: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

High Power RF LDMOS Field Effect Transistor 8 W, 700 - 2200 MHz

Description

The PTFA220081M an unmatched 8-watt LDMOS FET suitable for power amplifiers applications with frequencies from 700 MHz to 2200 MHz . This LDMOS transistor offers excellent gain, efficiency and linearity performance in a small overmolded plastic package.

PTFA220081M
Package PG-SON-10

Features

- Typical two-carrier WCDMA performance, 8 dB PAR
- Pout $=33 \mathrm{dBm}$ Avg
- $\mathrm{ACPR}=-40 \mathrm{dBc}$
- Typical CW performance, $940 \mathrm{MHz}, 28 \mathrm{~V}$
- POUT $=40 \mathrm{dBm}$
- Efficiency = 59\%
- Gain $=20 \mathrm{~dB}$
- Typical CW performance, $2140 \mathrm{MHz}, 28 \mathrm{~V}$
- POUT $=40 \mathrm{dBm}$
- Efficiency = 50\%
- Gain = 15 dB
- Capable of handling 10:1 VSWR @ 28 V , 8 W (CW) output power
- Integrated ESD protection
- Excellent thermal stability
- Pb-free and RoHS compliant

RF Characteristics

Two-tone Measurements (not subject to production test - verified by design / characterization in Infineon test fixture)
$\mathrm{V}_{\mathrm{DD}}=28 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=100 \mathrm{~mA}, \mathrm{P}_{\mathrm{OUT}}=8 \mathrm{~W}$ PEP, $f=2140 \mathrm{MHz}$, tone spacing $=1 \mathrm{MHz}$

Characteristic	Symbol	Min	Typ	Max	Unit
Gain	G_{ps}	-	17	-	dB
Drain Efficiency	$\eta \mathrm{D}$	-	38	-	$\%$
Intermodulation Distortion	IMD	-	-31	-	dBc

All published data at $T_{\text {CASE }}=25^{\circ} \mathrm{C}$ unless otherwise indicated
ESD: Electrostatic discharge sensitive device-observe handling precautions!

PTFA220081M

RF Characteristics (cont.)

Two-tone Measurements (not subject to production test - verified by design / characterization in Infineon test fixture)
$\mathrm{V}_{\mathrm{DD}}=28 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=100 \mathrm{~mA}$, P $_{\text {OUT }}=8 \mathrm{~W}$ PEP, $f=940 \mathrm{MHz}$, tone spacing $=1 \mathrm{MHz}$

Characteristic	Symbol	Min	Typ	Max	Unit
Gain	G_{ps}	-	20.7	-	dB
Drain Efficiency	$\eta \mathrm{D}$	-	39	-	$\%$
Intermodulation Distortion	IMD	-	-30	-	dBc
Input Return Loss	IRL	-	20	-	dB

DC Characteristics

Characteristic	Conditions	Symbol	Min	Typ	Max	Unit
Drain-Source Breakdown Voltage	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=10 \mu \mathrm{~A}$	$\mathrm{~V}_{(\mathrm{BR}) \mathrm{DSS}}$	65	-	-	V
Drain Leakage Current	$\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	$\mathrm{I}_{\mathrm{DSS}}$	-	-	1.0	$\mu \mathrm{~A}$
On-State Resistance	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0.1 \mathrm{~A}$	$\mathrm{R}_{\mathrm{DS}(\mathrm{on})}$	-	1.10	-	Ω
Operating Gate Voltage	$\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=100 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{GS}}$	2.0	2.5	3.0	V
Gate Leakage Current	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	$\mathrm{I}_{\mathrm{GSS}}$	-	-	1.0	$\mu \mathrm{~A}$

Maximum Ratings

Parameter	Symbol	Value	Unit
Drain-Source Voltage	$\mathrm{V}_{\mathrm{DSS}}$	65	V
Gate-Source Voltage	V_{GS}	-0.5 to +12	V
Junction Temperature	T_{J}	175	${ }^{\circ} \mathrm{C}$
Storage Temperature Range.	$\mathrm{T}_{\text {STG }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Thermal Resistance. $\left(\right.$ T $_{\text {CASE }}=70^{\circ} \mathrm{C}, 8 \mathrm{~W}$ DC $)$	$\mathrm{R}_{\theta \mathrm{JC}}$	4.2	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Moisture Sensitivity Level

