: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

PT7C4307

Real-time Clock Module ($\mathrm{I}^{2} \mathrm{C}$ Bus)

Features

- Using external 32.768 kHz quartz crystal
- Supports $I^{2} \mathrm{C}$-Bus's high speed mode $(400 \mathrm{kHz})$
- Includes time (Hour/Minute/Second) and calendar (Year/Month/Date/Day) counter functions (BCD code)
- Programmable square wave output signal
- 56-byte, battery-backed, nonvolatile (NV) RAM for data storage
- Automatic power-fail detect and switch circuitry of battery backup
- Consumes less than 500nA in battery backup mode with oscillator running

Description

The PT7C4307 serial real-time clock is a low-power clock/calendar with a programmable square-wave output and 56 bytes of nonvolatile RAM.

Address and data are transferred serially via a 2-wire, bidirectional bus. The clock/calendar provides seconds, minutes, hours, day, date, month, and year information. The date at the end of the month is automatically adjusted for months with fewer than 31 days, including corrections for leap year. The clock operates in either the 24-hour or 12-hour format with AM/PM indicator.

The PT7C4307 has a built-in power sense circuit that detects power failures and automatically switches to the battery supply

Table 1 shows the basic functions of PT7C4307. More details are shown in section: overview of functions.

Table 1. Basic functions of PT7C4307

Item	Function			PT7C4307
1	Oscillator	Source: Crystal: 32.768 kHz		\checkmark
		Oscillator enable/disable		\checkmark
		Oscillator fail detect		-
2	Time	Time display	12-hour	\checkmark
			24-hour	\checkmark
		Century bit		-
3	Alarm interrupt			-
4	Programmable square wave output (Hz)			1, 4.096k, 8.192k, 32.768 k
5	RAM			56×8
6	Battery backup			\checkmark

A Product Line of Diodes Incorporated

Pin Assignment

Pin Description

\left.| Pin\# | Pin | Type | Description |
| :---: | :---: | :---: | :--- |
| 1 | X1 | I | Oscillator Circuit Input. Together with X2, 32.768kHz crystal is connected between them. |$\right]$| X2 |
| :--- |
| 2 |

A Product Line of Diodes Incorporated
(4) PERICOM

PT7C4307

Function Block

Maximum Ratings

Note:
Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Recommended Operating Conditions

Part No.	Symbol		Description	Min.	Typ.	Max.
Unit						
PT7C4307	V_{CC}	Power voltage	4.5	5	5.5	
	$\mathrm{~V}_{\mathrm{BAT}}$	Battery voltage	2	-	3.5	V
	$\mathrm{~V}_{\mathrm{IH}}$	Input high level	2.2	-	$\mathrm{V}_{\mathrm{CC}}+0.3$	
	$\mathrm{~V}_{\mathrm{IL}}$	Input low level	-0.3	-	0.8	
	$\mathrm{~T}_{\mathrm{A}}$	Operating temperature	-40	-	85	${ }^{\circ} \mathrm{C}$

A Product Line of Diodes Incorporated

DC Electrical Characteristics

Unless otherwise specified, $\mathrm{V}_{\mathrm{DD}}=4.5 \sim 5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Sym.	Item	Pin	Condition	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {CC }}$	Supply voltage	V_{CC}		4.5	5.0	5.5	V
$\mathrm{V}_{\text {BAT }}$	Supply voltage	$\mathrm{V}_{\text {BATT }}$		2.0	-	3.5	
$\mathrm{V}_{\text {PF }}$	Power fail voltage		Note 4	$\begin{gathered} 1.216 \times \\ \mathrm{V}_{\mathrm{BAT}} \end{gathered}$	$\begin{aligned} & 1.25 \times \\ & \mathrm{V}_{\mathrm{BAT}} \end{aligned}$	$\begin{gathered} 1.284 \times \\ \mathrm{V}_{\mathrm{BAT}} \end{gathered}$	V
$\mathrm{I}_{\text {CC }}$	Current consumption	V_{CC}	OSC on, Note 3	-	-	1.5	mA
			OSC off, Note 1	-	-	200	$\mu \mathrm{A}$
$\mathrm{I}_{\text {BAT }}$	Current consumption	$\mathrm{V}_{\text {BAT }}$	OSC on, SQW/OUT off, Note 2	-	300	500	nA
			OSC on, SQW/OUT on (32kHz)	-	480	800	
$\mathrm{V}_{\text {IL }}$	Low-level input voltage	SCL		-	-	0.8	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage	SCL		2.0	-	-	
$\mathrm{V}_{\text {OL }}$	Low-level output voltage	SDA	$\mathrm{I}_{\mathrm{OL}}=5 \mathrm{~mA}$	-	-	0.4	V
$\mathrm{I}_{\text {IL }}$	Input leakage current	SCL		-	-	1	$\mu \mathrm{A}$
I_{OZ}	Output current when OFF	SDA		-	-	1	$\mu \mathrm{A}$

