: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Thermally-Enhanced High Power RF LDMOS FETs 180 W, 2110 - 2170 MHz

Description

The PTFB211803EL and PTFB211803FL are 180-watt LDMOS FETs intended for use in multi-standard cellular power amplifier applications in the 2110 to 2170 MHz frequency band. Features include input and output matching, high gain and thermally-enhanced packages with slotted or earless flanges. Manufactured with Infineon's advanced LDMOS process, these devices provide excellent thermal performance and superior reliability.

PTFB211803EL
H-33288-6

PTFB211803FL H-34288-4/2

Features

- Broadband internal matching
- Typical two-carrier WCDMA performance at $2170 \mathrm{MHz}, 30 \mathrm{~V}$
-Average output power $=40 \mathrm{~W}$
- Linear Gain $=17.5 \mathrm{~dB}$
- Efficiency = 29.7\%
- Intermodulation distortion $=-34 \mathrm{dBc}$
- Adjacent channel power $=-37 \mathrm{dBc}$
- Typical CW performance, $2170 \mathrm{MHz}, 30 \mathrm{~V}$
- Output power at $\mathrm{P}_{1 \mathrm{~dB}}=180 \mathrm{~W}$
- Efficiency = 55\%
- Increased negative gate-source voltage range for improved performance in Doherty amplifiers
- Integrated ESD protection.
- Capable of handling 10:1 VSWR @ 30 V, 180 W (CW) output power
- Pb-free and RoHS compliant

RF Characteristics

Two-carrier WCDMA Measurements (not subject to production test-verified by design/characterization in Infineon test fixture) $\mathrm{V}_{\mathrm{DD}}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=1.3 \mathrm{~A}, \mathrm{P}_{\text {OUT }}=40 \mathrm{~W}$ average, $f_{1}=2135 \mathrm{MHz}, f_{2}=2145 \mathrm{MHz}, 3 \mathrm{GPP}$ signal, channel bandwidth $=3.84 \mathrm{MHz}$, peak/average $=8 \mathrm{~dB} @ 0.01 \%$ CCDF

Characteristic	Symbol	Min	Typ	Max	Unit
Gain	$G_{p s}$	-	17.5	-	dB
Drain Efficiency	$\eta \mathrm{D}$	-	29.5	-	$\%$
Adjacent Channel Power Ratio	ACPR	-	-38	-	dBc

All published data at $T_{\text {CASE }}=25^{\circ} \mathrm{C}$ unless otherwise indicated
ESD: Electrostatic discharge sensitive device—observe handling precautions!

PTFB211803EL PTFB211803FL

RF Characteristics (cont.)

Two-carrier WCDMA Measurements (tested in Infineon test fixture)
$\mathrm{V}_{\mathrm{DD}}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=1.3 \mathrm{~A}$, POUT $=38 \mathrm{~W}$ average, $f_{1}=2165 \mathrm{MHz}, f_{2}=2170 \mathrm{MHz}, 3 \mathrm{GPP}$ signal, channel bandwidth $=$ 3.84 MHz , peak/average $=7.5 \mathrm{~dB}$ @ 0.01% CCDF

Characteristic	Symbol	Min	Typ	Max	Unit
Gain	G_{ps}	16	17	-	dB
Drain Efficiency	$\eta \mathrm{D}$	28	29.5	-	$\%$
Intermodulation Distortion	IMD	-	-32.5	-31.5	dBc

DC Characteristics

Characteristic	Conditions	Symbol	Min	Typ	Max	Unit
Drain-Source Breakdown Voltage	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=10 \mathrm{~mA}$	$\mathrm{~V}_{(\mathrm{BR}) \mathrm{DSS}}$	65	-	-	V
Drain Leakage Current	$\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	$\mathrm{I}_{\mathrm{DSS}}$	-	-	1.0	$\mu \mathrm{~A}$
Drain Leakage Current	$\mathrm{V}_{\mathrm{DS}}=63 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	$\mathrm{I}_{\mathrm{DSS}}$	-	-	10.0	$\mu \mathrm{~A}$
On-State Resistance	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0.1 \mathrm{~V}$	$\mathrm{R}_{\mathrm{DS}}(\mathrm{on})$	-	0.05	-	Ω
Operating Gate Voltage	$\mathrm{V}_{\mathrm{DS}}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=1.3$	$\mathrm{~V}_{\mathrm{GS}}$	2.3	3.0	3.3	V
Gate Leakage Current	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	$\mathrm{I}_{\mathrm{GSS}}$	-	-	1.0	$\mu \mathrm{~A}$