Level	Test Standard	Package Temperature	Unit
3	IPC/JEDEC J-STD-020	260	${ }^{\circ} \mathrm{C}$

Ordering Information

Type	Package Outline	Package Description	Shipping
PTFA220081M V4	PG-SON-10	Molded plastic, SMD	Tape \& Reel, 500 pcs

Typical Performance, 940 MHz

Power Sweep, CW Gain \& Efficiency vs. Output Power
$V_{D D}=28 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=100 \mathrm{~mA}$
-carrier WCDMA 3 GPP Drive-up
$\mathrm{V}_{\mathrm{DD}}=28 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=100 \mathrm{~mA}, f=940 \mathrm{MHz}$ 3GPP WCDMA, P/AR $=8: 1,10 \mathrm{MHz}$ carrier spacing, BW 3.84 MHz

Output Power (dBm)

Typical Performance, 940 MHz (cont.)

Broadband Circuit Impedance

PTFA220081M

Reference Circuit, 920 - 960 MHz

Reference circuit input schematic for $f=920-960 \mathrm{MHz}$

Reference circuit output schematic for $f=920-960 \mathrm{MHz}$

PTFA220081M

Reference Circuit, 920 - 960 MHz (cont.)
Electrical Characteristics at 960 MHz

Transmission Line	Electrical Characteristics	Dimensions: mm	Dimensions: mils
Input			
TL101	$0.004 \lambda, 51.98 \Omega$	$\mathrm{W} 1=1.087, \mathrm{~W} 2=1.087, \mathrm{~W} 3=0.813$	$\mathrm{W} 1=43, \mathrm{~W} 2=43, \mathrm{~W} 3=32$
TL102	$0.024 \lambda, 51.98 \Omega$	W = 1.087, L = 4.445	$\mathrm{W}=43, \mathrm{~L}=175$
TL103	$0.011 \lambda, 51.98 \Omega$	W = 1.087, L = 2.057	$\mathrm{W}=43 \mathrm{~L}=81$
TL104		$\mathrm{W}=1.524$	$\mathrm{W}=60$
TL105	$0.008 \lambda, 54.17 \Omega$	$\mathrm{W}=1.016, \mathrm{~L}=1.524$	$W=40, L=60$
TL106	$0.027 \lambda, 41.75 \Omega$	$\mathrm{W}=1.524, \mathrm{~L}=5.080$	$\mathrm{W}=60, \mathrm{~L}=200$
TL107	$0.010 \lambda, 25.04 \Omega$	$\mathrm{W}=3.048, \mathrm{~L}=1.778$	$W=120, L=70$
TL108	$0.003 \lambda, 41.75 \Omega$	$\mathrm{W}=1.524, \mathrm{~L}=0.508$	$\mathrm{W}=60, \mathrm{~L}=20$
TL109	$0.007 \lambda, 41.75 \Omega$	$\mathrm{W}=1.524, \mathrm{~L}=1.270$	$\mathrm{W}=60, \mathrm{~L}=50$
TL110		$\mathrm{W} 1=3.048, \mathrm{~W} 2=0.762, \mathrm{~W} 3=3.048, \mathrm{~W} 4=0.762$	$\mathrm{W} 1=120, \mathrm{~W} 2=30, \mathrm{~W} 3=120, \mathrm{~W} 4=30$
TL111, TL112	$0.005 \lambda, 51.98 \Omega$	$\mathrm{W} 1=1.087, \mathrm{~W} 2=1.087, \mathrm{~W} 3=1.016$	$\mathrm{W} 1=43, \mathrm{~W} 2=43, \mathrm{~W} 3=40$
TL113	$0.017 \lambda, 51.98 \Omega$	$\mathrm{W}=1.087, \mathrm{~L}=3.264$	$\mathrm{W}=43, \mathrm{~L}=129$
TL114	$0.070 \lambda, 51.98 \Omega$	$\mathrm{W}=1.087, L=13.259$	$\mathrm{W}=43, \mathrm{~L}=522$
Output			
TL201	$0.008 \lambda, 41.75 \Omega$	$\mathrm{W} 1=1.524, \mathrm{~W} 2=1.524, \mathrm{~W} 3=1.524$	$\mathrm{W} 1=60, \mathrm{~W} 2=60, \mathrm{~W} 3=60$