Note:

1. $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{SDA}, \mathrm{SCL}=5.0 \mathrm{~V}$.
2. $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{BAT}}=3 \mathrm{~V}$
3. SCL clocking at max frequency $=400 \mathrm{kHz}$. SDA pin open, $/$ EOSC bit $=0$ (oscillator enabled)
4. $\quad \mathrm{V}_{\mathrm{PF}}$ measured at $\mathrm{V}_{\mathrm{BAT}}=3.0 \mathrm{~V}$.

AC Electrical Characteristics

Sym.	Description	Value	Unit
V_{HM}	Rising and falling threshold voltage high	$0.8 \mathrm{~V}_{\mathrm{CC}}$	V
V_{HL}	Rising and falling threshold voltage low	$0.2 \mathrm{~V}_{\mathrm{CC}}$	V

Signal

A Product Line of Diodes Incorporated
(1) PERICOM

PT7C4307
Over the operating range

Symbol	Item	Min.	Typ.	Max.	Unit
$\mathrm{f}_{\text {SCL }}$	SCL clock frequency	-	-	400	kHz
$\mathrm{t}_{\text {SU;STA }}$	START condition set-up time	0.6	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{HD} ; \text { STA }}$	START condition hold time	0.6	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {SU;DAT }}$	Data set-up time (RTC read/write)	200	-	-	ns
$\mathrm{t}_{\text {HD;DAT1 }}$	Data hold time (RTC write)	35	-	-	ns
$\mathrm{t}_{\text {HD;DAT2 }}$	Data hold time (RTC read)	0	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {SU;STO }}$	STOP condition setup time	0.6	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {BUF }}$	Bus idle time between a START and STOP condition	1.3	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {LOw }}$	When SCL = "L"	1.3	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {HIGH }}$	When SCL = "H"	0.6	-	-	$\mu \mathrm{s}$
t_{r}	Rise time for SCL and SDA	-	-	0.3	$\mu \mathrm{~s}$
t_{f}	Fall time for SCL and SDA	-	-	0.3	$\mu \mathrm{~s}$
$\mathrm{t}_{\text {SP }} *$	Allowable spike time on bus	-	-	50	ns
C_{B}	Capacitance load for each bus line	-	-	400	pF

* Note: only reference for design

Recommended Layout for Crystal

Built-in Capacitors Specifications and Recommended External Capacitors

Parameter		Symbol	Typ.	Unit
Build-in capacitors	X 1 to GND	C_{G}	20	pF
	X 2 to GND	C_{D}	20	pF
Recommended External capacitors	X 1 to GND	C_{1}	4	pF
	X 2 to GND	C_{2}	4	pF

Note: The frequency of crystal can be optimized by external capacitor C_{1} and C_{2}, for frequency $=32.768 \mathrm{~Hz}, \mathrm{C}_{1}$ and C_{2} should meet the equation as below:

Cpar $+\left[\left(\mathrm{C}_{1}+\mathrm{C}_{\mathrm{G}}\right) *\left(\mathrm{C}_{2}+\mathrm{C}_{\mathrm{D}}\right)\right] /\left[\left(\mathrm{C}_{1}+\mathrm{C}_{\mathrm{G}}\right)+\left(\mathrm{C}_{2}+\mathrm{C}_{\mathrm{D}}\right)\right]=\mathrm{C}_{\mathrm{L}}$
Cpar is all parasitical capacitor between X 1 and X 2 .
C_{L} is crystal $\breve{\mathrm{s}}$ load capacitance.

Crystal Specifications

Parameter	Symbol	Min.	Typ.	Max.	Unit
Nominal Frequency	f_{O}	-	32.768	-	kHz
Series Resistance	ESR	-	-	70	$\mathrm{k} \Omega$
Load Capacitance	C_{L}	-	12.5	-	pF

Function Description

Clock function

CPU can read or write data including the year (last two digits), month, date, day, hour, minute, and second. Any (two-digit) year that is a multiple of 4 is treated as a leap year and calculated automatically as such until the year 2099.

Programmable square wave output

A square wave output enable bit controls square wave output at pin 7.4 frequencies are selectable: $1,4.096 \mathrm{k}, 8.192 \mathrm{k}$,

32.768 k Hz .

Interface with CPU

Data is read and written via the $\mathrm{I}^{2} \mathrm{C}$ bus interface using two signal lines: SCL (clock) and SDA (data).

