# imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



R90E.pdf

# POSISTOR<sup>®</sup> for Circuit Protection





Innovator in Electronics

Murata Manufacturing Co., Ltd.

Cat.No.R90E-14

## EU RoHS Compliant

- $\cdot$  All the products in this catalog comply with EU RoHS.
- EU RoHS is "the European Directive 2011/65/EU on the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment."
- For more details, please refer to our website 'Murata's Approach for EU RoHS' (http://www.murata.com/info/rohs.html).



ANote • Please read rating and ACAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
 This catalog has only typical specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

# CONTENTS

 $\mbox{POSISTOR}^{\circledast}$  and "POSISTOR" in this catalog are the trademarks of Murata Manufacturing Co., Ltd.

| Part Numbering                                                             | 2  |  |  |
|----------------------------------------------------------------------------|----|--|--|
| Basic Characteristics of POSISTOR®                                         | 5  |  |  |
| Selection Guide                                                            | 7  |  |  |
| Application Matrix                                                         | 8  |  |  |
| Application Notes                                                          | 9  |  |  |
| 1 Overcurrent Protection Chip Type                                         | 13 |  |  |
| Chip Type Specifications and Test Methods                                  | 22 |  |  |
| 2 Overcurrent Protection Narrow Current Band 30V Series                    | 25 |  |  |
| 3 Overcurrent Protection Narrow Current Band 51/60V Series                 | 28 |  |  |
| 4 Overcurrent Protection Narrow Current Band 140V Series                   | 33 |  |  |
| 5 Overcurrent Protection 16V Series                                        | 36 |  |  |
| 6 Overcurrent Protection 24/30/32V Series                                  | 39 |  |  |
| 7 Overcurrent Protection 56/80V Series                                     | 46 |  |  |
| 8 Overcurrent Protection 125/140V Series                                   | 51 |  |  |
| 9 Overcurrent Protection 250/265V Series                                   | 56 |  |  |
| PTGL Series Narrow Current Band Specifications and Test Methods            | 64 |  |  |
| PTGL Series Specifications and Test Methods                                | 66 |  |  |
| 10 Inrush Current Suppression (Less than 100µF)                            | 67 |  |  |
| 11 Inrush Current Suppression for High Capacitance (100µF or more)         | 68 |  |  |
| Inrush Current Suppression Specifications and Test Methods                 | 69 |  |  |
| 12 Overheat Sensing Chip Tight Tolerance Type                              | 70 |  |  |
| 13 Overheat Sensing Chip Type                                              | 71 |  |  |
| Overheat Sensing Chip Type (Related Data)                                  | 72 |  |  |
| Overheat Sensing Chip Tight Tolerance Type (Reference Data)                | 73 |  |  |
| Overheat Sensing Chip Type (Reference Data)                                | 76 |  |  |
| Overheat Sensing Chip Tight Tolerance Type Specifications and Test Methods | 78 |  |  |
| Overheat Sensing Chip Type Specifications and Test Methods                 | 81 |  |  |
| 14 Overheat Sensing Lead Type                                              | 82 |  |  |
| Temperature Sensor Lead Type Specifications and Test Methods               | 86 |  |  |
| Caution/Notice                                                             |    |  |  |
| Chip Type PRG/PRF Series Package                                           | 99 |  |  |
| Lead Type PTGL/PTF Series Package 100                                      |    |  |  |



## Part Numbering

## PTC Thermistors (POSISTOR®) for Overcurrent Protection Chip Type

| (Part Number) | PR | G | 18 | BB | 470 | М | B1 | RB |
|---------------|----|---|----|----|-----|---|----|----|
|               | 0  | 2 | 3  | 4  | 6   | 6 | 0  | 8  |

Product ID

Product ID PR

PTC Thermistors Chip Type

## 2Series

| Code | Series                     |
|------|----------------------------|
| G    | for Overcurrent Protection |

#### 3Dimensions (L×W)

| Code | Dimensions (L×W) | EIA  |
|------|------------------|------|
| 15   | 1.00×0.50mm      | 0402 |
| 18   | 1.60×0.80mm      | 0603 |
| 21   | 2.00×1.25mm      | 0805 |

#### **4**Temperature Characteristics

| Code | Temperature Characteristics |
|------|-----------------------------|
| BB   | Curie Point 100°C           |
| BC   | Curie Point 90°C            |

### BResistance

Expressed by three-digit alphanumerics. The unit is ohm  $(\Omega)$ . The first and second figures are significant digits, and the third figure expresses the number of zeros which follow the two figures. If there is a decimal point, it is expressed by the capital letter "**R**." In this case, all figures are significant digits.

| Ex. | Code | Resistance |
|-----|------|------------|
|     | 4R7  | 4.7Ω       |
|     | 470  | 47Ω        |
|     | 471  | 470Ω       |

#### 6 Resistance Tolerance

| Code | Resistance Tolerance |
|------|----------------------|
| Μ    | ±20%                 |

#### Individual Specifications

| Ex. | Code | Individual Specifications |
|-----|------|---------------------------|
|     | B1   | Structure, others         |

#### 8Packaging

| Code | Packaging                               |
|------|-----------------------------------------|
| RA   | Embossed Taping (4mm Pitch) (4000 pcs.) |
| RB   | Paper Taping (4mm Pitch) (4000 pcs.)    |
| RC   | Paper Taping (2mm Pitch) (10000 pcs.)   |
| RK   | Embossed Taping (4mm Pitch) (3000 pcs.) |



RB

8

## PTC Thermistors (POSISTOR®) for Overheat Sensing Chip Type

| (Part Number) | PR | F | 18 | BB | 471 | Q | B5 |
|---------------|----|---|----|----|-----|---|----|
|               | 0  | 2 | 3  | 4  | 6   | 6 | 7  |

#### Product ID

Product ID

| PR | PTC Thermistors Chip Type |
|----|---------------------------|

#### 2 Series

| -    |                      |
|------|----------------------|
| Code | Series               |
| F    | for Overheat Sensing |

### Object Stress (L×W)

| Code | Dimensions (L×W) | EIA  |
|------|------------------|------|
| 15   | 1.00×0.50mm      | 0402 |
| 18   | 1.60×0.80mm      | 0603 |
| 21   | 2.00×1.25mm      | 0805 |

