

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

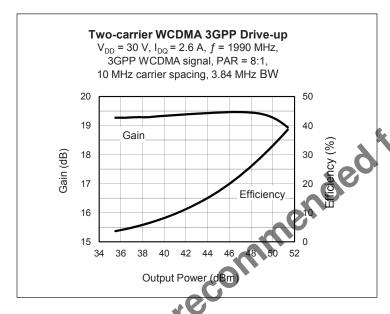
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



Thermally-Enhanced High Power RF LDMOS FET 340 W, 30 V, 1930 – 1990 MHz

Description

The PTFB193408SV is a 340-watt symetrical push-pull LDMOS FET intended for use in multi-standard cellular power amplifier applications in the 1930 to 1990 MHz frequency band. Features include input and output matching, high gain and thermally-enhanced packages. Manufactured with Infineon's advanced LDMOS process, this device provides excellent thermal performance and superior reliability.

Features

- Broadband internal matching, input and output
- Wide video bandwidth
- Typical single-carrier WCDMA performance, 1990 MHz, 30 V
 - Output power = 100 W
 - Efficiency = 33%
 - ' Gain = 19.0 dB
 - PAR = 7.5 dB @ 0.01% CCDF
 - ACPR @ 5 MHz = -35 dBc
- Increased negative gate-source voltage range for improved performance in Doherty amplifiers
- Capable of handling 10:1 VSWR at 30 V, 340 W (CW) ouput power
- Integrated ESD protection
- Excellent thermal stability
- RoHS-compliant

RF Characteristics

Single-carrier WCDMA Measurements (tested in Infineon test fixture)

 $V_{DD} = 30 \text{ V}, I_{DQ} = 2.65 \text{ A}, P_{OUT} = 80 \text{ W} \text{ average}, f = 1990 \text{ MHz}$

WCDMA signal: 3GPP, 3.84 MHz channel bandwidth, with 10 dB peak/average @ 0.01% CCDF

Characteristic	Symbol	Min	Тур	Max	Unit
Gain	G_ps	18	19	_	dB
Drain Efficiency	η_{D}	29	31	_	%
Adjacent Channel Power Ratio	ACPR	_	-32	-30	dBc

(table continued next page)

All published data at $T_{CASE} = 25^{\circ}C$ unless otherwise indicated

ESD: Electrostatic discharge sensitive device—observe handling precautions!

RF Characteristics (cont.)

Two-carrier WCDMA Characteristics (not subject to production test—verified by design/characterization in Infineon test fixture) $V_{DD} = 30 \text{ V}$, $I_{DQ} = 2.6 \text{ A}$, $P_{OUT} = 80 \text{ W}$ average, $f_1 = 1980 \text{ MHz}$, $f_2 = 1990 \text{ MHz}$, WCDMA signal: 3GPP, 3.84 MHz channel bandwidth, 8.0 dB peak/average @ 0.01% CCDF

Characteristic	Symbol	Min	Тур	Max	Unit
Gain	G_ps	_	19.5	_	dB
Drain Efficiency	η_{D}	_	29	_	%
Intermodulation Distortion	IMD	_	-33	N -	dBc

Two-tone Characteristics (not subject to production test—verified by design/characterization in infine on test fixture) $V_{DD} = 30 \text{ V}$, $I_{DQ} = 2.6 \text{ A}$, $P_{OUT} = 265 \text{ W}$ PEP, f = 1990 MHz, tone spacing = 1 MHz

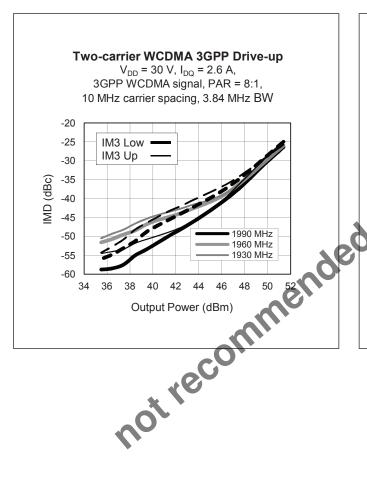
Characteristic	Symbol Min	Тур	Max	Unit
Gain	G _{ps}	19.5	_	dB
Drain Efficiency	no –	36	_	%
Intermodulation Distortion	MD —	-30	_	dBc

