might exceed control supply voltage 3.3V when temperature rises excessively. If system uses low voltage controller, it is recommended to insert a clamp Di between control supply of the controller and V_{OT} output for preventing over voltage destruction.
- (3) In the case of not using V_{OT}, leave V_{OT} output NC (No Connection).

Refer the application note for this product about the usage of V_{OT}.

TRANSFER MOLDING TYPE

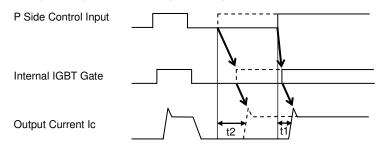

INSULATED TYPE

MECHANICAL CHARACTERISTICS AND RATINGS

Parameter	Condition		Limits			Unit
Farameter	Condition			Тур.	Max.	Offic
Mounting torque	Mounting screw : M3 (Note 7)	Recommended 0.78N·m	0.59	-	0.98	N⋅m
Terminal pulling strength	Load 9.8N	EIAJ-ED-4701	10	-	-	S
Terminal bending strength	Load 4.9N, 90deg. bend	EIAJ-ED-4701	2	-	-	times
Weight			ı	21	-	g
Heat-sink flatness	(Note 8) -50 - 100			100	μm	

Note 7: Plain washers (ISO 7089~7094) are recommended.

Note 8: Measurement point of heat sink flatness



RECOMMENDED OPERATION CONDITIONS

Cumbal	Parameter	Condition		Limits			Unit	
Symbol	Parameter	Con	dition		Min.	Тур.	Max.	Offic
V _{CC}	Supply voltage	Applied between P-NU, NV	, NW		0	300	400	V
V _D	Control supply voltage	Applied between V _{P1} -V _{NC} , V	/ _{N1} -V _{NC}		13.5	15.0	16.5	V
V_{DB}	Control supply voltage	Applied between V _{UFB} -V _{UFS}	, V _{VFB} -V _{VFS} , V	_{WFB} -V _{WFS}	13.0	15.0	18.5	V
ΔV_D , ΔV_{DB}	Control supply variation				-1	-	+1	V/µs
t _{dead}	Arm shoot-through blocking time	For each input signal			1.5	-	-	μs
f _{PWM}	PWM input frequency	$T_C \le 100^{\circ}C, T_j \le 125^{\circ}C$			-	-	20	kHz
1	Allowable r.m.s. current	$V_{CC} = 300V, V_D = 15V, P.F = 0.8,$		f _{PWM} = 5kHz	-	-	14.0	Arms
Io	Allowable I.III.S. Current	$T_C \le 100^{\circ}\text{C}, T_j \le 125^{\circ}\text{C}$	Sinusoidal PWM $T_C \le 100^{\circ}C$, $T_i \le 125^{\circ}C$ (Note9) $f_{PWM} = 15kHz$		-	-	13.0	AIIIIS
PWIN(on)				(Note 10)	0.7	-	-	
		200V≤V _{CC} ≤350V,	Below rate	d current	1.4	-	-	
PWIN(off)	Minimum input pulse width	13.5V≤V _D ≤16.5V, 13.0V≤V _{DB} ≤18.5V, -20°C≤Tc≤100°C.		ated current nes of rated	2.5	-	-	μs
		N-line wiring inductance less than 10nH (Note 11)	Between 1.7 times and 2.0 times of rated current		3.0	-	-	
V _{NC}	V _{NC} variation	Between V _{NC} -NU, NV, NW (including surge)			-5.0	-	+5.0	٧
Tj	Junction temperature				-20	-	+125	°C

Note 9: Allowable r.m.s. current depends on the actual application conditions.

Delayed Response against Shorter Input Off Signal than PWIN(off) (P-side only)

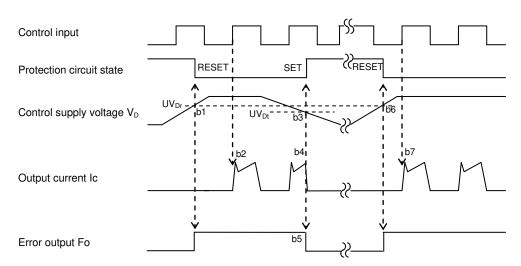
Real line: off pulse width > PWIN(off); turn on time t1 Broken line: off pulse width < PWIN(off); turn on time t2 (t1:Normal switching time)

^{10:} DIPIPM might not make response if the input signal pulse width is less than PWIN(on)

^{11:} IPM might make delayed response or no response for the input signal with off pulse width less than PWIN(off). Please refer below about delayed response.