## **4**Temperature Characteristics

| Code | Temperature Characteristics |
|------|-----------------------------|
| AR   | Curie Point 120°C           |
| AS   | Curie Point 130°C           |
| BA   | Curie Point 110°C           |
| BB   | Curie Point 100°C           |
| BC   | Curie Point 90°C            |
| BD   | Curie Point 80°C            |
| BE   | Curie Point 70°C            |
| BF   | Curie Point 60°C            |
| BG   | Curie Point 50°C            |

#### **5**Resistance

Expressed by three figures. The unit is ohm  $(\Omega)$ . The first and second figures are significant digits, and the third figure expresses the number of zeros which follow the two figures.

| Ex. | Code | Resistance |
|-----|------|------------|
|     | 471  | 470Ω       |

## 6 Resistance Tolerance

| Code | Resistance Tolerance | Sensing Temp. Tolerance |
|------|----------------------|-------------------------|
| Q    | Special Tolerance    | ±5°C                    |
| R    | Special Tolerance    | ±3°C                    |

#### Individual Specifications

| Ex. | Code | Individual Specifications |
|-----|------|---------------------------|
|     | B5   | Structure, others         |

#### 8Packaging

| Code                                           | Packaging                               |  |
|------------------------------------------------|-----------------------------------------|--|
| RA                                             | Embossed Taping (4mm Pitch) (4000 pcs.) |  |
| <b>RB</b> Paper Taping (4mm Pitch) (4000 pcs.) |                                         |  |
| RC                                             | Paper Taping (2mm Pitch) (10000 pcs.)   |  |



## PTC Thermistors (POSISTOR®) for Overcurrent Protection / for Inrush Current Suppression / for Overheat Sensing Lead Type

| (Part Number) | PT | GL | 07 | AR | 220 | М | 3P51 | <b>A</b> 0 |
|---------------|----|----|----|----|-----|---|------|------------|
|               | 0  | 2  | 3  | 4  | 5   | 6 | 7    | 8          |

## Product ID

| Product ID |                 |
|------------|-----------------|
| PT         | PTC Thermistors |

## **2**Series

| Code Series                              |                                                                                         |
|------------------------------------------|-----------------------------------------------------------------------------------------|
| FL for Overheat Sensing Lead Type        |                                                                                         |
| FM for Overheat Sensing with Lug-termina |                                                                                         |
| GL                                       | for Current Control (Over Current Protection ·<br>Inrush Current Suppression) Lead Type |

## Oimensions

| Code | Dimensions                        |
|------|-----------------------------------|
| 04   | Nominal Body Diameter 4mm Series  |
| 05   | Nominal Body Diameter 5mm Series  |
| 07   | Nominal Body Diameter 7mm Series  |
| 09   | Nominal Body Diameter 9mm Series  |
| 10   | Nominal Body Diameter 10mm Series |
| 12   | Nominal Body Diameter 12mm Series |
| 13   | Nominal Body Diameter 13mm Series |
| 14   | Nominal Body Diameter 14mm Series |
| 16   | Nominal Body Diameter 16mm Series |
| 18   | Nominal Body Diameter 18mm Series |
| 20   | Nominal Body Diameter 20mm Series |

## **4**Temperature Characteristics

| Code | Temperature Characteristics |
|------|-----------------------------|
| AR   | Curie Point 120°C           |
| AS   | Curie Point 130°C           |
| BA   | Curie Point 110°C           |
| BB   | Curie Point 100°C           |
| BC   | Curie Point 90°C            |
| BD   | Curie Point 80°C            |
| BE   | Curie Point 70°C            |
| BF   | Curie Point 60°C            |
| BG   | Curie Point 50°C            |
| BH   | Curie Point 40°C            |

## **5**Resistance

Expressed by three-digit alphanumerics. The unit is ohm ( $\Omega$ ). The first and second figures are significant digits, and the third figure expresses the number of zeros which follow the two figures. If there is a decimal point, it is expressed by the capital letter " $\ensuremath{\text{R}}$ ." In this case, all figures are significant digits.

| Ex. | Code | Resistance |
|-----|------|------------|
|     | R22  | 0.22Ω      |
|     | 2R2  | 2.2Ω       |
|     | 220  | 22Ω        |

## 6 Resistance Tolerance

| Code | Resistance Tolerance |
|------|----------------------|
| н    | ±25%                 |
| К    | ±10%                 |
| М    | ±20%                 |
| N    | ±30%                 |
| Q    | Special Tolerance    |

#### Individual Specifications

| Ex. | Code | Individual Specifications |
|-----|------|---------------------------|
|     | 3P51 | Lead Type, others         |

## 8Packaging

| Code       | Packaging |
|------------|-----------|
| <b>A</b> * | Ammo Pack |
| B*         | Bulk      |



## **Basic Characteristics of POSISTOR®**

## Basic Characteristics

 $\mathsf{POSISTOR}^{\texttt{R}}$  has three main characteristics.

Resistance - Temperature Characteristics
 Although there is a negligible difference between the normal and "Curie Point" temperature, POSISTOR<sup>®</sup> shows almost constant resistance-temperature characteristics. Yet they have resistance-temperature characteristics that cause resistance to sharply increase when the temperature exceeds the Curie Point.
 The Curie Point (C.P.) is defined as the temperature at which the resistance value is twice the one at 25°C.



2. Current - Voltage Characteristics (Static Characteristic) This shows the relation between applied voltage when voltage applied to POSISTOR<sup>®</sup> causes balancing of inner heating and outer thermal dissipation and stabilized current. This has both a maximum point of current and constant output power.









## **Basic Characteristics of POSISTOR®**

Technical Terms

## 1. Protective Threshold Current

The maximum current value is called the "Protective Threshold Current" for Voltage vs. Current characteristics (static).

When smaller than the protective threshold current flows in POSISTOR<sup>®</sup>, it reaches its stability (as shown in figure on right) at the intersection (A) of the load curve (a) and voltage-current characteristics of POSISTOR<sup>®</sup>(c). And POSISTOR<sup>®</sup> works as a normal fixed resistor.

However, when larger than protective threshold current flows, it stabilizes at the intersection (B) with the load curve (b).



Protective threshold current varies depending on the ambient temperature, resistance value, temperature characteristics and shape. (see Figure on right) The maximum value of trip current and the minimum value of the hold current are in the range of ambient temperature -10 to +60°C.

That is, when a current is smaller than the hold current, POSISTOR<sup>®</sup> works only as a fixed resistor. When larger than the trip current flows, however, POSISTOR<sup>®</sup> protects the circuit from overload.