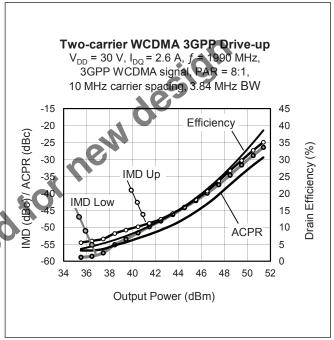
DC Characteristics (both sides)

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V, } I_{DS} = 10 \text{ mA}$	V _{(BR)DSS}	65	_	_	V
Drain Leakage Current	$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}$	I _{DSS}	_	_	1.0	μΑ
	$V_{DS} = 63 \text{ V}, V_{GS} = 0 \text{ V}$	I _{DSS}	_	_	10.0	μΑ
On-State Resistance	$V_{GS} = 10 \text{ V}, V_{DS} = 0.1 \text{ V}$	R _{DS(on)}	_	0.05	_	Ω
Operating Gate Voltage	$V_{DS} = 30 \text{ V}, I_{DQ} = 2.6 \text{ A}$	V_{GS}	2.3	2.8	3.3	V
Gate Leakage Current	$V_{GS} = 10 \text{ V}, V_{DS} = 0 \text{ V}$	I _{GSS}	_	_	1.0	μΑ

Maximum Ratings

Parameter	Symbol	Value	Unit
Drain-Source Voltage	V_{DSS}	65	V
Gate-Source Voltage	V_{GS}	-6 to +10	V
Junction Temperature	TJ	200	°C
Storage Temperature Range	T _{STG}	-40 to +150	°C
Thermal Resistance (T _{CASE} = 70°C, 300 W CW)	$R_{ hetaJC}$	0.2	°C/W

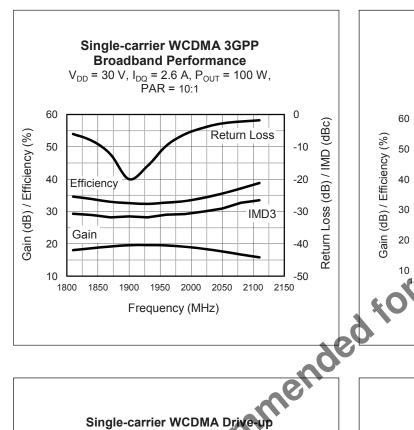

Data Sheet 2 of 9 Rev. 03, 2015-10-01

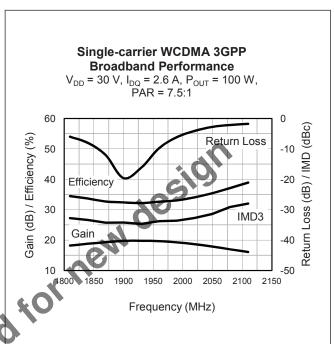


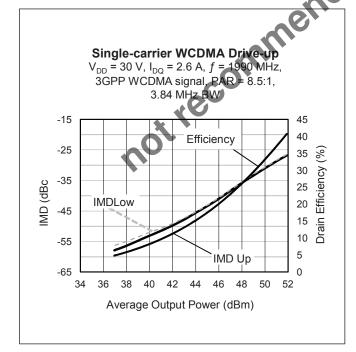
Ordering Information

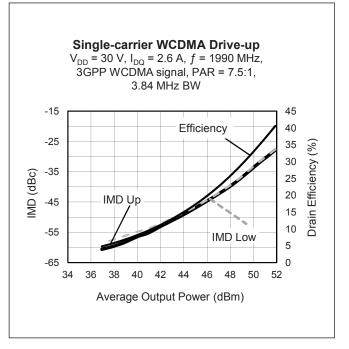
Type and Version	Order Code	Package and Description	Shipping
PTFB 193408SV V1 R250	PTFB193408SVV1R250XTMA1	H-34275G-6/2, ceramic open-cavity, formed leads, earless	Tape & Reel, 250 pcs

Typical Performance (data taken in a production test fixture)

