imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Thermally-Enhanced High Power RF LDMOS FETs 170 W, 725 – 770 MHz

Description

-20

-25

-30

-35

-40

-45

-50

-55

-60

-65

IM3

IM5

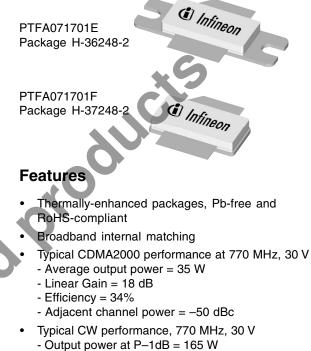
46

48

50

Output Power, PEP (dBm)

52


Efficiency

Intermodulation Distortion (dBc)

The PTFA071701E and PTFA071701F are 170-watt, LDMOS FETs designed for use in cellular power amplifiers in the 725 to 770 MHz frequency band. Features include internal I/O matching, and thermally-enhanced, ceramic open-cavity packages. Manufactured with Infineon's advanced LDMOS process, these devices provide excellent thermal performance and superior reliability.

Two-tone Drive-up $V_{DD} = 30 \text{ V}, I_{DQ} = 900 \text{ mA},$

f = 765 MHz, tone spacing = 1 MHz

- Efficiency = 62%
- Integrated ESD protection: Human Body Model, Class 2 (minimum)
- Excellent thermal stability, low HCI drift
- Capable of handling 10:1 VSWR @ 30 V, 170 W (CW) output power

RF Characteristics

44

Two-carrier WCDMA Measurements (not subject to production test—verified by design/characterization in Infineon test fixture) $V_{DD} = 30 \text{ V}, I_{DQ} = 1.0 \text{ A}, P_{OUT} = 40 \text{ W}$ average,

f₁ = 760, f₂ = 770 MHz, 3GPP signal, channel bandwidth = 3.84 MHz, peak/average = 8.1 dB at 0.01% CCDF

60

55

50

45

40

35

20

15

54

Drain 05

Efficier

Characteristic	Symbol	Min	Тур	Max	Unit
Gain	G _{ps}	_	18.5	_	dB
Drain Efficiency	η _D	_	32	_	%
Adjacent Channel Power Ratio	ACPR	_	-36	_	dBc

All published data at $T_{CASE} = 25^{\circ}C$ unless otherwise indicated

ESD: Electrostatic discharge sensitive device—observe handling precautions!

RF Characteristics (cont.)

Two-tone Measurements (tested in Infineon test fixture)

 V_{DD} = 30 V, I_{DQ} = 0.9 A, P_{OUT} = 150 W PEP, f = 765 MHz, tone spacing = 1 MHz

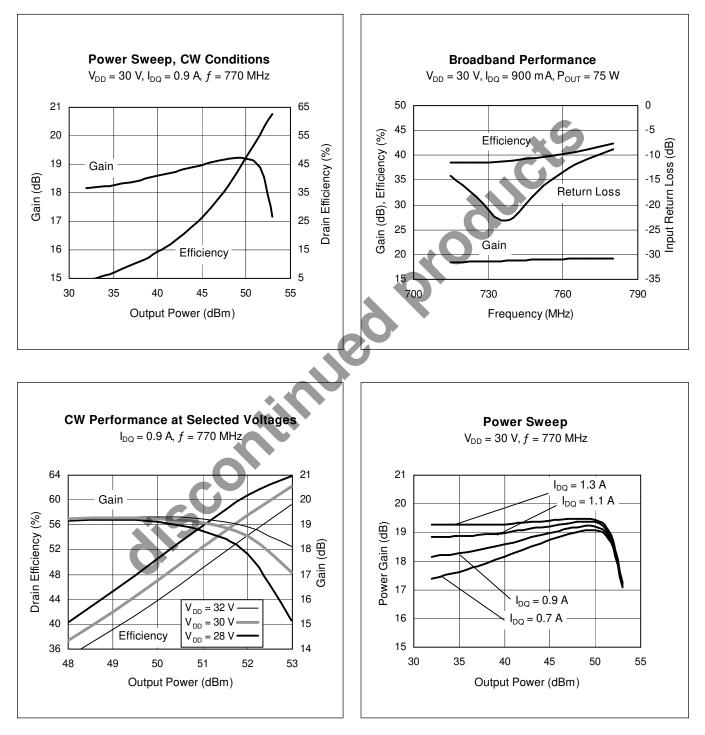
Characteristic	Symbol	Min	Тур	Max	Unit
Gain	G _{ps}	18.0	18.7	_	dB
Drain Efficiency	η _D	44	46	_	%
Intermodulation Distortion	IMD		-29.5	-28	dBc
DC Characteristics			C		