## 3. Operating Time

A period starting from the voltage input to the moment current itself sharply attenuates is called "Operating Time." Conventionally, operation time (to) is determined to be the period until inrush current (lo) decreases to a level one half the original inrush current (lo/2).









Selection Guide

Please confirm the parameters according to the following questions. The best selection is the product that matches three parameters.





PTGL12AR100M6C01B0 is the best selection in this case.



ANote • Please read rating and ACAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
• This catalog has only typical specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

## **Application Matrix**

| S                        |                                                | Overcurrer | nt Protection | Overhe    | at Sensing |
|--------------------------|------------------------------------------------|------------|---------------|-----------|------------|
| Application              | Genes                                          | Chip type  | Lead type     | Chip type | Lead type  |
| Application              |                                                | PRG        | PTGL          | PRF       | PTFL, PTFM |
| AV equipment             | Plasma TV                                      | •          | •             |           |            |
|                          | LCD TV                                         |            |               |           |            |
|                          | Projection TV                                  |            |               |           |            |
|                          | CATV                                           | •          |               |           |            |
|                          | STB                                            | •          |               |           |            |
|                          | Video camera                                   |            | •             |           |            |
|                          | Digital camera                                 |            |               |           |            |
|                          | DVD recorder                                   |            |               |           |            |
|                          | Audio                                          |            |               |           |            |
|                          | Audio                                          |            |               |           |            |
|                          | Electric keyboard, Electronic music instrument | •          | •             | •         | •          |
|                          | Digital mobile audio                           | •          |               |           |            |
|                          | MD/CD player                                   | •          |               |           |            |
|                          | TV game                                        | •          | •             |           |            |
|                          | Portable game                                  | •          |               |           |            |
| Information equipment    | Laptop                                         | •          |               |           |            |
|                          | Desktop computer                               | •          |               |           |            |
|                          | Server                                         |            |               |           |            |
|                          | Printer                                        | •          |               |           |            |
|                          | Scanner                                        | •          |               | •         |            |
|                          |                                                |            |               |           |            |
|                          |                                                |            | •             | •         | -          |
|                          |                                                | •          |               |           |            |
|                          |                                                |            |               |           |            |
|                          | CD/DVD-ROM/RAM                                 | •          | -             |           | -          |
|                          | Copy machine                                   | •          |               |           |            |
|                          | Electronic dictionary/databook                 |            |               |           |            |
|                          | Electronic blackboard                          | •          |               |           |            |
| Communications equipment | Electronic automatic exchange                  | •          | •             |           |            |
|                          | Transmission equipment                         |            |               |           |            |
|                          | PBX                                            | •          |               |           |            |
|                          | Cordless telephone                             | -          | •             |           |            |
|                          | Fax machine                                    |            |               |           |            |
|                          | Modem                                          |            |               |           | •          |
|                          | Collular phone                                 |            |               |           |            |
|                          |                                                |            |               |           |            |
|                          | Headset                                        | •          | -             |           |            |
|                          | Cellular phone base station                    | •          |               | •         | •          |
|                          | Intercom                                       | •          |               |           |            |
| Car electronics          | Engine control ECU                             | •          |               |           |            |
|                          | Drive control ECU                              | •          |               |           |            |
|                          | Air bag                                        | •          |               |           |            |
|                          | Anticollision radar                            |            |               |           |            |
|                          | ABS/ESC                                        |            |               |           |            |
|                          | Instrument/display panel, Meter                | •          |               |           |            |
|                          | Bechargeable battery for EV/HEV                | •          |               | •         |            |
|                          | Car air conditioner                            |            |               |           |            |
|                          |                                                |            |               |           |            |
|                          | LED toil light                                 |            |               |           |            |
|                          | LED tail light                                 |            | •             |           |            |
|                          | Detre stable static using u                    |            |               | •         |            |
|                          | Retractable electric mirror                    | •          |               |           |            |
|                          | Door lock, trunk opener                        |            |               |           |            |
|                          | Power seat                                     |            |               |           |            |
|                          | Shock absorber                                 |            | •             |           |            |
|                          | VICS, ETC                                      |            |               |           |            |
|                          | Burglar alarm                                  | •          |               |           |            |
|                          | Car navigation                                 | •          | •             |           |            |
|                          | Car audio                                      | •          |               |           |            |
| Home electronics         | Refrigerator                                   | •          |               |           |            |
| Household equipment      | Microwave, Oven                                |            |               |           |            |
|                          | Electric rice-cooker                           | •          |               |           |            |
|                          |                                                |            |               |           |            |
|                          | Air cooking device                             | •          |               |           |            |
|                          | Air conditioner                                | •          |               |           | -          |
|                          | Fan neater                                     |            | -             |           | •          |
|                          | Cleaner                                        |            |               |           |            |
|                          | Clothes washer, cloth dryer                    |            |               |           |            |
|                          | Ventilator                                     |            |               |           |            |
|                          | Hot-water pot                                  |            |               |           |            |
|                          | Illumination device                            | •          | •             |           |            |
|                          | Massage chair, healthcare equipment            | •          |               |           |            |
|                          | Hot water spray toilet seat                    | -          | -             | •         | •          |
|                          | Electric power tool                            |            |               |           |            |
| Power supply             | Switching supply                               |            |               |           |            |
|                          | Inverter power                                 |            |               |           |            |
|                          |                                                | -          |               |           |            |
|                          | AU adapter, battery charger                    | -          |               |           |            |



## Application Notes

## ■ Inrush Current Limit for Power Supply POSISTOR<sup>®</sup> Lead type: PTGL series

1. Applications

POSISTOR<sup>®</sup> is an integrated solution to work as both current limit resistor and overcurrent fuse. It works as a stable resistor in normal operation and protects itself against overcurrent situations.

