

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

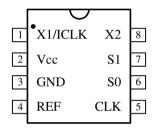
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



PLL Clock Multiplier

Features

- Zero ppm multiplication error
- Input crystal frequency of 5 40 MHz
- Input clock frequency of 4 50 MHz
- Output clock frequencies up to 200 MHz
- Low period jitter 80ps (100~200MHz)
- Duty cycle of 45/55% of output clock up to 160MHz
- 9 selectable frequencies controlled by S0, S1 pins
- Operating voltages of 3.0 to 5.5V
- Lead free SOIC-8 package

Pin Configuration

SOIC-8 package

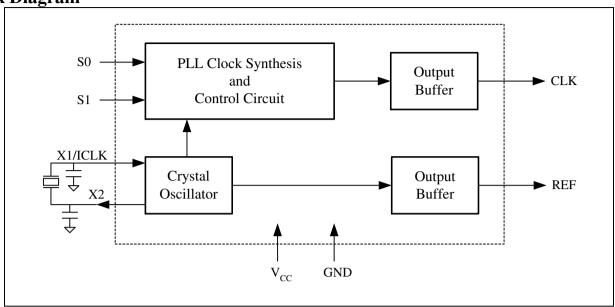
Description

This Clock Multiplier is the most cost-effective way to generate a high quality, high frequency clock outputs from lower frequency crystal or clock input. It is designed to replace crystal oscillators in most electronic systems, clock multipliers and frequency translation devices with low output jitter. The device implements a standard fundamental mode using PLL techniques and inexpensive crystal to produce output clocks up to 200 MHz.

The internal Logic divider is to generate nine different popular multiplication factors, allowing one chip to output many common frequencies.

Pin Description

Name	Pin No.	Type	Description
X1/ICLK	1	X1	Crystal connection or clock input.
Vcc	2	P	Connect to +3.3V or +5V.
GND	3	P	Connect to ground.
REF	4	О	Buffered crystal oscillator output clock
CLK	5	О	Clock output per <i>Clock Output Table</i> .
S0	6	T1	Multiplier select pin 0, connect to GND or Vcc or floating (no connection).
S1	7	T1	Multiplier select pin 1, connect to GND or Vcc or floating (no connection).
X2	8	XO	Crystal connection. Leave unconnected for clock input.


Clock Output Table

010011 00	Clock Gutput Tubic					
S1	S0	CLK				
0	0	$\times 4^{1)}$				
0	$M^{2)}$	×(16/3)				
0	1	×5				
M	0	×2.5				
M	M	$\times 2$				
M	1	×(10/3)				
1	0	$\times 6$				
1	M	×3				
1	1	×8				

- 1) **Note**: CLK output frequency=ICLK×4.
- 2) **Note**: M=Leave unconnected (self-biases to Vcc/2).

Block Diagram

External Components

Decoupling Capacitor

As with any high-performance mixed-signal IC, the PT7C4512 must be isolated from system power supply noise to perform optimally. A decoupling capacitor of $0.01\mu F$ or 0.1uF must be connected between VCC and the GND. It must be connected close to the PT7C4512 to minimize lead inductance. No external power supply filtering is required for the PT7C4512.

Series Termination Resistor

A 33Ω terminating resistor can be used next to the CLK pin for trace lengths over one inch.

Crystal Load Capacitors

There is no on-chip capacitance build-in chip. A parallel resonant, fundamental mode crystal should be used. The device crystal connections should include

pads for small capacitors from X1 to ground and from X2 to ground. These capacitors are used to adjust the stray capacitance of the board to match the nominally required crystal load capacitance. Because load capacitance can only be increased in this trimming process, it is important to keep stray capacitance to a minimum by using very short PCB traces (and no vias) between the crystal and device. Crystal capacitors, if needed, must be connected from each of the pins X1 and X2 to ground. The value (in pF) of these crystal caps should equal C_L*2 . In this equation, $C_L=$ crystal load capacitance in pF. Example: For a crystal with a 15 pF load capacitance, each crystal capacitor would be 30pF.