TL202, TL225	$0.007 \lambda, 47.12 \Omega$	$\mathrm{W} 1=1.270, \mathrm{~W} 2=1.270, \mathrm{~W} 3=1.270$	$\mathrm{W} 1=50, \mathrm{~W} 2=50, \mathrm{~W} 3=50$
TL203	$0.060 \lambda, 47.12 \Omega$	$\mathrm{W}=1.270, L=11.361$	$\mathrm{W}=50, \mathrm{~L}=447$
TL204		$\mathrm{W} 1=0.020, \mathrm{~W} 2=0.020, \mathrm{Offset}=0.007$	$\mathrm{W} 1=20, \mathrm{~W} 2=780$, Offset $=280$
TL205	$0.007 \lambda, 4.74 \Omega$	$\mathrm{W}=20.119, L=1.270$	$\mathrm{W}=792, \mathrm{~L}=50$
TL206		W1 $=0.001, \mathrm{~W} 2=0.001$, Offset $=0.011$	$\mathrm{W} 1=1, \mathrm{~W} 2=50$, Offset $=416$
TL207	$0.003 \lambda, 41.75 \Omega$	$W=1.524, L=0.508$	W = 60, L = 20
TL208	$0.008 \lambda, 41.75 \Omega$	$W=1.524, L=1.524$	W = 60, L = 60
TL209	$0.004 \lambda, 25.04 \Omega^{\circ}$	$\mathrm{W} 1=3.048, \mathrm{~W} 2=3.048, \mathrm{~W} 3=0.762$	$\mathrm{W} 1=120, \mathrm{~W} 2=120, \mathrm{~W} 3=30$
TL210	-	$\mathrm{W} 1=1.087, \mathrm{~W} 2=3.048$	$\mathrm{W} 1=43, \mathrm{~W} 2=120$
TL211	$0.010 \lambda, 25.04 \Omega$	W = 3.048, L = 1.778	$\mathrm{W}=120, \mathrm{~L}=70$
TL212	$0.007 \lambda, 63.89 \Omega$	W = 0.762, L = 1.270	W = 30, L = 50
TL213		$\mathrm{W} 1=0.001, \mathrm{~W} 2=0.005$, Offset $=-0.002$	$\mathrm{W} 1=1, \mathrm{~W} 2=208$, Offset $=-79$
TL214	$0.044 \lambda, 41.75 \Omega$	$\mathrm{W}=1.524, \mathrm{~L}=8.204$	$\mathrm{W}=60, \mathrm{~L}=323$
TL215	$0.007 \lambda, 41.75 \Omega$	$\mathrm{W} 1=1.524, \mathrm{~W} 2=1.524, \mathrm{~W} 3=1.270$	$\mathrm{W} 1=60, \mathrm{~W} 2=60, \mathrm{~W} 3=50$
TL216	$0.007 \lambda, 47.12 \Omega$	W = 1.270, L = 1.267	W $=50, \mathrm{~L}=50$
TL217	$0.032 \lambda, 47.12 \Omega$	W = 1.270, L = 5.918	$\mathrm{W}=50, \mathrm{~L}=233$
TL218	$0.032 \lambda, 15.92 \Omega$	W = 5.283, L = 5.687	W = 208, L = 224
TL219	$0.016 \lambda, 51.98 \Omega$	W = 1.087, L = 2.946	$\mathrm{W}=43, \mathrm{~L}=116$
TL220	$0.017 \lambda, 51.98 \Omega$	W = 1.087, L = 3.264	$\mathrm{W}=43, \mathrm{~L}=129$
TL221	$0.004 \lambda, 51.98 \Omega$	$\mathrm{W} 1=1.087, \mathrm{~W} 2=1.087, \mathrm{~W} 3=0.813$	W 1 = 43, W2 $=43, \mathrm{~W} 3=32$
TL222	$0.104 \lambda, 51.98 \Omega$	W = 1.087, L = 19.736	$\mathrm{W}=43, \mathrm{~L}=777$
TL223	$0.011 \lambda, 47.12 \Omega$	$\mathrm{W} 1=1.270, \mathrm{~W} 2=1.270, \mathrm{~W} 3=2.032$	$\mathrm{W} 1=50, \mathrm{~W} 2=50, \mathrm{~W} 3=80$
TL224	$0.000 \lambda, 144.35 \Omega$	$\mathrm{W} 1=0.025, \mathrm{~W} 2=0.025, \mathrm{~W} 3=0.025$	$\mathrm{W} 1=1, \mathrm{~W} 2=1, \mathrm{~W} 3=1$

PTFA220081M

Reference Circuit, 920 - 960 MHz (cont.)