- (1) High wattage power supply (flat display panels etc.)
- (2) Power supply for fluorescent lights
- (3) Other switching power supplies

## Replacement idea for a resistor and fuse solution



## 2. Benefits

- (1) Protection against overcurrent situations
- (2) Automatic reset from protective trip mode
- (3) Space-saving
- (4) Various characteristics to meet a suitable resistance value

## 3. Recommended part numbers

Choose an appropriate part number based on the resistance value required to the inrush current limit. Review the maximum voltage.

| Application                              | Part Number        | Max.<br>Voltage<br>(V) | Resistance<br>(at 25 °C)<br>(ohm) | Body<br>Diameter<br>(mm) | Thickness<br>(mm) | Lead<br>Space<br>(mm) | Lead<br>Diameter<br>(mm) | More<br>Details |
|------------------------------------------|--------------------|------------------------|-----------------------------------|--------------------------|-------------------|-----------------------|--------------------------|-----------------|
|                                          | PTGL13AR100H8B72B0 |                        | 10 ±25%                           | 14.0                     | 6.0               | 7.5                   | 0.60                     | page 57         |
| For high                                 | PTGL12AR150H8B72B0 |                        | 15 ±25%                           | 12.5                     | 6.0               | 7.5                   | 0.60                     | page 57         |
| wattage power<br>supply                  | PTGL14AR180M9C01B0 |                        | 18 ±20%                           | 15.7                     | 6.5               | 10.0                  | 0.65                     | page 57         |
|                                          | PTGL09AR250H8B52B0 | 265                    | 25 ±25%                           | 10.0                     | 6.0               | 5.0                   | 0.60                     | page 57         |
|                                          | PTGL09AR390M9C61B0 |                        | 39 ±20%                           | 10.0                     | 6.5               | 6.5                   | 0.65                     | page 56         |
| For power supply                         | PTGL07AR560M9B51A0 |                        | 56 ±20%                           | 8.2                      | 6.5               | 5.0                   | 0.60                     | -               |
| of electronic<br>fluorescent<br>ballasts | PTGL07AR820M9B51A0 |                        | 82 ±20%                           | 8.2                      | 6.5               | 5.0                   | 0.60                     | -               |
|                                          | PTGL07AS121M0N51A0 | 200                    | 120 ±20%                          | 7.8                      | 6.0               | 5.0                   | 0.50                     | page 67         |
|                                          | PTGL07AS181M0N51A0 | 200                    | 180 ±20%                          | 7.8                      | 6.0               | 5.0                   | 0.50                     | page 67         |

Please ask for details.



#### R90E.pdf Mar.4,2014

## **Application Notes**

## ■ Overcurrent Protection for Communication Facility POSISTOR<sup>®</sup> Lead type: PTGL series

1. Applications

POSISTOR<sup>®</sup> is an efficient device to protect a telephone line interface (SLIC: Subscriber-Loop-Interface-Circuit) against AC line contact.

- (1) Landline telephones or FAX machines
- (2) Telephone interface of STB, VoIP equipment
- (3) Any other equipment of communication facility having a phone line interface

Replacement idea for a current fuse.





## 2. Benefits

- (1) Automatic reset from protective trip up to 265V AC line contact
- (2) Compatible with the 600V over voltage test by UL60950
- (3) High resistance to the lighting surge (\*A surge absorber is still required to protect SLIC)

## 3. Recommended part numbers

Choose an appropriate part number based on the hold current and on the resistance value required to the operation current of SLIC.

| Part Number        | Max.<br>Voltage<br>(V) | Max.<br>Current<br>(A) | Hold Current<br>(at +60 °C)<br>(mA) | Trip Current<br>(at -10 °C)<br>(mA) | Resistance<br>(at +25 °C)<br>(ohm) | Body<br>Diameter<br>(mm) | Thickness<br>(mm) | Lead<br>Space<br>(mm) | Lead<br>Diameter<br>(mm) | More<br>Details |
|--------------------|------------------------|------------------------|-------------------------------------|-------------------------------------|------------------------------------|--------------------------|-------------------|-----------------------|--------------------------|-----------------|
| PTGL07BB220N0B52A0 | 250                    | 0.5                    | 90                                  | 300                                 | 22 ±30%                            | 8.0                      | 6.0               | 5.0                   | 0.6                      | page 56         |
| PTGL09AR390N0B52A0 | 250                    | 0.6                    | 100                                 | 280                                 | 39 ±30%                            | 10.0                     | 6.0               | 5.0                   | 0.6                      | page 56         |
| PTGL09AR250H8B52B0 | 265                    | 1.0                    | 118                                 | 330                                 | 25 ±25%                            | 10.0                     | 6.0               | 5.0                   | 0.6                      | page 57         |

Please ask for details.



## Application Notes

## Current Limiter for LED

## Chip POSISTOR®: PRG series

## 1. Applications

POSISTOR<sup>®</sup> is an effective current limit solution based on LED's allowable current and temperature characteristics.

- (1) LED lighting instruments
- (2) LED backlight of flat displays

## See below figures.



## 2. Benefits

- (1) Higher LED brightness versus a fixed resistor. LED can work in the smaller series resistance with POSISTOR<sup>®</sup> at normal operation temperature. The number of LEDs is possibly reduced.
- (2) LED lifetime may be extended due to the current limiting function of the POSISTOR<sup>®</sup> in cases of overheat or overcurrent situation.
- (3) Small 0805 package allows the POSISTOR<sup>®</sup> to be placed close to the LED. It offers accurate detection of ambient temperature near LED and increases flexibility of packaging.

## 3. Recommended part numbers

Choose an appropriate part number having max. voltage and resistance value. Review the protective threshold current range based on the operating current and temperature of the LED.

| Part Number     | Max.<br>Voltage<br>(V) | Max.<br>Current<br>(A) | Hold Current<br>(at +60 °C)<br>(mA) | Trip Current<br>(at -10 °C)<br>(mA) | Resistance<br>(at +25 °C)<br>(ohm) | Curie Point<br>(°C) * | More<br>Details |
|-----------------|------------------------|------------------------|-------------------------------------|-------------------------------------|------------------------------------|-----------------------|-----------------|
| PRG21BC0R6MM1RA | 6                      | 10                     | 285                                 | 1100                                | 0.6 ±20%                           | 90                    | page 14         |
| PRG21BC0R2MM1RA | 6                      | 10                     | 500                                 | 2000                                | 0.2 ±20%                           | 90                    | page 14         |
| PRG21BC1R0MM1RA | 12                     | 10                     | 220                                 | 850                                 | 1.0 ±20%                           | 90                    | page 14         |
| PRG21BC2R2MM1RA | 16                     | 6.5                    | 150                                 | 600                                 | 2.2 ±20%                           | 90                    | page 14         |
| PRG21BC3R3MM1RA | 20                     | 6.0                    | 120                                 | 480                                 | 3.3 ±20%                           | 90                    | page 14         |
| PRG21BC6R8MM1RA | 30                     | 3.5                    | 80                                  | 320                                 | 6.8 ±20%                           | 90                    | page 14         |
| PRG21BC4R7MM1RA | 30                     | 5.0                    | 100                                 | 400                                 | 4.7 ±20%                           | 90                    | page 14         |

\*Curie Point means the temperature at which the resistance value reaches twice the resistance at 25°C. Please ask for details.