DC Characteristics

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	$V_{GS} = 0 V$, $I_{DS} = 10 mA$	V _{(BR)DSS}	65	_	_	V
Drain Leakage Current	$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}$	IDSS	_	—	1.0	μA
	$V_{DS} = 63 \text{ V}, V_{GS} = 0 \text{ V}$	IDSS	—	—	10.0	μA
On-State Resistance	$V_{GS} = 10 \text{ V}, V_{DS} = 0.1 \text{ V}$	R _{DS(on)}	—	0.07	—	Ω
Operating Gate Voltage	$V_{DS} = 30 \text{ V}, I_{DQ} = 1.0 \text{ A}$	V _{GS}	2.0	2.48	3.0	V
Gate Leakage Current	$V_{GS} = 10 \text{ V}, V_{DS} = 0 \text{ V}$	I _{GSS}	_	_	1.0	μA

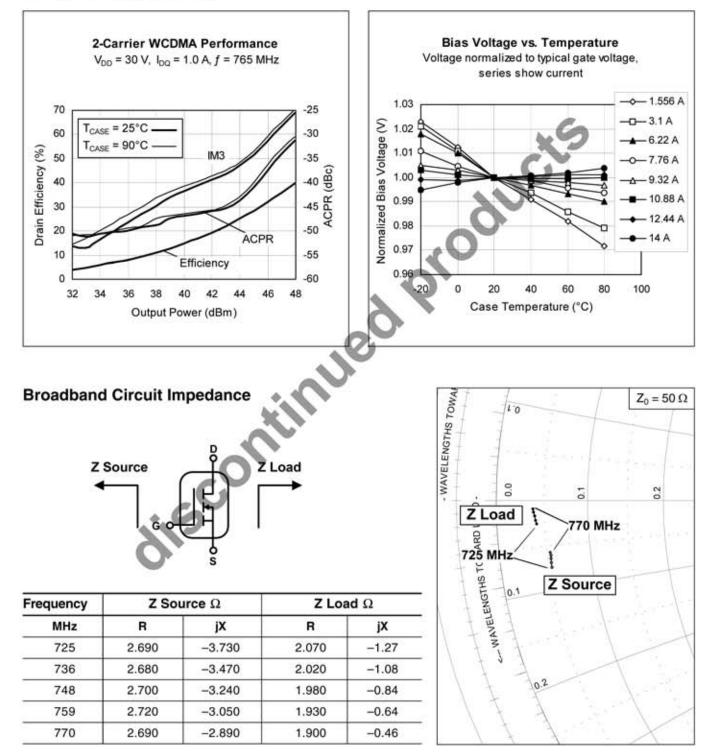
Maximum Ratings

Parameter	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	65	V
Gate-Source Voltage	V _{GS}	-0.5 to +12	V
Junction Temperature	ТJ	200	°C
Storage Temperature Range	T _{STG}	-40 to +150	°C
Thermal Resistance (T _{CASE} = 70°C, 170 W CW)	$R_{ extsf{ heta}JC}$	0.38	°C/W

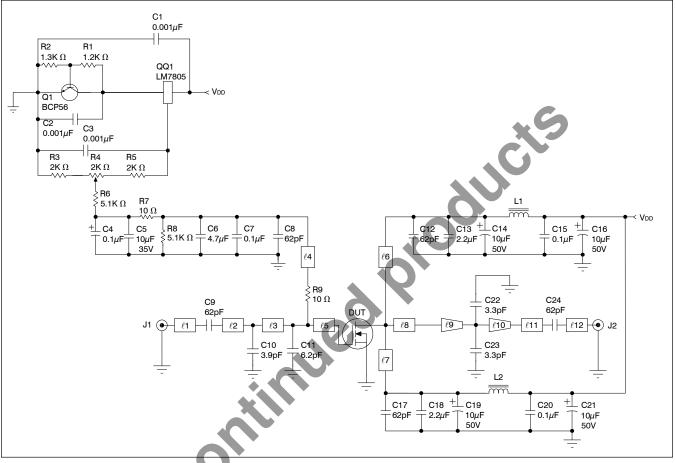

 \mathbf{C}

Ordering Information

Type and Version	PackageType	Package Description	Shipping
PTFA071701E V4	H-36248-2	Slotted flange, single-ended	Tray
PTFA071701E V4 R250	H-36248-2	Slotted flange, single-ended	Tape & Reel 250 pcs
PTFA071701F V4	H-37248-2	Earless flange, single-ended	Tray
PTFA071701F V4 R250	H-37248-2	Earless flange, single-ended	Tape & Reel 250 pcs