TRANSFER MOLDING TYPE

INSULATED TYPE

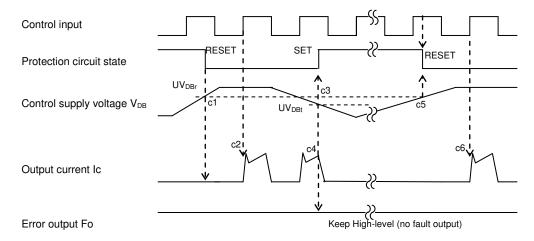

Fig. 5 Timing Charts of The DIPIPM Protective Functions

- [A] Short-Circuit Protection (N-side only with the external shunt resistor and RC filter)
- a1. Normal operation: IGBT ON and outputs current.
- a2. Short circuit current detection (SC trigger)
 - (It is recommended to set RC time constant 1.5~2.0µs so that IGBT shut down within 2.0µs when SC.)
- a3. All N-side IGBT's gates are hard interrupted.
- a4. All N-side IGBTs turn OFF.
- a5. Fo outputs. The pulse width of the Fo signal is set by the external capacitor CFO.
- a6. Input = "L": IGBT OFF
- a7. Fo finishes output, but IGBTs don't turn on until inputting next ON signal (L \rightarrow H).
 - (IGBT of each phase can return to normal state by inputting ON signal to each phase.)
- a8. Normal operation: IGBT ON and outputs current.

[B] Under-Voltage Protection (N-side, UV_D)

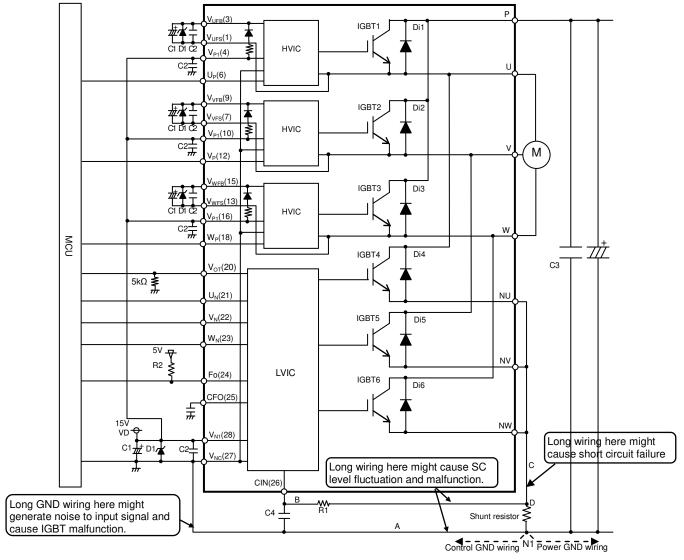
- b1. Control supply voltage V _D exceeds under voltage reset level (UV_{Dr}), but IGBT turns ON by next ON signal (L→H). (IGBT of each phase can return to normal state by inputting ON signal to each phase.)
- b2. Normal operation: IGBT ON and outputs current.
- b3. V_D level drops to under voltage trip level. (UV $_{Dt}$).
- b4. All N-side IGBTs turn OFF in spite of control input condition.
- b5. Fo outputs for the period set by the capacitance C_{FO}, but output is extended during V_D keeps below UV_{Dr}.
- b6. V_D level reaches UV_{Dr}.
- b7. Normal operation: IGBT ON and outputs current.

< Dual-In-Line Package Intelligent Power Module >


PSS20S71F6

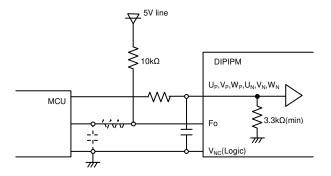
TRANSFER MOLDING TYPE

INSULATED TYPE


[C] Under-Voltage Protection (P-side, UV_{DB})

- c1. Control supply voltage V_{DB} rises. After the voltage reaches under voltage reset level UV_{DBr} , IGBT turns on by next ON signal (L \rightarrow H).
- c2. Normal operation: IGBT ON and outputs current.
- c3. V_{DB} level drops to under voltage trip level (UV_{DBt}).
- c4. IGBT of the correspond phase only turns OFF in spite of control input signal level, but there is no Fo signal output.
- c5. V_{DB} level reaches UV_{DBr} .
- c6. Normal operation: IGBT ON and outputs current.