## **Application Notes**

## Overheat/Overcurrent Protection for High Brightness LED

Leaded POSISTOR®: PTGL series & Chip POSISTOR®: PRG series

## 1. Applications

POSISTOR<sup>®</sup> is an effective solution to protect the LED against overheat and overcurrent situation.

(1) LED lighting instruments (Appliances, Automotive etc.)



## 2. Benefits

- (1) Posistor installed in series with LED provides both overheat and overcurrent protection
- (2) No additional driver IC or software required

## 3. Recommended part numbers

Choose an appropriate part number having max. voltage and resistance value. Review the protective threshold

- (3) Automatic reset from protective trip mode
- (4) 0603 and 0805 SMD type available (smaller than 1/2W or 1W chip resistor)

current range based on the operating current and temperature of the LED.

| Туре | Part Number        | Max.<br>Voltage<br>(V) | Max.<br>Current<br>(A) | Hold Current<br>(at +60 °C)<br>(mA) | Trip Current<br>(at -10 °C)<br>(mA) | Resistance<br>(at +25 °C)<br>(ohm) | Curie Point<br>(°C) * | More<br>Details |
|------|--------------------|------------------------|------------------------|-------------------------------------|-------------------------------------|------------------------------------|-----------------------|-----------------|
|      | PRG21BC0R6MM1RA    | 6                      | 10                     | 285                                 | 1100                                | 0.6 ±20%                           | 90                    | page 14         |
|      | PRG21BC0R2MM1RA    | 6                      | 10                     | 500                                 | 2000                                | 0.2 ±20%                           | 90                    | page 14         |
| CMD  | PRG21BC1R0MM1RA    | 12                     | 10                     | 220                                 | 850                                 | 1.0 ±20%                           | 90                    | page 14         |
| SMD  | PRG21BC2R2MM1RA    | 16                     | 6.5                    | 150                                 | 600                                 | 2.2 ±20%                           | 90                    | page 14         |
| ijpo | PRG21BC3R3MM1RA    | 20                     | 6.0                    | 120                                 | 480                                 | 3.3 ±20%                           | 90                    | page 14         |
|      | PRG21BC6R8MM1RA    | 30                     | 3.5                    | 80                                  | 320                                 | 6.8 ±20%                           | 90                    | page 14         |
|      | PRG21BC4R7MM1RA    | 30                     | 5.0                    | 100                                 | 400                                 | 4.7 ±20%                           | 90                    | page 14         |
|      | PTGL04AS100K2N51B0 | 30                     | 1.5                    | 122                                 | 240                                 | 10 ±10%                            | 130                   | page 25         |
|      | PTGL04AS100K2B51B0 | 30                     | 2.0                    | 167                                 | 330                                 | 10 ±10%                            | 130                   | page 25         |
|      | PTGL05AS3R9K2B51B0 | 30                     | 3.5                    | 269                                 | 530                                 | 3.9 ±10%                           | 130                   | page 25         |
|      | PTGL07AS2R7K2B51B0 | 30                     | 4.5                    | 336                                 | 663                                 | 2.7 ±10%                           | 130                   | page 25         |
|      | PTGL07AS1R8K2B51B0 | 30                     | 5.0                    | 420                                 | 829                                 | 1.8 ±10%                           | 130                   | page 25         |
|      | PTGL09AS1R2K2B51B0 | 30                     | 6.0                    | 556                                 | 1097                                | 1.2 ±10%                           | 130                   | page 25         |
|      | PTGL12AS0R8K2B51B0 | 30                     | 7.0                    | 685                                 | 1352                                | 0.8 ±10%                           | 130                   | page 25         |
|      | PTGL04AS100K3B51B0 | 51                     | 1.0                    | 168                                 | 332                                 | 10 ±10%                            | 130                   | page 28         |
|      | PTGL05AS6R8K3B51B0 | 51                     | 1.5                    | 197                                 | 388                                 | 6.8 ±10%                           | 130                   | page 28         |
| Lead | PTGL07AS3R3K3B51B0 | 51                     | 3.0                    | 307                                 | 606                                 | 3.3 ±10%                           | 130                   | page 28         |
| type | PTGL09AS2R2K3B51B0 | 51                     | 4.0                    | 412                                 | 814                                 | 2.2 ±10%                           | 130                   | page 28         |
|      | PTGL12AS1R2K3B51B0 | 51                     | 5.0                    | 592                                 | 1168                                | 1.2 ±10%                           | 130                   | page 28         |
|      | PTGL07AR220M3P51B0 | 56                     | 1.0                    | 90                                  | 240                                 | 22 ±20%                            | 120                   | page 46         |
|      | PTGL07AR8R2M3P51B0 | 56                     | 1.0                    | 130                                 | 350                                 | 8.2 ±20%                           | 120                   | page 46         |
|      | PTGL09AR150M3B51B0 | 56                     | 1.2                    | 150                                 | 400                                 | 15 ±20%                            | 120                   | page 46         |
|      | PTGL10AR3R9M3P51B0 | 56                     | 2.0                    | 210                                 | 550                                 | 3.9 ±20%                           | 120                   | page 46         |
|      | PTGL09AR4R7M3B51B0 | 56                     | 2.0                    | 270                                 | 700                                 | 4.7 ±20%                           | 120                   | page 46         |
|      | PTGL10AR3R9M3B51B0 | 56                     | 2.0                    | 300                                 | 800                                 | 3.9 ±20%                           | 120                   | page 46         |
|      | PTGL14AR3R3M3B71B0 | 56                     | 2.5                    | 380                                 | 980                                 | 3.3 ±20%                           | 120                   | page 46         |

\* Curie Point means the temperature at which the resistance value reaches twice the resistance at 25°C. Please ask for details.



R90E.pdf Mar.4,2014

## **POSISTOR**<sup>®</sup> for Circuit Protection

## **Overcurrent Protection Chip Type**

Overcurrent Protection device with resettable function suitable for current limiting resistor.

This product is a chip type PTC thermistor for overcurrent protection that is suitable for the following.