Reference circuit assembly diagram (not to scale)*

PTFA220081M

Reference Circuit, 920 - 960 MHz (cont.)

Circuit Assembly Information

DUT	PTFA220081M	LDMOS Transistor	
PCB	LTN/PTFA220081M-9	0.508 mm [.020"] thick, ε r $=3.48$	Rogers 4350, 1 oz. copper
Component	Description	Suggested Manufacturer	P/N
Input			
C101, C102, C103	Chip capacitor, 1000 pF	Digi-Key	PCC1772CT-ND
C104, C107	Chip capacitor, 16 pF	ATC	ATC100A160JW150X
C105	Chip capacitor, 68 pF	ATC	ATC100A680JW150X
C106	Chip capacitor, 5.6 pF	ATC	ATC100A5R6CW150X
L1	Inductor, 22 nH	ATC	ATC0805WL22JT
R101	Resistor, 1300Ω	Digi-Key	P1.3KGCT-ND
R102	Resistor, 1200Ω	Digi-Key	P1.2KGCT-ND
R103	Resistor, 2000Ω	Digi-Key	P2.0KECT-ND
R104	Resistor, 10Ω	Digi-Key	P10ECT-ND
R105	Resistor, 1.3Ω	Digi-Key	P1.3GET-ND
R106	Resistor, 510Ω	Digi-Key	P510ECT-ND
R107	Resistor, 10Ω	Digi-Key	P10GCT-ND
S2	EMI filter, 2-4 A, 0.1-2.2 $\mu \mathrm{F}$	Murata	NFM18PS105R0J3
S3	Potentiometer, 2k Ω	Digi-Key	3224W-202ECT-ND
S4	Transistor	Digi-Key	BCP56
S5	Voltage Regulator	National Semiconductor	LM7805
Output			
C201	Chip capacitor, 3.6 pF	ATC	ATC100A3R6CW150X
C202, C203	Chip capacitor, 68 pF	ATC	ATC100A680JW150X
C204	Capacitor $10 \mu \mathrm{~F}$	Digi-Key	587-1352-1-ND
C205	Chip capacitor, $4.71 \mu \mathrm{~F}$	Digi-Key	PCS3475CT-ND
R201	Resistor, 0Ω	Digi-Key	P0.0ECT-ND

Typical Performance, 2140 MHz

PTFA220081M

Typical Performance, 2140 MHz (cont.)

Two-tone Broadband Efficiency \& IMD vs. Frequency
$\mathrm{V}_{\mathrm{DD}}=28 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=100 \mathrm{~mA}$, Average $\mathrm{PEP}=8 \mathrm{~W}$,
Spacing $=100 \mathrm{kHz}$

Two-tone Broadband Gain \& Return Loss vs. Frequency
$V_{D D}=28 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=100 \mathrm{~mA}$, Average PEP $=8 \mathrm{~W}$, Spacing $=100 \mathrm{kHz}$

PTFA220081M

Typical Performance, 2140 MHz (cont.)

PTFA220081M

Reference Circuit, 2110-2170 MHz

Reference circuit output schematic for $f=2110-2170 \mathrm{MHz}$

Reference Circuit, 2110 - 2170 MHz (cont.)

