: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Thermally-Enhanced High Power RF LDMOS FET 85 W, 2500 - 2700 MHz

Description

The PTFA260851E and PTFA260851F are 85-watt LDMOS FETs designed for WiMAX power amplifier applications in the 2500 to 2700 MHz band. Features include input and output matching, and thermally-enhanced packages with slotted or earless flanges. Manufactured with Infineon's advanced LDMOS process, these devices provide excellent thermal performance and superior reliability.

WiMAX

EVM and Efficiency vs. Output Power $V_{D S}=28 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=900 \mathrm{~mA}$

PTFA260851E
Package H-30248-2

PTFA260851F
Package H-31248-2

Features

- Thermally-enhanced, Pb-free and RoHS-compliant packages
- Broadband internal matching
- Typical WiMAX performance at $2680 \mathrm{MHz}, 28 \mathrm{~V}$
- Average output power = 16 W
- Linear Gain $=14 \mathrm{~dB}$
- Efficiency = 22\%
- Error Vector Magnitude $=-29 \mathrm{~dB}$
- Typical CW performance, $2680 \mathrm{MHz}, 28 \mathrm{~V}$
- Output power at $\mathrm{P}-1 \mathrm{~dB}=100 \mathrm{~W}$
- Efficiency = 47\%
- Integrated ESD protection: Human Body Model, Class 2 (minimum)
- Excellent thermal stability, low HCl drift
- Capable of handling 10:1 VSWR @ 28 V, 85 W (CW) output power

RF Characteristics

WiMAX Measurements (not subject to production test—verified by design/characterization in Infineon test fixture)
$\mathrm{V}_{\mathrm{DD}}=28 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=900 \mathrm{~mA}$, POUT $=16 \mathrm{~W}$ average, $f=2680 \mathrm{MHz}$, modulation $=64$ QAM $2 / 3$, channel bandwidth $=3.5 \mathrm{MHz}$, sample rate $=4 \mathrm{MHz}$

Characteristic	Symbol	Min	Typ	Max	Unit
Gain	G_{ps}	-	14	-	dB
Drain Efficiency	η_{D}	-	22	-	$\%$
Error Vector Magnitude	EVM	-	-29	-	dB

All published data at $T_{\text {CASE }}=25^{\circ} \mathrm{C}$ unless otherwise indicated
ESD: Electrostatic discharge sensitive device—observe handling precautions!

RF Characteristics (cont.)

Two-tone Measurements (tested in Infineon test fixture)
$\mathrm{V}_{\mathrm{DD}}=28 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=900 \mathrm{~mA}$, POUT $=85 \mathrm{~W}$ PEP, $f=2680 \mathrm{MHz}$, tone spacing $=1 \mathrm{MHz}$

Characteristic	Symbol	Min	Typ	Max	Unit
Gain	G_{ps}	13	14	-	dB
Drain Efficiency	η_{D}	33	36	-	$\%$
Intermodulation Distortion	IMD	-	-30	-28	dBc

DC Characteristics

Characteristic	Conditions	Symbol	Min	Typ	Max	Unit
Drain-Source Breakdown Voltage	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=10 \mathrm{~mA}$	$\mathrm{~V}_{(\mathrm{BR}) \mathrm{DSS}}$	65	-	-	V
Drain Leakage Current	$\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	$\mathrm{I}_{\mathrm{DSS}}$	-	-	1.0	$\mu \mathrm{~A}$
	$\mathrm{~V}_{\mathrm{DS}}=63 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	$\mathrm{I}_{\mathrm{DSS}}$	-	-	10.0	$\mu \mathrm{~A}$
On-State Resistance	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0.1 \mathrm{~V}$	$\mathrm{R}_{\mathrm{DS}(\mathrm{on})}$	-	0.095	-	Ω
Operating Gate Voltage	$\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=900 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{GS}}$	2.0	2.5	3.0	V
Gate Leakage Current	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	$\mathrm{I}_{\mathrm{GSS}}$	-	-	1.0	$\mu \mathrm{~A}$

Maximum Ratings

Parameter	Symbol	Value	Unit
Drain-Source Voltage	$\mathrm{V}_{\mathrm{DSS}}$	65	V
Gate-Source Voltage	V_{GS}	-0.5 to +12	V
Junction Temperature	T_{J}	200	${ }^{\circ} \mathrm{C}$
Total Device Dissipation	P_{D}	437.5	W
Above $25^{\circ} \mathrm{C}$ derate by		2.5	$\mathrm{~W} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {STG }}$	-40 to +150	${ }^{\circ} \mathrm{C}$
Thermal Resistance $\left(\mathrm{T}_{\text {CASE }}=70^{\circ} \mathrm{C}, 85 \mathrm{~W} \mathrm{CW}\right)$	$\mathrm{R}_{\theta J \mathrm{C}}$	0.4	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Ordering Information

Type and Version	Package Type	Package Description	Marking	
PTFA260851E	V1	H-30248-2	Thermally-enhanced slotted flange, single-ended	PTFA260851E
PTFA260851F	V1	H-31248-2	Thermally-enhanced earless flange, single-ended	PTFA260851F

Typical Performance (data taken in a production test fixture)

Two-tone Broadband Performance
$V_{D D}=28 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=900 \mathrm{~mA}, \mathrm{P}_{\text {OUT }}=42.5 \mathrm{~W}$

Two-tone Performance, various voltages
$\mathrm{I}_{\mathrm{DQ}}=900 \mathrm{~mA}, f=2.68 \mathrm{GHz}$, tone spacing $=1 \mathrm{MHz}$

Typical Performance (cont.)

Typical Performance (cont.)