Since the output of the I/O pin SDA is open drain, a pull-up resistor should be used on the circuit board if the CPU output I / O is also open drain.

The SCL's maximum clock frequency is 400 kHz , which supports the $\mathrm{I}^{2} \mathrm{C}$ bus's high-speed mode.

Oscillator enable/disable

Oscillator can be enabled or disabled by /EOSC bit. But time count chain does not shut down when the bit is logic 1 .

RAM

56×8 nonvolatile RAM are available for customer use.

Registers

Allocation of registers

Addr.$(\mathrm{hex})^{* 1}$	Function	Register definition							
		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
00	Seconds (00-59)	$/ \mathrm{EOSC}^{*}{ }^{2}$	S40	S20	S10	S8	S4	S2	S1
01	Minutes (00-59)	0	M40	M20	M10	M8	M4	M2	M1
02	Hours (00-23 / 01-12)	0	12,/24	$\begin{gathered} \mathrm{H} 20 \text { or } \\ \mathrm{P}, / \mathrm{A} \end{gathered}$	H10	H8	H4	H2	H1
03	Days of the week (01-07)	0	0	0	0	0	W4	W2	W1
04	Dates (01-31)	0	0	D20	D10	D8	D4	D2	D1
05	Months (01-12)	0	0	0	MO10	MO8	MO4	MO2	MO1
06	Years (00-99)	Y80	Y40	Y20	Y10	Y8	Y4	Y2	Y1
07	Control ${ }^{* 3}$	OUT ${ }^{*}$	0	0	SQWE ${ }^{5}$	0	0	RS1 ${ }^{* 6}$	RS0*6
08~3F	RAM ${ }^{*}$	-	-	-	-	-	-	-	-

Caution points:
*1. PT7C4307 uses 6 bits for address. That is if write data to 41 H , the data will be written to 01 H address register.
*2. Oscillator Enable bit. When this bit is set to 1 , oscillator is stopped but time count chain is still active.
*3. Control register was used to select SQW/OUT pin output square wave with one of 4 kinds of frequency or DC level.
*4. Control SQW/OUT pin output DC level when square wave is disabled.
*5. Square wave outputs enable at SQW/OUT pin.
*6. Square wave output frequency select.
*7. PT7C4307 has 56×8 static RAM for customer use. It is volatile RAM.
*8. All bits marked with " 0 " are read-only bits. Their value when read is always " 0 ". All bits marked with "-" are customer using space.

Control and status register

Addr. (hex)	Description	D7	D6	D5	D4	D3	D2	D1	D0
07	Control	OUT	0	0	SQWE	0	0	RS1	RS0
	(default)	0	0	0	0	0	0	1	1

- OUT

It controls the output level of the SQW/OUT pin when the square wave output is disabled.

OUT	Data	Description			
Read / Write	0	When SQWE $=0$, SQW/OUT pin output low.	Default		
	1	When SQWE $=0$, SQW/OUT pin output high.			

- SQWE (Square Wave Enable)

This bit, when set to a logic 1, will enable the oscillator output. The frequency of the square wave output depends upon the value of the RS0 and RS1 bits. With the square wave output set to 1 Hz , the clock registers update on the falling edge of the square wave.

- $\quad \mathbf{R S}$ (Rate Select)

These bits control the frequency of the square wave output when the square wave output has been enabled.

RS1, RS0	Data	SQW output freq. (Hz)
Read / Write	00	1
	01	4.096 k
	10	8.192 k
	11	32.768 k

This bit is used to select between 12-hour clock system and 24-hour clock system.

$12, / 24$	Data	
Read / Write	0	24-hour system
	1	12-hour system

This bit is used to select between 12-hour clock operation and 24-hour clock operation.

12, /24	Description	Hours register			
0	24-hour time display	24-hour clock	12-hour clock	24-hour clock	12-hour clock
		00	52 (AM 12)	12	72 (PM 12)
		01	41 (AM 01)	13	61 (PM 01)
		02	42 (AM 02)	14	62 (PM 02)
		03	43 (AM 03)	15	63 (PM 03)
		04	44 (AM 04)	16	64 (PM 04)
	12-hour time display	05	45 (AM 05)	17	65 (PM 05)
1		06	46 (AM 06)	18	66 (PM 06)
		07	47 (AM 07)	19	67 (PM 07)
		08	48 (AM 08)	20	68 (PM 08)
		09	49 (AM 09)	21	69 (PM 09)
		10	50 (AM 10)	22	70 (PM 10)
		11	51 (AM 11)	23	71 (PM 11)

* Be sure to select between 12 -hour and 24-hour clock operation before writing the time data.