Electrical Characteristics at 2170 MHz

Transmission Line	Electrical Characteristics	Dimensions: mm	Dimensions: mils
Input			$\mathrm{W}=43, \mathrm{~L}=178$
$\mathrm{TL101}$	$0.054 \lambda, 51.98 \Omega$	$\mathrm{~W}=1.087, \mathrm{~L}=4.509$	$\mathrm{~W}=43, \mathrm{~L}=494 \mathrm{~W}$
$\mathrm{TL102}$	$0.150 \lambda, 51.98 \Omega$	$\mathrm{~W}=1.087, \mathrm{~L}=12.548$	$\mathrm{~W}=43, \mathrm{~L}=89$
$\mathrm{TL103}$	$0.027 \lambda, 51.98 \Omega$	$\mathrm{~W}=1.087, \mathrm{~L}=2.261$	$\mathrm{~W}=60$
$\mathrm{TL104}$		$\mathrm{~W}=1.524$	$\mathrm{~W}=60, \mathrm{~L}=200$
$\mathrm{TL105}$	$0.062 \lambda, 41.75 \Omega$	$\mathrm{~W}=1.524, \mathrm{~L}=5.080$	$\mathrm{~W}=40, \mathrm{~L}=60$
$\mathrm{TL106}$	$0.018 \lambda, 54.17 \Omega$	$\mathrm{~W}=1.016, \mathrm{~L}=1.524$	$\mathrm{~W}=120, \mathrm{~L}=70$
$\mathrm{TL107}$	$0.022 \lambda, 25.04 \Omega$	$\mathrm{~W}=3.048, \mathrm{~L}=1.778$	$\mathrm{~W}=60, \mathrm{~L}=20$
$\mathrm{TL108}$	$0.006 \lambda, 41.75 \Omega$	$\mathrm{~W}=1.524, \mathrm{~L}=0.508$	$\mathrm{~W}=60, \mathrm{~L}=50$
$\mathrm{TL109}$	$0.015 \lambda, 41.75 \Omega$	$\mathrm{~W}=1.524, \mathrm{~L}=1.270$	$\mathrm{~W} 1=43, \mathrm{~W} 2=43, \mathrm{~W} 3=40$
$\mathrm{TL110}$		$\mathrm{~W} 1=3.048, \mathrm{~W} 2=0.762, \mathrm{~W} 3=3.048, \mathrm{~W} 4=0.762$	$\mathrm{~W} 1=120, \mathrm{~W} 2=30, \mathrm{~W} 3=120, \mathrm{~W} 4=30$
$\mathrm{TL111,TL113}$	$0.012 \lambda, 51.98 \Omega$	$\mathrm{~W} 1=1.087, \mathrm{~W} 2=1.087, \mathrm{~W} 3=1.016$	$\mathrm{~W}, \mathrm{~W}=43, \mathrm{~L}=91$
$\mathrm{TL112}$		$\mathrm{~W} 1=1.087, \mathrm{~W} 2=1.016, \mathrm{~W} 3=1.087, \mathrm{~W} 4=1.016$	
$\mathrm{TL114}$	$0.028 \lambda, 51.98 \Omega$	$\mathrm{~W}=1.087, \mathrm{~L}=2.311$	$\mathrm{~W} 1=43, \mathrm{~W} 2=40, \mathrm{~W} 3=43, \mathrm{~W} 4=40$
$\mathrm{TL115}$		$\mathrm{~W} 1=1.087, \mathrm{~W} 2=1.016, \mathrm{~W} 3=1.087, \mathrm{~W} 4=1.016$	$\mathrm{~W} 1=43, \mathrm{~W} 2=40, \mathrm{~W} 3=43, \mathrm{~W} 4=40$

