

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

PTN3361C

Enhanced performance HDMI/DVI level shifter with active DDC buffer, supporting 1.65 Gbit/s operation

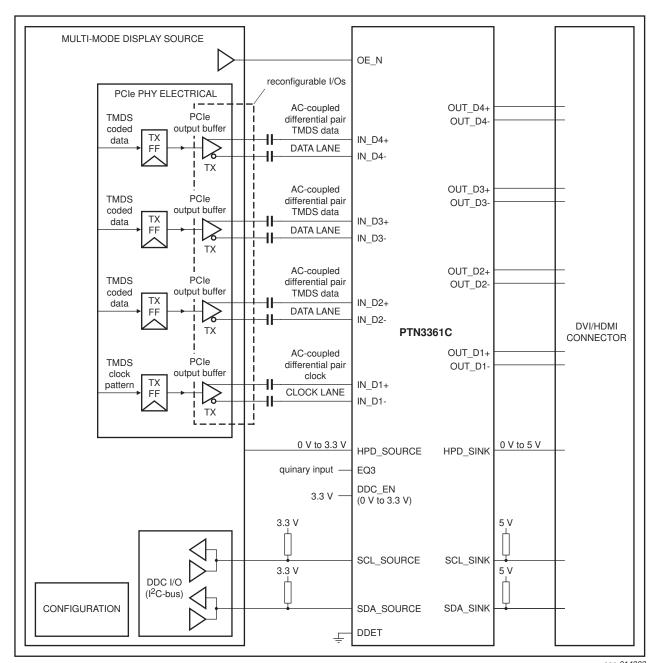
Rev. 1.1 — 28 July 2015

Product data sheet

1. General description

PTN3361C is a high-speed level shifter device which converts four lanes of low-swing AC-coupled differential input signals to DVI v1.0 and HDMI v1.4b compliant open-drain current-steering differential output signals, up to 1.65 Gbit/s per lane to support 1080p applications. Each of these lanes provides a level-shifting differential buffer to translate from low-swing AC-coupled differential signaling on the source side, to TMDS-type DC-coupled differential current-mode signaling terminated into 50 Ω to 3.3 V on the sink side. Additionally, PTN3361C provides a single-ended active buffer for voltage translation of the HPD signal from 5 V on the sink side to 3.3 V on the source side and provides a channel with active buffering and level shifting of the DDC channel (consisting of a clock and a data line) between 3.3 V source-side and 5 V sink-side. The DDC channel is implemented using active $\rm l^2C$ -bus buffer technology providing capacitive isolation, redriving and level shifting as well as disablement (isolation between source and sink) of the clock and data lines.

The low-swing AC-coupled differential input signals to PTN3361C typically come from a display source with multi-mode I/O, which supports multiple display standards, for example, DisplayPort, HDMI and DVI. While the input differential signals are configured to carry DVI or HDMI coded data, they do not comply with the electrical requirements of the DVI v1.0 or HDMI v1.4b specification. By using PTN3361C, chip set vendors are able to implement such reconfigurable I/Os on multi-mode display source devices, allowing the support of multiple display standards while keeping the number of chip set I/O pins low. See Figure 1.


PTN3361C features low-swing self-biasing differential inputs which are compliant to the electrical specifications of *DisplayPort Standard v1.2* and/or *PCI Express Standard v1.1*, and open-drain current-steering differential outputs compliant to DVI v1.0 and HDMI v1.4b electrical specifications. The I²C-bus channel actively buffers as well as level-translates the DDC signals for optimal capacitive isolation. PTN3361C also supports power-saving modes in order to minimize current consumption when no display is active or connected.

PTN3361C can be used for either HDMI or DVI level shifting. It provides additional features supporting HDMI dongle detection; since support of HDMI dongle detection via the DDC channel is mandatory, the system applications shall enable this feature for correct operation.

PTN3361C is powered from a single 3.3 V power supply and is offered in a 32-terminal HVQFN32 package.

HDMI/DVI level shifter supporting 1.65 Gbit/s operation

aaa-014383

Remark: TMDS clock and data lanes can be assigned arbitrarily and interchangeably to D[4:1].