Days of the week Counter

The day counter is a divide-by- 7 counter that counts from 01 to 07 and up 07 before starting again from 01 . Values that correspond to the day of week are user defined but must be sequential (i.e., if 1 equals Sunday, then 2 equals Monday, and so on). Illogical time and date entries result in undefined operation.

Addr. (hex)	Description	D7	D6	D5	D4	D3	D2	D1	D0
03	Days of the week	0	0	0	0	0	W4	W2	W1
	(default)	0	0	0	0	0	Undefined	Undefined	Undefined

Calendar Counter

The data format is BCD format.

- Day digits: Range from 1 to 31 (for January, March, May, July, August, October and December).

Range from 1 to 30 (for April, June, September and November).
Range from 1 to 29 (for February in leap years).
Range from 1 to 28 (for February in ordinary years).
Carried to month digits when cycled to 1.

- Month digits: Range from 1 to 12 and carried to year digits when cycled to 1 .
- Year digits: Range from 00 to 99 and $00,04,08$, ǔ , 92 and 96 are counted as leap years.

Addr. (hex)	Description	D7	D6	D5	D4	D3	D2	D1	D0

Starting and Stopping I $\mathbf{I}^{\mathbf{C}} \mathbf{C}$ Bus Communications

Fig 2. Starting and stopping on $I^{2} C$ bus

START	Repeated START	STOP

1) START condition, repeated START condition, and STOP condition
a) START condition

SDA level changes from high to low while SCL is at high level
b) STOP condition

SDA level changes from low to high while SCL is at high level
c) Repeated START condition (RESTART condition)

In some cases, the START condition occurs between a previous START condition and the next STOP condition, in which case the second START condition is distinguished as a RESTART condition. Since the required status is the same as for the START condition, the SDA level changes from high to low while SCL is at high level.
2) Data Transfers and Acknowledge Responses during $I^{\mathbf{2}} \mathbf{C}$-BUS Communication

a) Data transfers

Data transfers are performed in 8-bit (1 byte) units once the START condition has occurred. There is no limit on the amount (bytes) of data that are transferred between the START condition and STOP condition.

The address auto increment function operates during both write and read operations.
Updating of data on the transmitter (transmitting side)'s SDA line is performed while the SCL line is at low level. The receiver (receiving side) captures data while the SCL line is at high level.

[^0]
b) Data acknowledge response (ACK signal)

When transferring data, the receiver generates a confirmation response (ACK signal, low active) each time an 8-bit data segment is received. If there is no ACK signal from the receiver, it indicates that normal communication has not been established. (This does not include instances where the master device intentionally does not generate an ACK signal.)

Immediately after the falling edge of the clock pulse corresponding to the 8th bit of data on the SCL line, the transmitter releases the SDA line and the receiver sets the SDA line to low (= acknowledge) level.

After transmitting the ACK signal, if the Master remains the receiver for transfer of the next byte, the SDA is released at the falling edge of the clock corresponding to the 9th bit of data on the SCL line. Data transfer resumes when the Master becomes the transmitter.

When the Master is the receiver, if the Master does not send an ACK signal in response to the last byte sent from the slave, that indicates to the transmitter that data transfer has ended. At that point, the transmitter continues to release the SDA and awaits a STOP condition from the Master.

Slave Address

The $\mathrm{I}^{2} \mathrm{C}$ bus device does not include a chip select pin such as is found in ordinary logic devices. Instead of using a chip select pin, slave addresses are allocated to each device.
All communications begin with transmitting the [START condition] + [slave address ($+\mathrm{R} / \mathrm{W}$ specification)]. The receiving device responds to this communication only when the specified slave address it has received matches its own slave address.
Slave addresses have a fixed length of 7 bits. See table for the details.
An R/W bit is added to each 7-bit slave address during 8-bit transfers.

Operation	Transfer data	Slave address							
		bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	R W bit
Read	D1 h	1	1	0	1	0	0	0	$1(=$ Read $)$
Write	D0 h						0	$0(=$ Write $)$	

$I^{2} C$ Bus ${ }^{\text {s }}$ Basic Transfer Format

1) Write via $\mathbf{I}^{2} \mathrm{C}$ bus

2) Read via $I^{2} C$ bus
a) Standard read

NOTE: LAST DATA BYTE IS FOLLOWED A NOT ACKNOWLEDGE(/A) SIGNAL

b) Simplified read

Note:

1. The above steps are an example of transfers of one or two bytes only. There is no limit to the number of bytes transferred during actual communications.
2. $49 \mathrm{H}, 4 \mathrm{AH}$ are used as test mode address. Customer should not use the addresses.

Mechanical Information

W (8-pin SOIC)

[^0]: *Note with caution that if the SDA data is changed while the SCL line is at high level, it will be treated as a START, RESTART, or STOP condition.