- $\cdot$  Countermeasure for short circuit testing
- · Current limiting resistor

## Features

 Rapid operation to protect the circuit in an overcurrent condition abnormality such as a short circuit.

By removing the overcurrent condition, these products automatically return to the initial condition and can be used repeatedly.

- 2. Suitable for countermeasure to short circuit test in safety standard.
- 3. Stable resistance after operation due to ceramic PTC.
- 4. Similar size (0603 size) is possible due to the large capacity for electric power.
- 5. Possible to use these products as current limiting resistors with overcurrent protection functions
- 6. The SMD type's small size and light weight are helpful in miniaturizing the circuit.

## Chip Type 0402(1005) Size

| Part Number     | Max.<br>Voltage<br>(V) | Hold Current<br>(at +60°C)<br>(mA) | Hold Current<br>(at +25°C)<br>(mA) | Trip Current<br>(at +25°C)<br>(mA) | Trip Current<br>(at -10°C)<br>(mA) | Max.<br>Current<br>(mA) | Resistance<br>(at +25°C)<br>(ohm) |
|-----------------|------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|-------------------------|-----------------------------------|
| PRG15BC330MM1RC | 30                     | 25                                 | 38                                 | 73                                 | 92                                 | 1200                    | 33 ±20%                           |
| PRG15BC220MM1RC | 16                     | 28                                 | 43                                 | 90                                 | 113                                | 1000                    | 22 ±20%                           |
| PRG15BC180MM1RC | 16                     | 31                                 | 47                                 | 98                                 | 125                                | 1200                    | 18 ±20%                           |
| PRG15BC4R7MM1RC | 9                      | 60                                 | 91                                 | 172                                | 216                                | 2500                    | 4.7 ±20%                          |
| PRG15BC3R3MM1RC | 9                      | 71                                 | 110                                | 205                                | 260                                | 3500                    | 3.3 ±20%                          |
| PRG15BC2R2MM1RC | 6                      | 88                                 | 134                                | 252                                | 318                                | 3500                    | 2.2 ±20%                          |

Maximum Current shows typical capacities of the transformer which can be used. This series is applied to reflow soldering.

## This series is applied to renow soldering.

## Chip Type 0603(1608) Size

| Part Number     | Max.<br>Voltage<br>(V) | Hold Current<br>(at +60°C)<br>(mA) | Hold Current<br>(at +25°C)<br>(mA) | Trip Current<br>(at +25°C)<br>(mA) | Trip Current<br>(at -10°C)<br>(mA) | Max.<br>Current<br>(mA) | Resistance<br>(at +25°C)<br>(ohm) |
|-----------------|------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|-------------------------|-----------------------------------|
| PRG18BB471MB1RB | 24                     | 7                                  | 10                                 | 21                                 | 25                                 | 60                      | 470 ±20%                          |
| PRG18BB221MB1RB | 24                     | 10                                 | 14                                 | 29                                 | 35                                 | 130                     | 220 ±20%                          |
| PRG18BB101MB1RB | 24                     | 15                                 | 21                                 | 45                                 | 55                                 | 300                     | 100 ±20%                          |
| PRG18BB470MB1RB | 24                     | 20                                 | 29                                 | 61                                 | 75                                 | 630                     | 47 ±20%                           |
| PRG18BB330MB1RB | 24                     | 25                                 | 36                                 | 71                                 | 85                                 | 900                     | 33 ±20%                           |
| PRG18BC6R8MM1RB | 20                     | 80                                 | 120                                | 260                                | 320                                | 3500                    | 6.8 ±20%                          |
| PRG18BC4R7MM1RB | 20                     | 100                                | 155                                | 330                                | 400                                | 5000                    | 4.7 ±20%                          |



| •        |
|----------|
| ⊢        |
| <u>+</u> |
| -        |
|          |

muRata

| Port Number |          | Dimensions (mm) |          |              |          |  |  |  |  |  |
|-------------|----------|-----------------|----------|--------------|----------|--|--|--|--|--|
| Fait Number | L        | W               | Т        | е            | g        |  |  |  |  |  |
| PRG15_RC    | 1.0±0.05 | 0.5±0.05        | 0.5±0.05 | 0.15 to 0.35 | -        |  |  |  |  |  |
| PRG18_RB    | 1.6±0.15 | 0.8±0.15        | 0.8±0.15 | 0.1 to 0.6   | -        |  |  |  |  |  |
| PRG21_RA    | 2.0±0.2  | 1.25±0.2        | 0.9±0.2  | 0.2 min.     | 0.5 min. |  |  |  |  |  |
| PRG21_RK    | 2.0±0.2  | 1.25±0.2        | 1.25±0.2 | 0.2 min.     | 0.5 min. |  |  |  |  |  |
|             |          |                 |          |              |          |  |  |  |  |  |



1

| Part Number     | Max.<br>Voltage<br>(V) | Hold Current<br>(at +60°C)<br>(mA) | Hold Current<br>(at +25°C)<br>(mA) | Trip Current<br>(at +25°C)<br>(mA) | Trip Current<br>(at -10°C)<br>(mA) | Max.<br>Current<br>(mA) | Resistance<br>(at +25°C)<br>(ohm) |
|-----------------|------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|-------------------------|-----------------------------------|
| PRG18BC3R3MM1RB | 16                     | 120                                | 180                                | 400                                | 480                                | 6000                    | 3.3 ±20%                          |
| PRG18BC2R2MM1RB | 12                     | 150                                | 220                                | 500                                | 600                                | 6500                    | 2.2 ±20%                          |
| PRG18BC1R0MM1RB | 6                      | 220                                | 330                                | 740                                | 850                                | 7500                    | 1.0 ±20%                          |

Maximum Current shows typical capacities of the transformer which can be used.

This series is applied to reflow soldering.

This series is recognized by UL.