Fig 1. Typical application system diagram

HDMI/DVI level shifter supporting 1.65 Gbit/s operation

2. Features and benefits

2.1 High-speed TMDS level shifting

- Converts four lanes of low-swing AC-coupled differential input signals to DVI v1.0 and HDMI v1.4b compliant open-drain current-steering differential output signals
- TMDS level shifting operation up to 1.65 Gbit/s per lane
- Programmable equalizer
- Integrated 50 Ω termination resistors for self-biasing differential inputs
- Back-current safe outputs to disallow current when device power is off and monitor is on
- Disable feature to turn off TMDS inputs and outputs and to enter low-power state

2.2 DDC level shifting

- Integrated DDC buffering and level shifting (3.3 V source to 5 V sink side)
- Rise time accelerator on sink-side DDC ports
- 0 Hz to 400 kHz I²C-bus clock frequency
- Back-power safe sink-side terminals to disallow backdrive current when power is off or when DDC is not enabled

2.3 HPD level shifting

- HPD non-inverting level shift from 0 V on the sink side to 0 V on the source side, or from 5 V on the sink side to 3.3 V on the source side
- Integrated 200 $k\Omega$ pull-down resistor on HPD sink input guarantees 'input LOW' when no display is plugged in
- Back-power safe design on HPD SINK to disallow backdrive current when power is off

2.4 HDMI dongle detect support

- Incorporates I2C slave ROM
- Responds to DDC read to address 81h with predetermined byte sequence
- Feature enabled by DDET pin (must be enabled for correct system operation using HDMI dongle)

2.5 General

- Power supply 3.0 V to 3.6 V
- ESD resilience to 6 kV HBM, 1 kV CDM
- Power-saving modes (using output enable)
- Back-current-safe design on all sink-side main link, DDC and HPD terminals
- Transparent operation: no re-timing or software configuration required
- 32-terminal HVQFN32 package

HDMI/DVI level shifter supporting 1.65 Gbit/s operation

3. Applications

- PC motherboard/graphics card
- Docking station
- DisplayPort to HDMI dongles/adapters supporting deep color video formats (must enable DDET)
- DisplayPort to DVI dongles/adapters required to drive long cables

4. Ordering information

Table 1. Ordering information

Type number	Topside mark	Package		
		Name	Description	Version
PTN3361CBS	3361C	HVQFN32	plastic thermal enhanced very thin quad flat package; no leads; 32 terminals; body 5 x 5 x 0.85 mm	SOT617-3

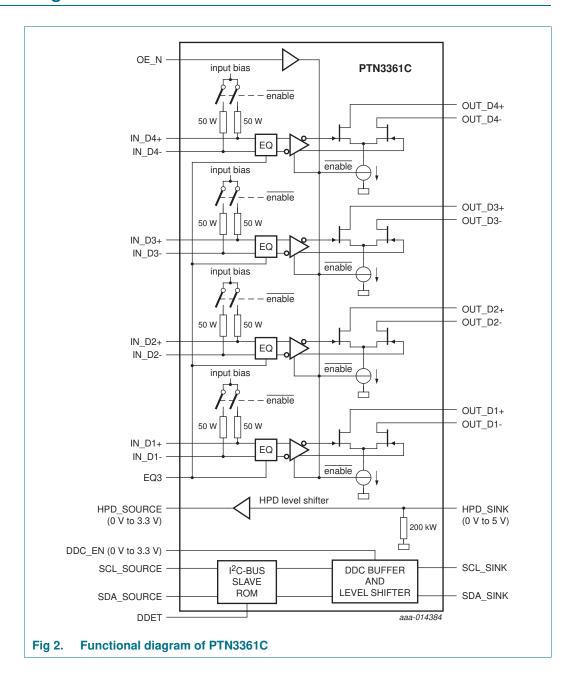
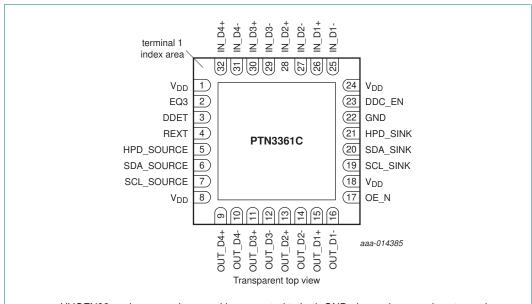

4.1 Ordering options

Table 2. Ordering options

Type number	Orderable part number	Package	Packing method	Minimum order quantity	Temperature range
PTN3361CBS	PTN3361CBSMP	HVQFN32	Reel 13" Q2/T3 *standard mark SMD dry pack	6000	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}$

HDMI/DVI level shifter supporting 1.65 Gbit/s operation


5. Functional diagram

HDMI/DVI level shifter supporting 1.65 Gbit/s operation

6. Pinning information

6.1 Pinning

HVQFN32 package supply ground is connected to both GND pins and exposed center pad. GND pins and the exposed center pad must be connected to supply ground for proper device operation. For enhanced thermal, electrical, and board level performance, the exposed pad needs to be soldered to the board using a corresponding thermal pad on the board and for proper heat conduction through the board, thermal vias need to be incorporated in the PCB in the thermal pad region.