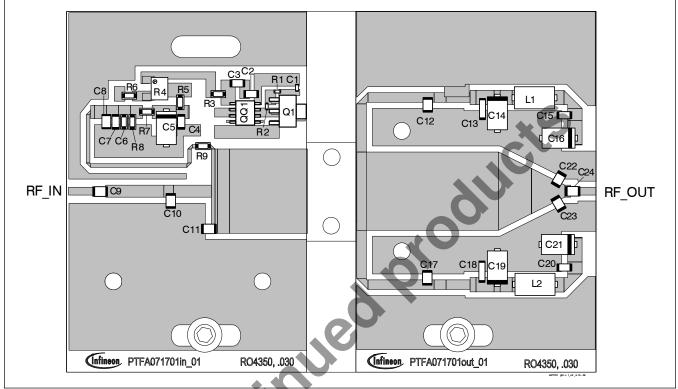

Typical Performance (data taken in a production test fixture)

3 of 9



Typical Performance (cont.)

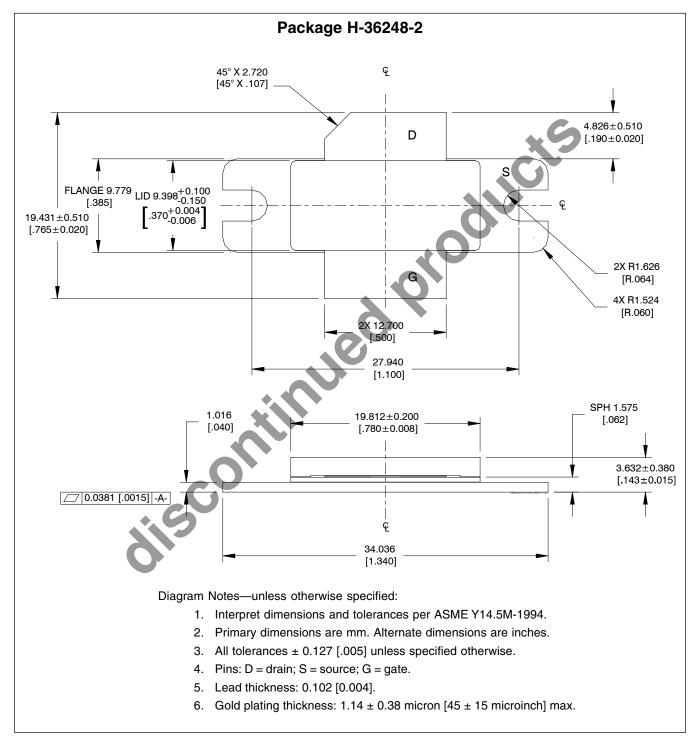
Reference Circuit



Reference circuit schematic for f = 770 MHz

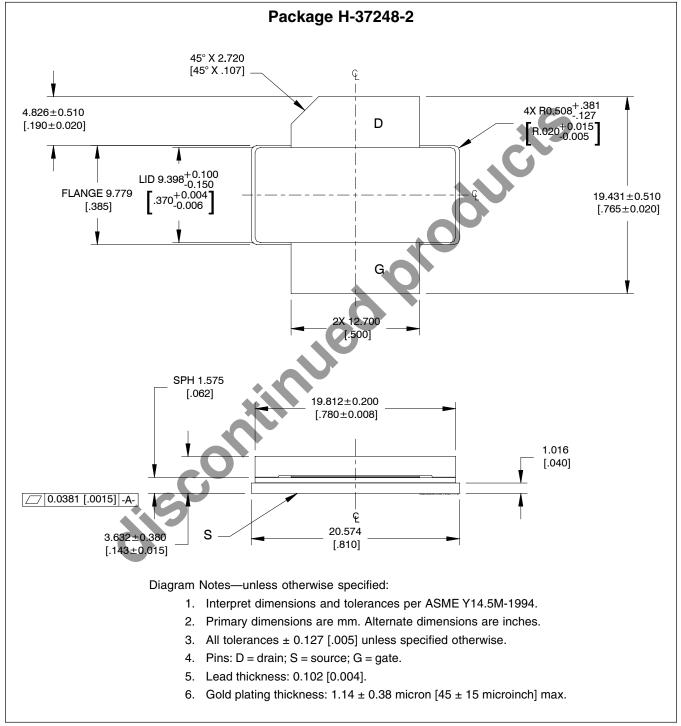
Circuit Assembly Information						
DUT	PTFA071701E or PTFA071701F	LDMOS Transistor				
РСВ	0.76 mm [.030"] thick, &r = 3.48	Rogers RO4350	1 oz. copper			
Microstrip	Electrical Characteristics at 770 MHz	Dimensions: L x W (mm)	Dimensions: L x W (in.)			
ℓ1	0.025 λ, 50.7 Ω	5.84 x 1.65	0.230 x 0.065			
<i>ℓ</i> 2	0.053 λ, 38.4 Ω	12.32 x 2.54	0.485 x 0.100			
<i>ℓ</i> 3	0.035 λ, 38.4 Ω	8.00 x 2.54	0.315 x 0.100			
ℓ4	0.148 λ, 76.7 Ω	35.94 x 0.76	1.415 x 0.030			
ℓ5	0.094 λ, 7.8 Ω	20.32 x 17.78	0.800 x 0.700			
<i>l</i> 6, <i>l</i> 7	0.103 λ, 44.5 Ω	24.13 x 2.03	0.950 x 0.080			
<i>ℓ</i> 8	0.139 λ, 8.4 Ω	29.97 x 16.51	1.180 x 0.650			
ℓ9 (taper)	0.062 λ, 8.4 Ω / 33.8 Ω	13.46 x 16.51 / 3.05	0.530 x 0.650 / 0.120			
ℓ10 (taper)	0.002 λ, 33.8 Ω / 38.4 Ω	0.51 x 3.05 / 2.54	0.020 x 0.120 / 0.100			
ℓ11	0.005 λ, 38.4 Ω	1.27 x 2.54	0.050 x 0.100			
<i>ℓ</i> 12	0.016 λ, 50.7 Ω	3.76 x 1.65	0.148 x 0.065			

Reference Circuit (cont.)


Reference circuit assembly diagram* (not to	
Reference circuit secondly disarsm' incl to	COMPLE
	SCAIEL

Component	Description	Suggested Manufacturer	P/N or Comment
C1, C2, C3	Capacitor, 0.001 µF	Digi-Key	PCC1772CT-ND
C4, C7, C15, C20	Capacitor, 0.1 µF	Digi-Key	PCC104BCT-ND
C6	Capacitor, 4.7 μF, 16 V	Digi-Key	PCS3475CT-ND
C5	Tantalum capacitor, 10 µF, 35 V	Digi-Key	399-1655-2-ND
C8, C9, C12, C17, C24	Ceramic capacitor, 62 pF	ATC	100B 620
C10	Ceramic capacitor, 3.9 pF	ATC	100B 3R9