Maximum Ratings

Storage Temperature	-65°C to +150°C
Ambient Operating Temperature	40°C to +85°C
Supply Voltage to Ground Potential (V_{CC})	0.3V to +7.0V
Inputs(Referenced to GND)	0.5V to V_{CC} +0.5V
Clock Output(Referenced to GND)	0.5V to V_{CC} +0.5V
Soldering Temperature(Max of 10 seconds)	260 °C (Max. 10s)

Note:

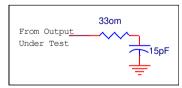
Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Recommended Operating Conditions

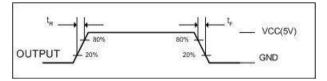
Sym	Parameter	Conditions	Min	Тур	Max	Unit
V_{CC}	Supply voltage	-	3.0	-	5.5	V
T_A	Operating temperature	-	-40	-	+85	°C

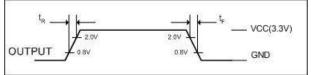
DC Electrical Characteristics

 $(V_{CC} = 3.3V \pm 0.3V, T_A = -40 \sim 85^{\circ}C, \text{ unless otherwise noted})$


Sym.	Parameter	Test Condition	Pin	Min.	Тур.	Max.	Unit
Vcc	Supply Voltage	-	Vcc	3	3.3	3.6	V
Icc	Supply Current	no load, 20MHz crystal,100MHz output	Vcc	-	12	20	mA
V_{IH}	Input Logic High	-	ICLK	(Vcc/2)+1	Vcc/2	-	V
V_{IL}	Input Logic Low	-	ICLK	-	Vcc/2	(Vcc/2)-1	V
V_{IH}	Input Logic High	-	S0, S1	Vcc-0.5	-	-	V
V_{IM}	Input mid-level	-	S0, S1	-	Vcc/2	-	V
V_{IL}	Input Logic Low	-	S0, S1	-	-	0.5	V
V_{OH}	High-level output voltage	$I_{OH} = -12mA$	CLK	2.4	-	-	V
V _{OL}	Low-level output voltage	$I_{OL} = 12mA$	CLK	-	-	0.4	V
I_S	Short Circuit Current	-	CLK	-	±30	-	mA

 $(V_{CC} = 5.0V \pm 0.5V, T_A = -40 \sim 85^{\circ}C, \text{ unless otherwise noted})$


Sym.	Parameter	Test Condition	Pin	Min.	Тур.	Max.	Unit
Vcc	Supply Voltage	-	Vcc	4.5	5.0	5.5	V
Icc	Supply Current	no load, 20MHz crystal,100MHz output	Vcc	-	20	30	mA
V_{IH}	Input Logic High	-	ICLK	(Vcc/2)+1	Vcc/2	-	V
V_{IL}	Input Logic Low	-	ICLK	-	Vcc/2	(Vcc/2)-1	V
V_{IH}	Input Logic High	-	S0, S1	Vcc-0.4	-	-	V
V_{IM}	Input mid-level	-	S0, S1	-	Vcc/2	-	V
$ m V_{IL}$	Input Logic Low	-	S0, S1	-	-	0.4	V
V_{OH}	High-level output voltage	$I_{OH} = -12mA$	CLK	Vcc-0.5	-	-	V
V _{OL}	Low-level output voltage	$I_{OL} = 12 \text{mA}$	CLK	-	-	0.4	V
I_S	Short Circuit Current	-	CLK	-	±70	-	mA


Test circuits

1>Load circuit for output clock duty cycle, rise and fall time Measurement

2>Timing Definitions for output clock rise and fall time Measurement

AC Electrical Characteristics

 $(V_{CC} = 3.3V \pm 0.3V, T_A = -40 \sim 85^{\circ}C, \text{ unless otherwise noted})$