Fig 3. Pin configuration for HVQFN32

6.2 Pin description

Table 3. Pin description

Symbol	Pin	Туре	Description
OE_N, IN_Dx ar	nd OUT_	Ox signals	
OE_N	17	3.3 V low-voltage CMOS single-ended input	Output Enable and power saving function for high-speed differential level shifter path. When OE_N = HIGH:
			IN_Dx termination = high-impedance OUT_Dx outputs = high-impedance; zero output current When OE_N = LOW: IN_Dx termination = 50 Ω OUT_Dx outputs = active
IN_D4+	32	Self-biasing differential input	Low-swing differential input from display source with PCI Express electrical signaling. IN_D4+ makes a differential pair with IN_D4 The input to this pin must be AC coupled externally.

HDMI/DVI level shifter supporting 1.65 Gbit/s operation

 Table 3.
 Pin description ...continued

Symbol	Pin	Туре	Description					
IN_D4-	31	Self-biasing differential input	Low-swing differential input from display source with PCI Express electrical signaling. IN_D4- makes a differential pair with IN_D4+. The input to this pin must be AC coupled externally.					
IN_D3+	30	Self-biasing differential input	Low-swing differential input from display source with PCI Express electrical signaling. IN_D3+ makes a differential pair with IN_D3 The input to this pin must be AC coupled externally.					
IN_D3-	29	Self-biasing differential input	Low-swing differential input from display source with PCI Express electrical signaling. IN_D3- makes a differential pair with IN_D3+. The input to this pin must be AC coupled externally.					
IN_D2+	28	Self-biasing differential input	Low-swing differential input from display source with PCI Express electrical signaling. IN_D2+ makes a differential pair with IN_D2 The input to this pin must be AC coupled externally.					
IN_D2-	27	Self-biasing differential input	Low-swing differential input from display source with PCI Express electrical signaling. IN_D2- makes a differential pair with IN_D2+. The input to this pin must be AC coupled externally.					
IN_D1+	26	Self-biasing differential input	Low-swing differential input from display source with PCI Express electrical signaling. IN_D1+ makes a differential pair with IN_D1 The input to this pin must be AC coupled externally.					
IN_D1-	25	Self-biasing differential input	Low-swing differential input from display source with PCI Express electrical signaling. IN_D1- makes a differential pair with IN_D1+. The input to this pin must be AC coupled externally.					
OUT_D4+	9	TMDS differential output	HDMI compliant TMDS output. OUT_D4+ makes a differential pair with OUT_D4 OUT_D4+ is in phase with IN_D4+.					
OUT_D4-	10	TMDS differential output	HDMI compliant TMDS output. OUT_D4- makes a differential pair with OUT_D4+. OUT_D4- is in phase with IN_D4					
OUT_D3+	11	TMDS differential output	HDMI compliant TMDS output. OUT_D3+ makes a differential pair with OUT_D3 OUT_D3+ is in phase with IN_D3+.					
OUT_D3-	12	TMDS differential output	HDMI compliant TMDS output. OUT_D3- makes a differential pair with OUT_D3+. OUT_D3- is in phase with IN_D3					
OUT_D2+	13	TMDS differential output	HDMI compliant TMDS output. OUT_D2+ makes a differential pair with OUT_D2 OUT_D2+ is in phase with IN_D2+.					