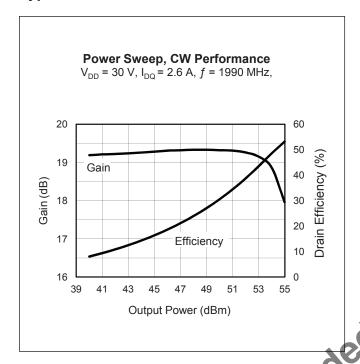


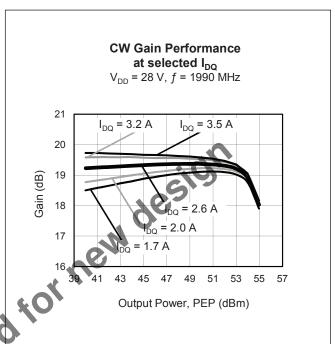


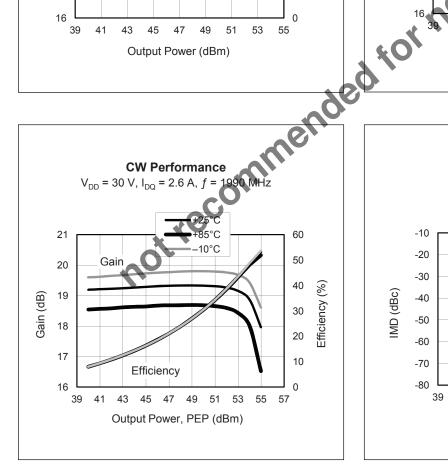

Data Sheet 3 of 9 Rev. 03, 2015-10-01

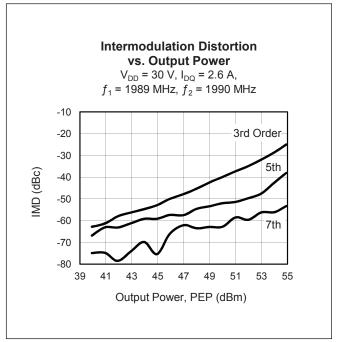


Typical Performance (cont.)

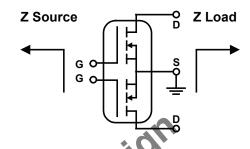


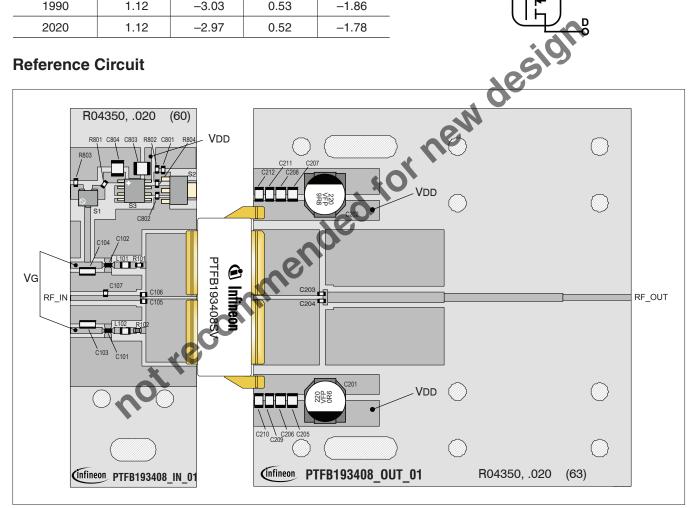






Typical Performance (cont.)





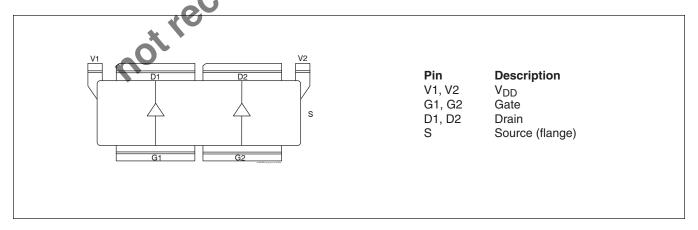
Broadband Circuit Impedance (combined leads)

Frequency	Z Source Ω		Z Lo	ad Ω
MHz	R	jΧ	R	jX
1900	1.10	-3.23	0.55	-2.09
1930	1.11	-3.16	0.54	-2.01
1960	1.11	-3.09	0.53	-1.93
1990	1.12	-3.03	0.53	-1.86
2020	1.12	-2.97	0.52	-1.78