PTFA260851E PTFA260851F

Broadband Circuit Impedance

Frequency	Z Source Ω		Z Load Ω	
$\mathbf{M H z}$	\mathbf{R}	jX	\mathbf{R}	jX
2600	4.4	3.8	1.8	2.5
2620	4.4	3.9	1.8	2.7
2650	4.3	4.2	1.7	2.9
2680	4.2	4.5	1.7	3.2
2700	4.2	4.7	1.6	3.3

See next page for circuit information

PTFA260851E PTFA260851F

Reference Circuit

Reference circuit schematic for $f=2650 \mathrm{MHz}$

Circuit Assembly Information

DUT	PTFA260851E or PTFA260851F	LDMOS Transistor	
PCB	$0.76 \mathrm{~mm}[.030 "]$ thick, $\varepsilon_{r}=4.5$	TMM4	2 oz. copper

Microstrip	Electrical Characteristics at $\mathbf{2 6 5 0} \mathbf{~ M H z}$	Dimensions: L x W (mm)	Dimensions: L x W (in.)
$\ell 1$	$0.121 \lambda, 46.9 \Omega$	7.42×1.52	0.292×0.060
$\ell 2$	$0.135 \lambda, 40.5 \Omega$	8.20×1.93	0.323×0.076
$\ell 3$	$0.021 \lambda, 40.5 \Omega$	1.27×1.93	0.050×0.076
$\ell 4$	$0.028 \lambda, 14.7 \Omega$	1.60×7.54	0.063×0.297
$\ell 5$	$0.079 \lambda, 8.3 \Omega$	4.37×14.66	0.172×0.577
$\ell 6$	$0.008 \lambda, 57.9 \Omega$	0.51×1.04	0.020×0.041
$\ell 7$	$0.272 \lambda, 57.9 \Omega$	16.79×1.04	0.661×0.041
$\ell 8$	$0.278 \lambda, 49.3 \Omega$	16.89×1.40	0.665×0.055
$\ell 9$	$0.278 \lambda, 49.3 \Omega$	16.89×1.40	0.665×0.055
$\ell 10$	$0.060 \lambda, 5.2 \Omega$	3.28×24.36	0.129×0.959
$\ell 11$ (taper)	$0.113 \lambda, 5.2 \Omega / 49.3 \Omega$	$6.73 \times 24.36 / 1.40$	$0.265 \times 0.959 / 0.055$
$\ell 12$	$0.048 \lambda, 49.3 \Omega$	2.97×1.40	0.117×0.055
$\ell 13$	$0.095 \lambda, 49.3 \Omega$	5.84×1.40	0.230×0.055
$\ell 14$	$0.070 \lambda, 49.3 \Omega$	4.29×1.40	0.169×0.055

Reference Circuit (cont.)

Reference circuit assembly diagram (not to scale)*

Component	Description	Suggested Manufacturer	P/N or Comment
C1, C2, C3	Capacitor, $0.001 \mu \mathrm{~F}$	Digi-Key	PCC1772CT-ND
C4	Tantalum capacitor, $10 \mu \mathrm{~F}, 35 \mathrm{~V}$	Digi-Key	399-1655-2-ND
C5, C11, C15	Capacitor, $0.01 \mu \mathrm{~F}$	ATC	200B 103
$\begin{aligned} & \text { C6, C7, C9, C13, } \\ & \text { C18 } \end{aligned}$	Ceramic capacitor, 4.5 pF	ATC	100B 4R5
C8	Ceramic capacitor, 1.5 pF	ATC	100B 1R5
C10, C14	Capacitor, $1 \mu \mathrm{~F}$	ATC	920C105
C12, C16	Tantalum capacitor, $10 \mu \mathrm{~F}, 50 \mathrm{~V}$	Garrett Electronics	TPSE106K050R0400
C17	Ceramic capacitor, 0.1 pF	ATC	100A 0R1
L1, L2	Ferrite, 8.9 mm	Elna Magnetics	BDS 4.6/3/8.9-4S2
Q1	Transistor	Infineon Technologies	BCP56
QQ1	Voltage regulator	National Semiconductor	LM7805
R1	Chip resistor 1.2 k -ohms	Digi-Key	P1.2KGCT-ND
R2	Chip resistor 1.3 k-ohms	Digi-Key	P1.3KGCT-ND
R3	Chip resistor 2 k-ohms	Digi-Key	P2KECT-ND
R4	Potentiometer 2 k -ohms	Digi-Key	3224W-202ETR-ND
R5, R7	Chip resistor 5.1 k-ohms	Digi-Key	P5.1KECT-ND
R6, R8	Chip resistor 10 ohms	Digi-Key	P10ECT-ND

*Gerber Files for this circuit available on request

Package Outline Specifications

Find the latest and most complete information about products and packaging at the Infineon Internet page http://www.infineon.com/products

Package Outline Specifications

Find the latest and most complete information about products and packaging at the Infineon Internet page http://www.infineon.com/products

Revision History:		2009-02-20
Previous Version: \quad 2006-07-21, Preliminary Data Sheet	Data Sheet	
Page	Subjects (major changes since last revision)	
6,7	Add impedance and circuit information.	
1	Increase bandwidth from $2620-2680$ to $2500-2700$.	
8	Fixed typing error	

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to:
highpowerRF@infineon.com
To request other information, contact us at: +1 8774653667 (1-877-GO-LDMOS) USA or +14087760600 International

GOLDMOS ${ }^{\circledR}$ is a registered trademark of Infineon Technologies AG.

Edition 2009-02-20

Published by
InfineonTechnologies AG
81726 München, Germany
© Infineon Technologies AG 2009.
All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com/rfpower).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