Maximum Ratings

Parameter	Symbol	Value	Unit
Drain-Source Voltage	$\mathrm{V}_{\mathrm{DSS}}$	65	V
Gate-Source Voltage	V_{GS}	-6 to +10	V
Junction Temperature	T_{J}	200	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {STG }}$	-40 to +150	${ }^{\circ} \mathrm{C}$
Thermal Resistance $\left(\right.$ TCASE $\left.=70^{\circ} \mathrm{C}, 180 \mathrm{~W} \mathrm{CW}\right)$	$\mathrm{R}_{\theta \mathrm{JC}}$	0.3	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Ordering Information

Type and Version	Order Code	Package Description	Shipping
PTFB211803EL V1 R0	PTFB211803ELV1R0XTMA1	H-33288-6, bolt-down	Tape \& Reel, 50pcs
PTFB211803EL V1 R250	PTFB211803ELV1R250XTMA1	H-33288-6, bolt-down	Tape \& Reel, 250 pcs
PTFB211803FL V2 R0	PTFB211803FLV2R0XTMA1	H-34288-4/2, earless flange	Tape \& Reel, 50pcs
PTFB211803FL V2 R250	PTFB211803FLV2R250XTMA1	H-34288-4/2, earless flange	Tape \& Reel, 250 pcs

PTFB211803EL PTFB211803FL

Typical Performance (data taken in a production test fixture)

PTFB211803EL PTFB211803FL

Typical Performance (cont.)

Two-tone Broadband Performance
$V_{D D}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=1.30 \mathrm{~A}, \mathrm{P}_{\text {OUT }}=63 \mathrm{~W}$

Two-tone Drive-up at Selected Frequencies
$\mathrm{V}_{\mathrm{DD}}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=1.30 \mathrm{~A}$, tone spacing $=1 \mathrm{MHz}$

PTFB211803EL PTFB211803FL

Typical Performance (cont.)

PTFB211803EL PTFB211803FL

Broadband Circuit Impedance

Frequency	Z Source Ω		Z Load Ω	
$\mathbf{M H z}$	\mathbf{R}	$\mathbf{j X}$	\mathbf{R}	$\mathbf{j X}$
2200	2.02	-6.03	1.70	-4.67
2170	2.12	-6.26	1.72	-4.76
2140	2.23	-6.50	1.73	-4.85
2110	2.34	-6.75	1.75	-4.95
2080	2.47	-7.01	1.77	-5.05

See next page for reference circuit information

Reference Circuit

Reference circuit input schematic for $f=2170 \mathrm{MHz}$

Reference circuit output schematic for $f=2170 \mathrm{MHz}$

PTFB211803EL PTFB211803FL

Reference Circuit (cont.)

Description

DUT	PTFB211803EL or PTFB211803FL
PCB	$0.508 \mathrm{~mm}[.020 "]$ thick, ε r $=3.66$, Rogers 4350, 1 oz. copper