Output			
TL201	$0.022 \lambda, 25.04 \Omega$	$\mathrm{~W}=3.048, \mathrm{~L}=\wedge 778$	$\mathrm{~W}=120, \mathrm{~L}=70$
TL202	$0.010 \lambda, 25.04 \Omega$	$\mathrm{~W} 1=3.048, \mathrm{~W} 2=3.048, \mathrm{~W} 3=0.762$	$\mathrm{~W} 1=120, \mathrm{~W} 2=120, \mathrm{~W} 3=30$
TL203		$\mathrm{W} 1=1.087, \mathrm{~W} 2=3.048$	$\mathrm{~W} 1=43, \mathrm{~W} 2=120$
TL204	$0.071 \lambda, 47.12 \Omega$	$\mathrm{~W}=1.270, \mathrm{~L}=5.918$	$\mathrm{~W}=50, \mathrm{~L}=233$
TL205	$0.072 \lambda, 15.92 \Omega$	$\mathrm{~W}=5.283, \mathrm{~L}=5.687$	$\mathrm{~W}=208, \mathrm{~L}=224$
TL206	$0.230 \lambda, 51.98 \Omega$	$\mathrm{~W}=1.087, \mathrm{~L}=19.202$	$\mathrm{~W}=43, \mathrm{~L}=756$
TL207	$0.039 \lambda, 51.98 \Omega$	$\mathrm{~W}=1.087, \mathrm{~L}=3.264$	$\mathrm{~W}=43, \mathrm{~L}=129$
TL208	$0.012 \lambda, 51.98 \Omega$	$\mathrm{~W} 1=1.087, \mathrm{~W} 2=1.087, \mathrm{~W} 3=1.016$	$\mathrm{~W} 1=43, \mathrm{~W} 2=43, \mathrm{~W} 3=40$
TL209	$0.032 \lambda, 51.98 \Omega$	$\mathrm{~W}=1.087, \mathrm{~L}=2.642$	$\mathrm{~W}=43, \mathrm{~L}=104$
TL210	$0.006 \lambda, 41.75 \Omega$	$\mathrm{~W}=1.524, \mathrm{~L}=0.508$	$\mathrm{~W}=60, \mathrm{~L}=20$
TL211	$0.018 \lambda, 41.75 \Omega$	$\mathrm{~W}=1.524, \mathrm{~L}=1.524$	$\mathrm{~W}=60, \mathrm{~L}=60$
TL212	$0.018 \lambda, 41.75 \Omega$	$\mathrm{~W} 1=1.524, \mathrm{~W} 2=1.524, \mathrm{~W} 3=1.524$	$\mathrm{~W} 1=60, \mathrm{~W} 2=60, \mathrm{~W} 3=60$
TL213	$0.015 \lambda, 47.12 \Omega$	$\mathrm{~W} 1=1.270, \mathrm{~W} 2=1.270, \mathrm{~W} 3=1.270$	$\mathrm{~W}=50, \mathrm{~W} 2=50, \mathrm{~W} 3=50$
TL214	$0.035 \lambda, 47.12 \Omega$	$\mathrm{~W}=1.270, \mathrm{~L}=2.896$	$\mathrm{~W} 1=20, \mathrm{~W} 2=780, \mathrm{Offset}=280$
TL215		$\mathrm{W} 1=0.020, \mathrm{~W} 2=0.020, \mathrm{Offset}=0.007$	$\mathrm{~W}=792, \mathrm{~L}=50$
TL216	$0.017 \lambda, 4.74 \Omega$	$\mathrm{~W}=20.119, \mathrm{~L}=1.270$	$\mathrm{~W} 1=1, \mathrm{~W} 2=208, \mathrm{Offset}=-79$
TL217		$\mathrm{W} 1=0.001, \mathrm{~W} 2=0.005, \mathrm{Offset}=-0.002$	$\mathrm{~W}=60, \mathrm{~L}=323$
TL218	$0.099 \lambda, 41.75 \Omega$	$\mathrm{~W}=1.524, \mathrm{~L}=8.204$	$\mathrm{~W}=50, \mathrm{~L}=50$
TL219	$0.015 \lambda, 47.12 \Omega$	$\mathrm{~W}=1.270, \mathrm{~L}=1.267$	$\mathrm{~W} 1=60, \mathrm{~W} 2=60, \mathrm{~W} 3=50$
TL220	$0.015 \lambda, 41.75 \Omega$	$\mathrm{~W} 1=1.524, \mathrm{~W} 2=1.524, \mathrm{~W} 3=1.270$	$\mathrm{~W} 1=43, \mathrm{~W} 2=43, \mathrm{~W} 3=25$
TL221	$0.008 \lambda, 51.98 \Omega$	$\mathrm{~W} 1=1.087, \mathrm{~W} 2=1.087, \mathrm{~W} 3=0.635$	$\mathrm{~W}=30, \mathrm{~L}=50$
TL222	$0.015 \lambda, 63.89 \Omega$	$\mathrm{~W}=0.762, \mathrm{~L}=1.270$	$\mathrm{~W} 1=1, \mathrm{~W} 2=50, \mathrm{Offset}=416$
TL223		$\mathrm{W} 1=0.001, \mathrm{~W} 2=0.001$, Offset $=0.011$	

Table continued next page

PTFA220081M

Reference Circuit, 2110 - 2170 MHz (cont.)
Electrical Characteristics at 2170 MHz (cont.)