## Chip Type 0805(2012) Size

| Part Number     | Max.<br>Voltage<br>(V) | Hold Current<br>(at +60°C)<br>(mA) | Hold Current<br>(at +25°C)<br>(mA) | Trip Current<br>(at +25°C)<br>(mA) | Trip Current<br>(at -10°C)<br>(mA) | Max.<br>Current<br>(mA) | Resistance<br>(at +25°C)<br>(ohm) |
|-----------------|------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|-------------------------|-----------------------------------|
| PRG21BB220MB1RK | 20                     | 30                                 | 44                                 | 91                                 | 110                                | 1100                    | 22 ±20%                           |
| PRG21BB150MB1RK | 20                     | 40                                 | 59                                 | 116                                | 140                                | 1600                    | 15 ±20%                           |
| PRG21BC6R8MM1RA | 30                     | 80                                 | 120                                | 260                                | 320                                | 5500                    | 6.8 ±20%                          |
| PRG21BC4R7MM1RA | 30                     | 100                                | 155                                | 330                                | 400                                | 8000                    | 4.7 ±20%                          |
| PRG21BC3R3MM1RA | 20                     | 120                                | 180                                | 400                                | 480                                | 6000                    | 3.3 ±20%                          |
| PRG21BC2R2MM1RA | 16                     | 150                                | 220                                | 500                                | 600                                | 6500                    | 2.2 ±20%                          |
| PRG21BC1R0MM1RA | 12                     | 220                                | 330                                | 740                                | 850                                | 10000                   | 1.0 ±20%                          |
| PRG21BC0R6MM1RA | 6                      | 285                                | 420                                | 920                                | 1100                               | 10000                   | 0.6 ±20%                          |
| PRG21BC0R2MM1RA | 6                      | 500                                | 750                                | 1620                               | 2000                               | 10000                   | 0.2 ±20%                          |

Maximum Current shows typical capacities of the transformer which can be used.

This series is applied to reflow soldering.

This series is recognized by UL.

## Standard Land Pattern Dimensions



## Protective Threshold Current Range PRG15BC330MM1RC



## PRG15BC220MM1RC





Continued from the preceding page.





PRG15BC3R3MM1RC



PRG18BB471MB1RB



## PRG18BB101MB1RB







PRG15BC2R2MM1RC



PRG18BB221MB1RB



PRG18BB470MB1RB





Continued from the preceding page.

## Protective Threshold Current Range



#### PRG18/21BC4R7M Type



#### PRG18/21BC2R2M Type



## PRG21BB220MB1RK



PRG18/21BC6R8M Type



#### PRG18/21BC3R3M Type



PRG18/21BC1R0M Type



### PRG21BB150MB1RK



Continued on the following page.

1



Note
 Please read rating and 
 CAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
 This catalog has only typical specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

Continued from the preceding page.





Operating Time (Typical Curve)
PRG15BC330MM1RC



### PRG15BC180MM1RC



### PRG15BC3R3MM1RC







PRG15BC220MM1RC



## PRG15BC4R7MM1RC



#### PRG15BC2R2MM1RC





Continued from the preceding page.



1



### PRG18BB101MB1RB



PRG18BB330MB1RB



PRG18BB221MB1RB



PRG18BB470MB1RB



#### PRG18BC6R8MM1RB





1

Continued from the preceding page.





PRG18BC2R2MM1RB



PRG21BB220MB1RK





PRG18BC1R0MM1RB









Continued from the preceding page.

1

## Operating Time (Typical Curve) PRG21BC6R8MM1RA



## PRG21BC3R3MM1RA



PRG21BC1R0MM1RA







PRG21BC2R2MM1RA









Continued from the preceding page.







## **Chip Type Specifications and Test Methods**

## PRG15 Series

1

| No. | Item                         | Rating Value                                                                                                    | Method of Examination                                                                                                                                                                                                                                                                                      |  |  |
|-----|------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1   | Operating Temp. Range        | -10 to +60°C                                                                                                    | Temperature range that permit to apply max. voltage to the Posistor <sup>®</sup> .                                                                                                                                                                                                                         |  |  |
| 2   | Resistance Value at 25°C     | Within the specified range                                                                                      | It is measured by below flow.<br>1) Applied max. voltage for 3 min.<br>2) Storage 2 hrs in room temperature<br>3) Measured by four-terminal method<br>with less than 1mA (DC0.1V).                                                                                                                         |  |  |
| 3   | Withstanding Voltage         | Without damage                                                                                                  | The voltage which rises gradually to 120% of the max. voltage applies to the Posistor <sup>®</sup> for 180±5 sec. at 25°C. (A protective resistor is to be connected in series, and the inrush current through Posistor <sup>®</sup> must be limited below max. rated value.)                              |  |  |
| 4   | Vibration                    | <ul> <li>Resistance (R25) change: Less than ±20% *1</li> <li>Appearance: No defects or abnormalities</li> </ul> | Reference standard: IEC 60068-2-6 (1995)<br>• Soldered PTC to PCB *2<br>• Frequency range: 10 to 55Hz<br>• Amplitude: 1.5mm<br>• Sweep rate: 1 octave/min.<br>• Direction: X-Y-Z (3 direction)<br>• 24 cycles in each axis                                                                                 |  |  |
| 5   | Solderability                | Wetting of soldering area: ≧75%                                                                                 | Reference standard: IEC 60068-2-58 (2004)<br>• Solder: Sn-3.0Ag-0.5Cu<br>• Solder temp.: 245±5°C<br>• Immersion time: 3±0.3 s                                                                                                                                                                              |  |  |
| 6   | Resistance to Soldering Heat |                                                                                                                 | Reference standard: IEC 60068-2-58 (2004)<br>[Reflow method]<br>• Solder: Sn-3.0Ag-0.5Cu<br>• Preheat: +150 to +180°C, 120±5 s<br>• Peak temp.: 260±5°C<br>• Soldering time: >220°C, 60 to 90 s<br>• Reflow cycle: 1 time<br>• Test board: Grass-Epoxy test board (FR-4) with our standard<br>land size *2 |  |  |
| 7   | High Temperature Storage     |                                                                                                                 | Reference standard: IEC 60068-2-2 (2007)<br>• Soldered PTC to PCB *2<br>• +60±2°C<br>• 1000+48/-0 hrs.                                                                                                                                                                                                     |  |  |
| 8   | Low Temperature Storage      |                                                                                                                 | Reference standard: IEC 60068-2-1 (2007)<br>• Soldered PTC to PCB *2<br>• -10±3°C<br>• 1000+48/-0 hrs                                                                                                                                                                                                      |  |  |
| 9   | Damp Heat, Steady State      | <ul> <li>Resistance (R25) change: Less than ±20% *1</li> <li>Appearance: No defects or abnormalities</li> </ul> | Reference standard: IEC 60068-2-67 (1995)<br>• Soldered PTC to PCB *2<br>• +40±2°C, 90±5%RH<br>• 500+24/-0 hrs                                                                                                                                                                                             |  |  |
| 10  | Thermal Shock *3             |                                                                                                                 | Reference standard: IEC 60068-2-14 (2009)[Test Na]• Soldered PTC to PCB *2• Transport time: <10 sec.• Test condition: See below table $\boxed{\frac{\text{Step Condition (°C) Time (min.)}}{2} + 85 \pm 3} = 30}$ • Test cycle: 5 cycles                                                                   |  |  |
| 11  | High Temperature Load        |                                                                                                                 | Reference standard: IEC 60068-2-2 (2007)<br>• Soldered PTC to PCB *2<br>• +60±2°C<br>• Applied max. voltage<br>• 1000+48/-0 hrs.                                                                                                                                                                           |  |  |

\*1: The resistance value after the test is measured by 4-terminal method with less than 10mA (DC0.1V), after storage in 25±2°C for 2 hrs.