Sym.	Parameter	Test Condition	Pin	Min.	Тур.	Max.	Unit
c	T	Crystal	ICLK	5	-	40	MHz
f_{IN}	Input Frequency	Clock	ICLK	4	-	50	MHz
f_{OUT}	Output Frequency**	Vcc: 3.0 to 3.6V	CLK	20	-	180	MHz
t_R	Output clock rise time	0.8 to 2.0V, with 15pF load	CLK	-	1	-	ns
$t_{ m F}$	Output clock fall time	2.0 to 0.8V, with 15pF load	CLK	-	1	-	ns
Dutu	Output alock duty avalo	At Vcc/2, below 160MHz	CLK	45	50	55	%
Duty	Output clock duty cycle	At Vcc/2, 160MHz to 180MHz	CLK	40		60	%
	PLL bandwidth*	-	-	10	-	-	kHz
	Period Jitter	70MHz~160MHz, 25C	CLK	-	-	120	ps

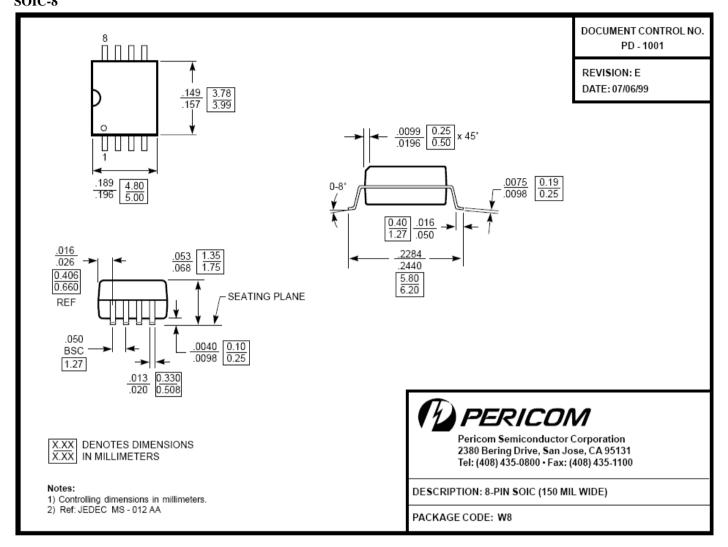
Note:

 $(V_{CC} = 5.0V \pm 0.5V, T_A = -40 \sim 85^{\circ}C, \text{ unless otherwise noted})$

Sym.	Parameter	Test Condition	Pin	Min.	Тур.	Max.	Unit
£.	I E	Crystal	ICLK	5	-	40	MHz
f_{IN}	Input Frequency	Clock	ICLK	4	1	50	MHz
f_{OUT}	Output Frequency**	Vcc: 4.5 to 5.5V	CLK	20	-	200	MHz
t_{R}	Output clock rise time	20%Vcc to 80%Vcc, with 15pF load	CLK	-	1.2	-	ns
t_{F}	Output clock fall time	80%Vcc to 20%Vcc, with 15pF load	CLK	-	1.2	-	ns
Dutu	Output alock duty avala	At Vcc/2, below160MHz	CLK	45	50	55	%
Duty	Output clock duty cycle	At Vcc/2, 160MHz to 200MHz	CLK	40		60	%
	PLL bandwidth*	-	-	10	-	-	kHz
	Period Jitter	70MHz~200MHz, 25C	CLK	-	=	120	ps

Note:

^{*:} Only reference for design


^{**:} The phase relationship between input and output clocks can change at power up.

^{*:} Only reference for design

^{**:} The phase relationship between input and output clocks can change at power up.

Mechanical Information SOIC-8

Ordering Information

Part No.	Package Code	Package
PT7C4512WE	W	Lead free and Green 8-pin SOIC

Note:

- E = Pb-free and Green
- Adding X Suffix= Tape/Reel

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com

Pericom reserves the right to make changes to its products or specifications at any time, without notice, in order to improve design or performance and to supply the best possible product. Pericom does not assume any responsibility for use of any circuitry described other than the circuitry embodied in Pericom product. The company makes no representations that circuitry described herein is free from patent infringement or other rights, of Pericom.