HDMI/DVI level shifter supporting 1.65 Gbit/s operation

 Table 3.
 Pin description ...continued

Symbol	Pin	Туре	Description
OUT_D2-	14	TMDS differential output	HDMI compliant TMDS output. OUT_D2- makes a differential pair with OUT_D2+. OUT_D2- is in phase with IN_D2
OUT_D1+	15	TMDS differential output	HDMI compliant TMDS output. OUT_D1+ makes a differential pair with OUT_D1 OUT_D1+ is in phase with IN_D1+.
OUT_D1-	16	TMDS differential output	HDMI compliant TMDS output. OUT_D1- makes a differential pair with OUT_D1+. OUT_D1- is in phase with IN_D1
HPD and DDC s	ignals		
HPD_SINK	21	5 V CMOS single-ended input	0 V to 5 V (nominal) input signal. This signal comes from the DVI or HDMI sink. A HIGH value indicates that the sink is connected; a LOW value indicates that the sink is disconnected. HPD_SINK is pulled down by an integrated 200 $k\Omega$ pull-down resistor.
HPD_SOURCE	5	3.3 V CMOS single-ended output	0 V to 3.3 V (nominal) output signal. This is level-shifted version of the HPD_SINK signal.
SCL_SOURCE	7	single-ended 3.3 V open-drain DDC I/O	3.3 V source-side DDC clock I/O. Pulled up by external termination to 3.3 V. 5 V tolerant I/O.
SDA_SOURCE	6	single-ended 3.3 V open-drain DDC I/O	3.3 V source-side DDC data I/O. Pulled up by external termination to 3.3 V. 5 V tolerant I/O.
SCL_SINK	19	single-ended 5 V open-drain DDC I/O	5 V sink-side DDC clock I/O. Pulled up by external termination to 5 V. Provides rise time acceleration for LOW-to-HIGH transitions.
SDA_SINK	20	single-ended 5 V open-drain DDC I/O	5 V sink-side DDC data I/O. Pulled up by external termination to 5 V. Provides rise time acceleration for LOW-to-HIGH transitions.
DDC_EN	23	3.3 V CMOS input	Enables the DDC buffer and level shifter. When DDC_EN = LOW, buffer/level shifter is disabled. When DDC_EN = HIGH, buffer and level shifter are enabled.
DDET	3	3.3 V input	Dongle detect enable input. When HIGH, the dongle detect function via I2C is active. When used in an HDMI dongle, this pin must be tied HIGH for correct operation.
			When used in a DVI dongle, this pin must be tied LOW. When LOW, the dongle detect function will not respond to an I2C-bus command.
			This pin must be tied to GND or V_{DD} either directly or via a resistor.
			Note that this pin may not be left open.
Supply and gro			
V_{DD}	1, 8, 18, 24	3.3 V DC supply	Supply voltage; 3.3 V \pm 10 %.
GND[1]	22	ground	Supply ground. All GND pins must be connected to ground for proper operation.

HDMI/DVI level shifter supporting 1.65 Gbit/s operation

 Table 3.
 Pin description ...continued

Symbol	Pin	Туре	Description
Feature control	signals		
REXT	4	analog I/O	Current sense port used to provide an accurate current reference for the differential outputs OUT_Dx. For best output voltage swing accuracy, use of a 10 k Ω resistor (1 % tolerance) from this terminal to GND is recommended. May also be tied to either V_DD or GND directly (0 Ω). See Section 7.2 for details.
EQ3	2	3.3 V low-voltage CMOS input	Equalizer setting input pin. This pin can be board-strapped to one of three decode values: short to GND, resistor to GND and open-circuit. See Table 5 for truth table.

^[1] HVQFN32 package supply ground is connected to both GND pins and exposed center pad. GND pins and the exposed center pad must be connected to supply ground for proper device operation. For enhanced thermal, electrical, and board level performance, the exposed pad needs to be soldered to the board using a corresponding thermal pad on the board and for proper heat conduction through the board, thermal vias need to be incorporated in the PCB in the thermal pad region.

HDMI/DVI level shifter supporting 1.65 Gbit/s operation

7. Functional description

Refer to Figure 2 "Functional diagram of PTN3361C".

PTN3361C level shifts four lanes of low-swing AC-coupled differential input signals to DVI and HDMI compliant open-drain current-steering differential output signals, up to 1.65 Gbit/s per lane to support 1080p applications. It has integrated 50 Ω termination resistors for AC-coupled differential input signals. An enable signal OE_N can be used to turn off the TMDS inputs and outputs, thereby minimizing power consumption. The TMDS outputs are back-power safe to disallow current flow from a powered sink while PTN3361C is unpowered.

PTN3361C's DDC channel provides active level shifting and buffering, allowing 3.3 V source-side termination and 5 V sink-side termination. The sink-side DDC ports are equipped with a rise time accelerator enabling drive of long cables or high bus capacitance. This enables the system designer to isolate bus capacitance to meet/exceed HDMI DDC specification. Furthermore, the DDC channel is augmented with an I²C-bus slave ROM device that provides optional HDMI dongle detect response, which can be enabled by Dongle detect signal DDET. PTN3361C offers back-power safe sink-side I/Os to disallow backdrive current from the DDC clock and data lines when power is off or when DDC is not enabled. An enable signal DCC EN enables the DDC level shifter block.

PTN3361C also provides voltage translation for the Hot Plug Detect (HPD) signal from 0 V to 5 V on the sink side to 0 V to 3.3 V on the source side.

PTN3361C does not re-time any data. It contains no state machines. No inputs or outputs of the device are latched or clocked. Because PTN3361C acts as a transparent level shifter, no reset is required.

Remark: When used in an HDMI dongle, the DDET function **must** be enabled for correct operation. When used in a DVI dongle, the DDET function **must** be disabled.