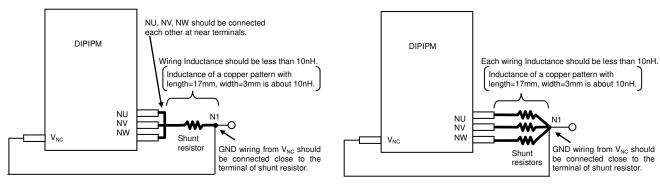
TRANSFER MOLDING TYPE INSULATED TYPE


Fig. 6 Example of Application Circuit

- (1) If control GND is connected with power GND by common broad pattern, it may cause malfunction by power GND fluctuation. It is recommended to connect control GND and power GND at only a point N1 (near the terminal of shunt resistor).
- (2) It is recommended to insert a Zener diode D1(24V/1W) between each pair of control supply terminals to prevent surge destruction.
- (3) To prevent surge destruction, the wiring between the smoothing capacitor and the P, N1 terminals should be as short as possible. Generally a 0.1-0.22µF snubber capacitor C3 between the P-N1 terminals is recommended.
- (4) R1, C4 of RC filter for preventing protection circuit malfunction is recommended to select tight tolerance, temp-compensated type. The time constant R1C4 should be set so that SC current is shut down within 2µs. (1.5µs~2µs is recommended generally.) SC interrupting time might vary with the wiring pattern, so the enough evaluation on the real system is necessary.
- (5) To prevent malfunction, the wiring of A, B, C should be as short as possible.
- (6) The point D at which the wiring to CIN filter is divided should be near the terminal of shunt resistor. NU, NV, NW terminals should be connected at near NU, NV, NW terminals when it is used by one shunt operation. Low inductance SMD type with tight tolerance, temp-compensated type is recommended for shunt resistor.
- (7) All capacitors should be mounted as close to the terminals as possible. (C1: good temperature, frequency characteristic electrolytic type and C2:0.22μ-2μF, good temperature, frequency and DC bias characteristic ceramic type are recommended.)
- (8) Input logic is High-active. There is a 3.3kΩ(min.) pull-down resistor in the input circuit of IC. To prevent malfunction, the input wiring should be as short as possible. When using RC coupling, make the input signal level meet the turn-on and turn-off threshold voltage.
- (9) Fo output is open drain type. It should be pulled up to power supply of MCU (e.g. 5V,3.3V) by a resistor that makes I_{Fo} up to 1mA. (I_{FO} is estimated roughly by the formula of control power supply voltage divided by pull-up resistance. In the case of pulled up to 5V, 10kΩ (5kΩ or more) is recommended.) When using opto coupler, Fo also can be pulled up to 15V (control supply of DIPIPM) by the resistor.
- (10) Fo pulse width can be set by the capacitor connected to CFO terminal. $C_{FO}(F) = 9.1 \times 10^{-6} \times t_{FO}$ (Required Fo pulse width).
- (11) If high frequency noise superimposed to the control supply line, IC malfunction might happen and cause DIPIPM erroneous operation. To avoid such problem, line ripple voltage should meet dV/dt ≤+/-1V/μs, Vripple≤2Vp-p.
- (12) For DIPIPM, it isn't recommended to drive same load by parallel connection with other phase IGBT or other DIPIPM.

TRANSFER MOLDING TYPE INSULATED TYPE

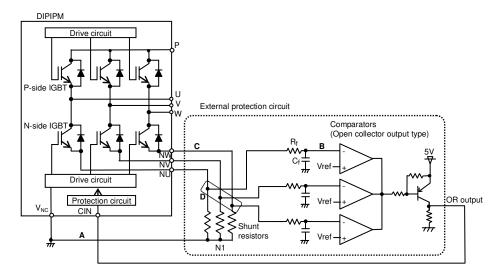
Fig. 7 MCU I/O Interface Circuit



Note)