Transmission Line	Electrical Characteristics	Dimensions: mm	Dimensions: mils
$\mathrm{TL224}$	$0.015 \lambda, 47.12 \Omega$	$\mathrm{~W} 1=1.270, \mathrm{~W} 2=1.270, \mathrm{~W} 3=1.270$	$\mathrm{~W} 1=50, \mathrm{~W} 2=50, \mathrm{~W} 3=50$
$\mathrm{TL225}$	$0.111 \lambda, 47.12 \Omega$	$\mathrm{~W}=1.270, \mathrm{~L}=9.225$	$\mathrm{~W}=50, \mathrm{~L}=363$
TL 226	$0.015 \lambda, 47.12 \Omega$	$\mathrm{~W} 1=1.270, \mathrm{~W} 2=1.270, \mathrm{~W} 3=1.270$	$\mathrm{~W} 1=50, \mathrm{~W} 2=50, \mathrm{~W} 3=50$

Reference Circuit, 2110 - 2170 MHz (cont.)

Reference circuit assembly diagram (not to scale)*

* Gerber Files for this circuit available on request

Reference Circuit, 2110 - 2170 MHz (cont.)

Circuit Assembly Information

DUT	PTFA220081M	LDMOS Transistor	
PCB	LTN/PTFA220081M	0.508 mm [.020"] thick, ε er $=3.48$	Rogers 4350, 1 oz. copper
Component	Description	Suggested Manufacturer	P/N
Input			
C101, C102, C103	Chip capacitor, 1000 pF	ATC	PCC1772CT-ND
C104, C105, C110, C111	Chip capacitor, 6.2 pF	ATC	ATC100A6R2CW150X
C106	Chip capacitor, 12 pF	ATC	ATC100A120FJW150X
C107	Chip capacitor, 3.6 pF	ATC	ATC100A3R6CW150X
C108	Chip capacitor, 4.1 pF	ATC	ATC100A4R1CW150X
C109	Chip capacitor, 0.6 pF	ATC	ATC100A0R6CW150X
L1	Inductor, 22 nH	ATC	ATC0805WL22JT
R101	Resistor, 1300Ω	Digi-Key	P1.3KGCT-ND
R102	Resistor, 10Ω	Digi-Key	P10ECT-ND
R103	Resistor, 1200Ω	Digi-Key	P1.2KGCT-ND
R104	Resistor, 2000Ω	Digi-Key	P2.0KECT-ND
R105	Resistor, 10Ω	Digi-Key	P10GCT-ND
R106	Resistor, 510Ω	Digi-Key	P510ECT-ND
S2	EMI filter, 2-4 A, 0.1-2.2 $\mu \mathrm{F}$	Digi-Key	NFM18PS105R0J3
S3	Potentiometer, $2 \mathrm{k} \Omega$	Digi-Key	3224W-202ECT-ND
S4	Transistor	Digi-Key	BCP56
S5	(LM7805
Output			
C201	Chip capacitor, 12 pF	ATC	ATC100A120CW150X
C202	Chip capacitor, 0.3 pF	ATC	ATC100A0R3CW150X
C203	Chip capacitor, 3.6 pF	ATC	ATC100A3R6CW150X
C204	Chip capacitor, 10 pF	ATC	ATC100A100CW150X
C205	Capacitor, $10 \mu \mathrm{~F}$	Digi-Key	587-1352-1-ND
R201	Resistor, 0Ω	Digi-Key	P0.0ECT-ND

PTFA220081M

Package Outline Specifications

Find the latest and most complete information about products and packaging at the Infineon Internet page http://www.infineon.com/rfpower

Revision History:		2017-07-18
Previous Version:	2011-04-01, Data Sheet	Data Sheet
Page	Subjects (major changes since last revision)	
All	Not recommended for new design	

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to:

highpowerRF@infineon.com

To request other information, contact us at: +1 8774653667 (1-877-GO-LDMOS) USA or +14087760600 International

Edition 2017-07-18

Published by
Infineon Technologies AG
81726 Munich, Germany
© 2010 Infineon Technologies AG
All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com/rfpower).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