\*2: Above mentioned soldering is done following condition at our side.

Glass-Epoxy PC board
 Standard land dimension

Standard solder paste
 Standard solder profile

Above conditions are mentioned in Notice.

\*3: We cannot guarantee the resistance change in Thermal Shock in case of defective mounting.

(Note)

No.11 High Temperature Load is based on Glass-Epoxy PC board which thermal dissipation coefficient of a mounting state is 2.2mW/°C. In other condition of 2.2mW/°C, High Temperature Load characteristics may change.



## Chip Type Specifications and Test Methods

## PRG18/21BB Series

| No. | Item                         | Rating Value                                                                                                     | Metheod of Examination                                                                                                                                                                                                                                                                                                                           |  |  |  |
|-----|------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 1   | Operating Temp.              | -10 to 60°C                                                                                                      | Temperature range with maximum voltage applied to PTC.                                                                                                                                                                                                                                                                                           |  |  |  |
| 2   | Resistance Value at 25°C     | Within the specified range                                                                                       | After applying maximum operating voltage for 3 mins. and leaving for 2 hours in 25°C, measured by applying voltage less than DC1.5V. (by a direct current less than 10mA)                                                                                                                                                                        |  |  |  |
| 3   | Withstanding Voltage         | Without damage                                                                                                   | We apply 120% of the maximum operating voltage to PTC by raising gradually for 180±5 secs. at 25°C. (A protective resistor is to be connected in series, and the inrush current through PTC must be limited below maximum rated value.)                                                                                                          |  |  |  |
| 4   | Adhesive Strength            | There is no sign of exfoliation on electrode.                                                                    | Reference standard: IEC 60068-2-21 (2006)<br>· Soldered PTC to PCB (**)<br>· Force: 5.0N<br>· Test time: 10 sec.                                                                                                                                                                                                                                 |  |  |  |
| 5   | Vibration                    | <ul> <li>Appearance: No defects or abnormalities</li> <li>Resistance (R25) change: Less than ±20% (*)</li> </ul> | Reference standard: IEC 60068-2-6 (2007)<br>· Soldered PTC to PCB (**)<br>· Frequency range: 10 to 55Hz<br>· Amplitude: 1.5mm<br>· Sweep rate: 1 octave/min.<br>· Direction: X-Y-Z (3 direction)<br>· 24 cycles in each axis                                                                                                                     |  |  |  |
| 6   | Solderability                | Wetting of soldering area: ≧75%                                                                                  | Reference standard: IEC 60068-2-58 (2004)<br>· Solder: Sn-3.0Ag-0.5Cu<br>· Solder temp.: 245±5°C<br>· Immersion time: 3±0.3s                                                                                                                                                                                                                     |  |  |  |
| 7   | Resistance to Soldering Heat | <ul> <li>Appearance: No defects or abnormalities</li> <li>Resistance (R25) change: Less than ±20% (*)</li> </ul> | Reference standard: IEC 60068-2-58 (2004)         [Reflow method]         · Solder: Sn-3.0Ag-0.5Cu         · Preheat: +150 to +180°C, 120+/-5s         · Peak temp: 260+/-5°C         · Soldering time: ≥220°C, 60 to 90s         · Reflow cycle: 1 time         · Test board: Grass-Epoxy test board (FR-4)         with our standard land size |  |  |  |
| 8   | High Temperature Storage     |                                                                                                                  | Reference standard: IEC 60068-2-2 (2007)<br>· Soldered PTC to PCB (**)<br>· +60±2°C<br>· 1000+48/-0 hrs.                                                                                                                                                                                                                                         |  |  |  |
| 9   | Low Temperature Storage      |                                                                                                                  | Reference standard: IEC 60068-2-1 (2007)<br>· Soldered PTC to PCB (**)<br>· -10±3°C<br>· 1000+48/-0 hrs                                                                                                                                                                                                                                          |  |  |  |
| 10  | Damp Heat, Steady State      |                                                                                                                  | Reference standard: IEC 60068-2-67 (1995)<br>· Soldered PTC to PCB (**)<br>· +40±2°C, 90±5%RH<br>· 500+24/-0 hrs                                                                                                                                                                                                                                 |  |  |  |
| 11  | Thermal Shock                | <ul> <li>Appearance: No defects or abnormalities</li> <li>Resistance (R25) change: Less than ±20% (*)</li> </ul> | Reference standard: IEC 60068-2-14 (2009)       [ Test Na ]       · Soldered PTC to PCB (**)       · Transport time: <10 sec.       · Test condition: See below table       Step     Condition                                                                                                                                                   |  |  |  |
|     |                              |                                                                                                                  | 1         -20±3°C         30min.           2         +85±2°C         30min.                                                                                                                                                                                                                                                                      |  |  |  |
| 12  | High Temperature Load        |                                                                                                                  | Reference standard: IEC 60068-2-2 (2007)       · Soldered PTC to PCB (**)       · +60±2°C       · Applied voltage: See below table         Step     Voltage                                                                                                                                                                                      |  |  |  |
|     |                              |                                                                                                                  | 1         Max. voltage         1.5hrs.           2         OFF         0.5hrs.           · 500+24/-0 hrs.                                                                                                                                                                                                                                        |  |  |  |

\*: The resistance value after the test. It is measured by applying voltage less than DC1.5V (by a direct current less than 10mA) after left at 25±2°C for 2hrs. \*\*: Above mentioned soldering is done under the following conditions at our side.

· Glass-Epoxy PC board · Standard solder paste

· Standard land dimension · Standard solder profile

Above conditions are mentioned in Notice.