Reference Circuit

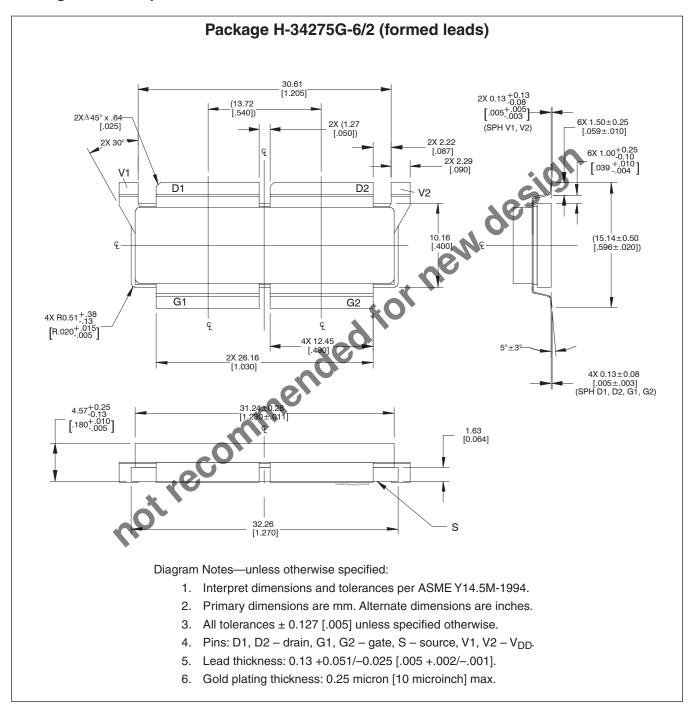
Reference circuit assembly diagram (not to scale)

Reference Circuit Assembly			
DUT	PTFB193408SV V1		
Test Fixture Part No.	LTN/PTFB193408SV		
PCB Rogers 4350, 0.508 mm [.020"] thick, 2 oz. copper, $\varepsilon_r = 3.66$			
Find Gerber files for this test fixture on the Infineon Web site at http://www.infineon.com/rfpower			



Reference Circuit (cont.)

Component Information


Component	Description	Suggested Supplier	P/N
Input			
C101, C102	Chip capacitor, 1 μF	Digi-Key	NFM18PS105R0J3D-ND
C103, C104	Capacitor, 10 μF	Digi-Key	490-4393-2-ND
C105, C106	Capacitor, 18 pF	ATC	800A180JT
C107	Chip capacitor, 1.5 pF	ATC	ATC100A1R5BW150XB
C801	Chip capacitor, 1,000 pF	Digi-Key	PCC1772CT-ND
C802	Capacitor, 1 μF	Digi-Key	490-4736-2-ND
C803, C804	Capacitor, 10 μF	Digi-Key	587-1818-2-ND
L101, L102	Inductor, 22 nH	ATC	0805WL220JT
R101, R102, R803	Resistor, 10 Ω	Digi-Key	P10GTR-ND
R801	Resistor, 100 Ω	Digi-Key	P100GTR-ND
R802	Resistor, 1,300 Ω	Digi-Key	P1.3KGTR-ND
R804	Resistor, 1,200 Ω	Digi-Key	P1.2KGTR-ND
S1	Potentiometer, 2k Ω	Digi-Key	3224W-202ECT-ND
S2	Transistor	Infineon Technologies	BCP56-ND
S3	Voltage Regulator	Digi-Key	LM780L05ACM-ND
		-0	
Output		76	
C201, C202	Capacitor, 220 µF	Digi-Key	PCE4444TR-ND
C203, C204	Capacitor, 18 pF	ATC	800A180JT
C205, C206, C207, C208	Capacitor, 4.7 μF	Digi-Key	490-1864-2-ND
C209, C210, C211, C212	Capacitor, 10 μF	Digi-Key	587-1818-2-ND

Pinout Diagram

Package Outline Specifications

Find the latest and most complete information about products and packaging at the Infineon Internet page http://www.infineon.com/rfpower

Data Sheet 8 of 9 Rev. 03, 2015-10-01

PTFB193408SV V1

Revision History:	2015-10-01	Data Sheet
Previous Version:	2012-11-30, Data Sheet, Rev. 02.1	
Page	Subjects (major changes since last revision)	
All	Not recommended for new design	

We Listen to Your Comments

commended for new design Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to:

(highpowerRF@infineon.com)

To request other information, contact us at: +1 877 465 3667 (1-877-GO-LDMOS) USA or +1 408 776 0600 International

Edition 2015-10-01 Published by Infineon Technologies AG 85579 Neubiberg, Germany © 2012 Infineon Technologies Ac All Rights Reserved.

Legal Disclaimer •

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com/rfpower).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.