C11	Ceramic capacitor, 6.2 pF	ATC	100B 7R5
C13, C18	Capacitor, 2.2 µF	ATC	920C 202
C14, C16, C19, C21	Tantalum capacitor, 10 µF, 50 V	Garrett Electronics	TPSE106K050R0400
C22, C23	Ceramic capacitor, 3.3 pF	ATC	100B 3R3
L1, L2	Ferrite, 8.9 mm	Elna Magnetics	BDS 4.6/3/8.9-4S2
Q1	Transistor	Infineon Technologies	BCP56
QQ1	Voltage regulator	National Semiconductor	LM7805
R1	Chip resistor, 1.2k Ω	Digi-Key	P1.2KGCT-ND
R2	Chip resistor, 1.3k Ω	Digi-Key	P1.3KGCT-ND
R3, R5	Chip resistor, 2k Ω	Digi-Key	P2KECT-ND
R4	Potentiometer, 2k Ω	Digi-Key	3224W-202ETR-ND
R6, R8	Chip resistor, 5.1k Ω	Digi-Key	P5.1KECT-ND
R7, R9	Chip resistor, 10 Ω	Digi-Key	P10ECT-ND

*Gerber files for this circuit available on request



Package Outline Specifications

Package Outline Specifications (cont.)

Find the latest and most complete information about products and packaging at the Infineon Internet page http://www.infineon.com/rfpower

PTFA071701E/F V4

Revision H	listory: 20 . 2* . * 1	Data Sheet
Previous V	ersion: 2009-11-11, Data Sheet	
Page	Subjects (major changes since last revision)	
All	Products discontinued. Please see PD notes: PD_215_14.	
-		

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to:

highpowerRF@infineon.com

To request other information, contact us at: +1 877 465 3667 (1-877-GO-LDMOS) USA or +1 408 776 0600 International

Edition 20. 2* . * 1

Published by Infineon Technologies AG 81726 Munich, Germany © 2009 Infineon Technologies AG

Legal Disclaimer

All Rights Reserved.

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

nued

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com/rfpower).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.