Electrical Characteristics at $\mathbf{2 1 7 0} \mathbf{~ M H z}$

Transmission Line	Electrical Characteristics	Dimensions: mm	Dimensions: mils
Input			
TL101	$0.053 \lambda, 6.67 \Omega$	$W=13.970, L=4.064$	$W=550, L=160$
TL102, TL103	$0.019 \lambda, 54.17 \Omega$	$\mathrm{W}=1.016, \mathrm{~L}=1.575$	$W=40, L=62$
TL104, TL105	$0.000 \lambda, 36.77 \Omega$	$\mathrm{W}=1.829, \mathrm{~L}=0.025$	$\mathrm{W}=72, \mathrm{~L}=1$
TL106, TL122	$0.026 \lambda, 54.17 \Omega$	$\mathrm{W}=1.016, \mathrm{~L}=2.159$	$W=40, L=85$
TL107	$0.021 \lambda, 54.17 \Omega$	$\mathrm{W}=1.016, \mathrm{~L}=1.727$	$\mathrm{W}=40, \mathrm{~L}=68$
TL108	$0.018 \lambda, 54.17 \Omega$	$\mathrm{W}=1.016, \mathrm{~L}=1.524$	$\mathrm{W}=40, \mathrm{~L}=60$
TL109	$0.029 \lambda, 54.17 \Omega$	$\mathrm{W}=1.016, \mathrm{~L}=2.451$	$\mathrm{W}=40, \mathrm{~L}=97$
TL110	$0.092 \lambda, 63.89 \Omega$	$\mathrm{W}=0.762, \mathrm{~L}=7.831$	$\mathrm{W}=30, \mathrm{~L}=308$
TL111	$0.031 \lambda, 34.72 \Omega$	$\mathrm{W}=1.981, \mathrm{~L}=2.540$	$\mathrm{W}=78, \mathrm{~L}=100$
TL112		$\mathrm{W} 1=1.270, \mathrm{~W} 2=2.286$	$\mathrm{W} 1=50, \mathrm{~W} 2=90$
TL113		$\mathrm{W} 1=17.780, \mathrm{~W} 2=12.700$	$\mathrm{W} 1=700, \mathrm{~W} 2=500$
TL114	$0.012 \lambda, 54.17 \Omega$	$\mathrm{W} 1=1.016, \mathrm{~W} 2=1.270, \mathrm{~W} 3=1.016$	$\mathrm{W} 1=40, \mathrm{~W} 2=50, \mathrm{~W} 3=40$
TL115, TL116, TL126, TL128	$0.019 \lambda, 63.89 \Omega$	$W 1=0.762, W 2=0.762, W 3=1.600$	$\mathrm{W} 1=30, \mathrm{~W} 2=30, \mathrm{~W} 3=63$
TL117, TL118, TL119		$w=1.016$	$\mathrm{W}=40$
TL120		$\begin{aligned} & W T=13.970, W 2=1.016, W 3=13.970 \\ & W 4=1.016 \end{aligned}$	$\begin{aligned} & \mathrm{W} 1=550, \mathrm{~W} 2=40, \mathrm{~W} 3=550 \\ & \mathrm{~W} 4=40 \end{aligned}$
TL121	$0.032 \lambda, 47.12 \Omega$)	$\mathrm{W}=1.270, \mathrm{~L}=2.692$	$\mathrm{W}=50, \mathrm{~L}=106$
TL123	$0.016 \lambda, 31.24 \Omega$	$\mathrm{W}=2.286, \mathrm{~L}=1.270$	$\mathrm{W}=90, \mathrm{~L}=50$
TL124, TL134	$0.095 \lambda, 54.17 \Omega$	$\mathrm{W}=1.016, \mathrm{~L}=8.001$	$\mathrm{W}=40, \mathrm{~L}=315$
TL125, TL127	0.022 $2,54.17 \Omega$	$\mathrm{W} 1=1.016, \mathrm{~W} 2=1.016, \mathrm{~W} 3=1.829$	$\mathrm{W} 1=40, \mathrm{~W} 2=40, \mathrm{~W} 3=72$
TL129	$0.005 \lambda, 6.67 \Omega$	$\mathrm{W}=13.970, \mathrm{~L}=0.356$	$\mathrm{W}=550, \mathrm{~L}=14$
TL130	$0.000 \lambda, 144.35 \Omega$	$\mathrm{W}=0.025, \mathrm{~L}=0.025$	W $=1, \mathrm{~L}=1$
TL131 (taper)	$0.008 \lambda, 6.67 \Omega / 7.64 \Omega$	W1 = 13.970, W2 = 12.065, L=0.584	$\mathrm{W} 1=550, \mathrm{~W} 2=475, \mathrm{~L}=23$
TL132	$0.134 \lambda, 47.12$	$\mathrm{W}=1.270, \mathrm{~L}=11.151$	$\mathrm{W}=50, \mathrm{~L}=439$
TL133	$0.012 \lambda, 54.17$	$\mathrm{W}=1.016, \mathrm{~L}=1.016$	$\mathrm{W}=40, \mathrm{~L}=40$
TL135	$0.012 \lambda, 54.17$	$\mathrm{W}=1.016, \mathrm{~L}=1.021$	$\mathrm{W}=40, \mathrm{~L}=40$
TL136	$0.000 \lambda, 7.64$	$\mathrm{W} 1=12.065, \mathrm{~W} 2=12.065, \mathrm{~W} 3=0.025$	$\mathrm{W} 1=475, \mathrm{~W} 2=475, \mathrm{~W} 3=1$
TL137 (taper)	$0.032 \lambda, 7.64 \Omega / 47.12 \Omega$	$\mathrm{W} 1=12.065, \mathrm{~W} 2=1.270, L=2.464$	$\mathrm{W} 1=475, \mathrm{~W} 2=50, \mathrm{~L}=97$

PTFB211803EL PTFB211803FL

Reference Circuit (cont.)