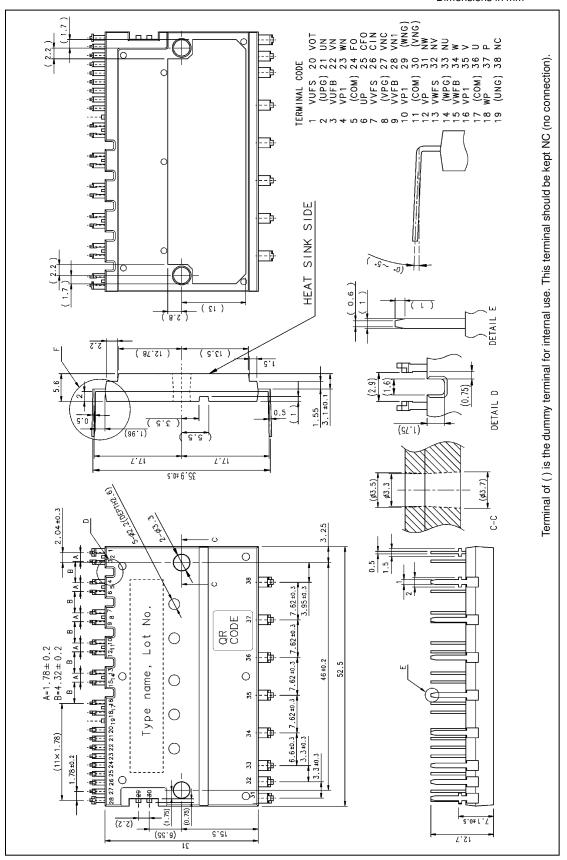
Design for input RC filter depends on PWM control scheme used in the application and wiring impedance of the printed circuit board. DIPIPM input signal interface integrates a minimum $3.3 k\Omega$ pull-down resistor. Therefore, when inserting RC filter, it is necessary to satisfy turn-on threshold voltage requirement.

Fo output is open drain type. It should be pulled up to control power supply (e.g. 5V, 15V) with a resistor that makes Fo sink current IF0 1mA or less. In the case of pulled up to 5V supply, $10k\Omega$ ($5k\Omega$ or more) is recommended.


Fig. 8 Pattern Wiring Around the Shunt Resistor

Low inductance shunt resistor like surface mounted (SMD) type is recommended.

Fig. 9 Pattern Wiring Around the Shunt Resistor (for the case of open emitter)


When DIPIPM is operated with three shunt resistors, voltage of each shunt resistor cannot be input to CIN terminal directly. In that case, it is necessary to use the external protection circuit as below.

- (1) It is necessary to set the time constant R_iC_f of external comparator input so that IGBT stops within 2µs when short circuit occurs. SC interrupting time might vary with the wiring pattern, comparator speed and so on.
- (2) It is recommended for the threshold voltage Vref to set to the same rating of short circuit trip level (Vsc(ref): typ. 0.48V).
- (3) Select the external shunt resistance so that SC trip-level is less than specified value (=2.0 times of rating current).
- (4) To avoid malfunction, the wiring A, B, C should be as short as possible.
- (5) The point D at which the wiring to comparator is divided should be close to the terminal of shunt resistor.
- (6) OR output high level when protection works should be over 0.51V (=maximum Vsc(ref) rating).
- (7) GND of Comparator, GND of Vref circuit and Cf should be not connected to power GND but to control GND wiring.

Fig. 10 Package Outlines

Dimensions in mm

QR Code is registered trademark of DENSO WAVE INCORPORATED in JAPAN and other countries.

< Dual-In-Line Package Intelligent Power Module >

PSS20S71F6

TRANSFER MOLDING TYPE

INSULATED TYPE

Revision Record

Rev.	Date	Page	Revised contents
1	15/10/2013	-	New
2	25/12/2013	5	Revise misdescription (Condition of Terminal pulling strength and Terminal bending strength)
3	12/ 2/2014	1	[INTERNAL CIRCUIT] Revise misdescription of terminal name(Vufs, Vufb, Vvfb, Vvfb, Vvfb, Vvfb, Vvfb)
	10		Fig.10 Annotation is added.
4	15/2/2014	Add Note1	
4	4 15/ 3/2014		Revise misdescription of the condition of VoT

Keep safety first in your circuit designs!

Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- •These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.
- •Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- •All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Mitsubishi Electric Corporation by various means, including the Mitsubishi Semiconductor home page (http://www.MitsubishiElectric.com/).

- •When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- •Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- •The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.
- •If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
- Any diversion or re-export contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
- •Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.

© 2014 MITSUBISHI ELECTRIC CORPORATION. ALL RIGHTS RESERVED. DIPIPM and CSTBT are registered trademarks of MITSUBISHI ELECTRIC CORPORATION.