Electrical Characteristics at 2170 MHz

Transmission Line	Electrical Characteristics	Dimensions: mm	Dimensions: mils
Output			
TL201		$\mathrm{W} 1=1.270, \mathrm{~W} 2=2.540$	$\mathrm{W} 1=50, \mathrm{~W} 2=100$
TL202	$0.001 \lambda, 5.33 \Omega$	$\mathrm{W}=17.780, \mathrm{~L}=0.076$	$W=700, L=3$
TL203	$0.047 \lambda, 47.12 \Omega$	$\mathrm{W}=1.270, \mathrm{~L}=3.912$	$W=50, L_{=}=154$
TL204	$0.044 \lambda, 39.51 \Omega$	$\mathrm{W}=1.651, \mathrm{~L}=3.581$	$W=65, L=141$
TL205	$0.054 \lambda, 4.84 \Omega$	$\mathrm{W}=19.685, \mathrm{~L}=4.064$	$W=775, L=160$
TL206, TL207	$0.016 \lambda, 28.85 \Omega$	$\mathrm{W}=2.540, \mathrm{~L}=1.270$	$W=100, L=50$
TL208	$0.012 \lambda, 39.51 \Omega$	$\mathrm{W}=1.651, \mathrm{~L}=1.016$	$W=65, L=40$
TL209	$0.032 \lambda, 16.90 \Omega$	$\mathrm{W}=4.928, \mathrm{~L}=2.540$	$W=194, L=100$
TL210	$0.032 \lambda, 17.05 \Omega$	$\mathrm{W}=4.877, \mathrm{~L}=2.540$	$W=192, L=100$
TL211, TL212		W = 3.048	W = 120
TL213, TL218	$0.038 \lambda, 25.04 \Omega$	$\mathrm{W} 1=3.048, \mathrm{~W} 2=3.048, \mathrm{~W} 3=3.048$	$\mathrm{W} 1=120, \mathrm{~W} 2=120, \mathrm{~W} 3=120$
TL214, TL216	$0.135 \lambda, 25.04 \Omega$	$\mathrm{W}=3.048, \mathrm{~L}=10.820$	$\mathrm{W}=120, \mathrm{~L}=426$
TL215, TL217	$0.046 \lambda, 25.04 \Omega$	$\mathrm{W}=3.048, \mathrm{~L}=3.683$	$\mathrm{W}=120, \mathrm{~L}=145$
$\begin{aligned} & \text { TL219, TL228, TL233, } \\ & \text { TL234 } \end{aligned}$	$0.003 \lambda, 25.04 \Omega$	$W=3.048, L=0.254$	$\mathrm{W}=120, \mathrm{~L}=10$
TL220, TL229	$0.016 \lambda, 25.04 \Omega$	$\mathrm{W}=3.048, \mathrm{~L}=1.270$	W = 120, L = 50
TL221, TL237	$0.031 \lambda, 25.04 \Omega$	$\mathrm{W} 1=3.048, \mathrm{~W}_{2}=3.048, \mathrm{~W} 3=2.489$	$\mathrm{W} 1=120, \mathrm{~W} 2=120, \mathrm{~W} 3=98$
TL222 (taper)	$0.074 \lambda, 5.33 \Omega / 39.51 \Omega$	$\mathrm{W} 1=17.780, \mathrm{~W} 2=1.651, \mathrm{~L}=5.588$	$\mathrm{W} 1=700, \mathrm{~W} 2=65, \mathrm{~L}=220$
TL223	$0.003 \lambda, 4.84 \Omega$	$W=19.685, L=0.254$	$\mathrm{W}=775, \mathrm{~L}=10$
$\begin{aligned} & \text { TL224, TL225, TL231, } \\ & \text { TL232 } \end{aligned}$	$0.022 \lambda, 25.04 \Omega$	$\mathrm{W} 1=3.048, \mathrm{~W} 2=3.048, \mathrm{~W} 3=1.778$	$\mathrm{W} 1=120, \mathrm{~W} 2=120, \mathrm{~W} 3=70$
TL226 (taper)	$0.010 \lambda, 4.84 \Omega / 5.33 \Omega$	W1 $=19.685, \mathrm{~W} 2=17.780, \mathrm{~L}=0.762$	$\mathrm{W} 1=775, \mathrm{~W} 2=700, \mathrm{~L}=30$
TL227	$0.022 \lambda, 39.51 \Omega$	$\mathrm{W} 1=1.651, \mathrm{~W} 2=1.651, \mathrm{~W} 3=1.829$	$\mathrm{W} 1=65, \mathrm{~W} 2=65, \mathrm{~W} 3=72$
TL230, TL236		$\mathrm{W} 1=4.928, \mathrm{~W} 2=3.048$,	$\mathrm{W} 1=194, \mathrm{~W} 2=120$
TL235	C	$\mathrm{W} 1=1.651, \mathrm{~W} 2=2.540$	$\mathrm{W} 1=65, \mathrm{~W} 2=100$
TL238	\bigcirc	$\mathrm{W} 1=12.700, \mathrm{~W} 2=17.780$	$\mathrm{W} 1=500, \mathrm{~W} 2=700$

PTFB211803EL PTFB211803FL

Reference Circuit (cont.)

Circuit Assembly Information

| Test Fixture Part No. LTN/PTFB211803EF |
| :--- | :--- |
| Find Gerber files for this test fixture on the Infineon Web site at http://www.infineon.com/rfpower |

Reference circuit assembly diagram (not to scale)

PTFB211803EL PTFB211803FL

Reference Circuit (cont.)

Components Information			
Component	Description	Suggested Manufacturer	P/N
Input			
C101, C106, C107	Chip capacitor, 10 pF	ATC	ATC100B100JW500XJ
C102, C105	Chip capacitor, $0.1 \mu \mathrm{~F}$	Digi-Key	PCC104BCT-ND
C103, C104	Chip capacitor, $4.71 \mu \mathrm{~F}$	Digi-Key	493-2372-2-ND
C108	Chip capacitor, 2.1 pF	ATC	ATC100B2R1BW500XB
C801, C802, C803	Capacitor, 1000 pF	Digi-Key	PCG1772CT-ND
R101, R102, R802, R803	Resistor, 10Ω	Digi-Key	P10ECT-ND
R801	Resistor, 1300Ω	Digi-Key	P1.3KGCT-ND
R804	Resistor, 100Ω	Digi-Key	P100ECT-ND
R805	Resistor, 1200Ω	Digi-Key	P1.2KGCT-ND
S1	Transistor	Digi-Key	BCP56-ND
S2	Voltage Regulator	Digi-Key	LM78L05ACM-ND
S4	Potentiometer, $2 \mathrm{k} \Omega$	Digi-Key	3224W-202ECT-ND
Output			
C201	Chip capacitor, 10 pF	ATC	ATC100B100JW500XJ
C202, C210	Capacitor, $10 \mu \mathrm{~F}$	Digi-Key	587-1818-2-ND
C203	Chip capacitor, 0.3 pF	ATC	ATC100B0R3BW500XB
C204, C205	Capacitor, $100 \mu \mathrm{~F}$	Digi-Key	PCE4442TR-ND
C206, C208	Chip capacitor, $2.2 \mu \mathrm{~F}$	Digi-Key	445-1447-2-ND
C207, C209	Chip capacitor, $1 \mu \mathrm{~F}$	Digi-Key	445-1411-2-ND

Package Outline Specifications

Package H-33288-6

1. Interpret dimensions and tolerances per ASME Y14.5M-1994.
2. Primary dimensions are mm . Alternate dimensions are inches.
3. All tolerances ± 0.127 [.005] unless specified otherwise.
4. Pins: $A=$ gate, $B=$ source, $C=$ drain, $D=V_{D D}, E, F=N . C$.
5. Lead thickness: $0.10+0.051 /-0.025 \mathrm{~mm}[.004+0.002 /-0.001$ inch $]$.
6. Gold plating thickness: 0.25 micron [10 microinch] max.

Package Outline Specifications (cont.)

Package H-34288-4/2

Find the latest and most complete information about products and packaging at the Infineon Internet page http://www.infineon.com/rfpower

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: highpowerRF@infineon.com
To request other information, contact us at: +1 8774653667 (1-877-GO-LDMOS) USA or +14087760600 International

Edition 20. 4* 4*. 6
Published by

Infineon Technologies AG

 81726 Munich, Germany© 2009 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com/rfpower).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