7.1 Enable and disable features

PTN3361C offers different ways to enable or disable functionality, using the Output Enable (OE_N), and DDC Enable (DDC_EN) inputs. Whenever PTN3361C is disabled, the device will be in Standby mode and power consumption will be minimal; otherwise PTN3361C will be in active mode and power consumption will be nominal. These two inputs each affect the operation of PTN3361C differently: OE_N controls the TMDS channels, DDC_EN affects only the DDC channel, and HPD_SINK does not affect either of the channels. The following sections and truth table describe their detailed operation.

7.1.1 Hot plug detect

The HPD channel of PTN3361C functions as a level-shifting buffer to pass the HPD logic signal from the display sink device (via input HPD_SINK) on to the display source device (via output HPD_SOURCE).

The output logic state of HPD_SOURCE output always follows the logic state of input HPD_SINK, regardless of whether the device is in Active mode or Standby mode.

HDMI/DVI level shifter supporting 1.65 Gbit/s operation

7.1.2 Output Enable function (OE_N)

When input OE_N is asserted (active LOW), the IN_Dx and OUT_Dx signals are fully functional. Input termination resistors are enabled and the internal bias circuits are turned on.

When OE_N is de-asserted (inactive HIGH), the OUT_Dx outputs are in a high-impedance state and drive zero output current. The IN_Dx input buffers are disabled and IN_Dx termination is disabled. Power consumption is minimized.

Remark: Note that OE_N signal level has no influence on the HPD_SINK input, HPD_SOURCE output, or the SCL and SDA level shifters. A transition from HIGH to LOW at OE_N may disable the DDC channel for up to 20 μ s.

7.1.3 DDC channel enable function (DDC_EN)

The DDC_EN pin is active HIGH and can be used to isolate a badly behaved slave. When DDC_EN is LOW, the DDC channel is turned off. The DDC_EN input should never change state during an I²C-bus operation. Note that disabling DDC_EN during a bus operation may hang the bus, while enabling DDC_EN during bus traffic would corrupt the I²C-bus operation. Hence, DDC_EN should only be toggled while the bus is idle. (See I²C-bus specification).

HDMI/DVI level shifter supporting 1.65 Gbit/s operation

7.1.4 Enable/disable truth table

Table 4. HPD_SINK, OE_N and DDC_EN enabling truth table

Inputs			Channels							
HPD_SINK	OE_N [1]	DDC_EN	IN_Dx	OUT_Dx[3]	DDC[4]	HPD_SOURCE[5]	-			
LOW	LOW	LOW	50 Ω termination to $V_{RX(bias)}$	enabled	high-impedance	LOW	Active; DDC disabled			
LOW	LOW	HIGH	50 Ω termination to $V_{RX(bias)}$			nected to A_SOURCE SCL_SINK nected to				
LOW	HIGH	LOW	high-impedance	high-impedance; zero output current	high-impedance	LOW	Standby			
LOW	HIGH	HIGH	high-impedance	high-impedance; zero output current	gh-impedance; SDA_SINK		Standby; DDC enabled			
HIGH	LOW	LOW	50 Ω termination to $V_{RX(bias)}$	enabled	high-impedance	HIGH	Active; DDC disabled			
HIGH	LOW	HIGH	50 Ω termination to $V_{RX(bias)}$	enabled	nabled SDA_SINK HIGH connected to SDA_SOURCE and SCL_SINK connected to SCL_SOURCE		Active; DDC enabled			
HIGH	HIGH	LOW	high-impedance	high-impedance; zero output current	high-impedance	HIGH	Standby			
HIGH	HIGH	HIGH	high-impedance	high-impedance; zero output current	SDA_SINK connected to SDA_SOURCE and SCL_SINK connected to SCL_SOURCE	HIGH	Standby; DDC enabled			

^[1] A HIGH level on input OE_N disables only the TMDS channels. A transition from HIGH to LOW at OE_N may disable the DDC channel for up to 20 μ s.

^[2] A LOW level on input DDC_EN disables only the DDC channel.

^[3] OUT_Dx channels 'enabled' means outputs OUT_Dx toggling in accordance with IN_Dx differential input voltage switching.

^[4] DDC channel 'enabled' means SDA_SINK is connected to SDA_SOURCE and SCL_SINK is connected to SCL_SOURCE.

^[5] The HPD_SOURCE output logic state always follows the HPD_SINK input logic state.

HDMI/DVI level shifter supporting 1.65 Gbit/s operation

7.2 Analog current reference

The REXT pin (pin 6) is an analog current sense port used to provide an accurate current reference for the differential outputs OUT_Dx. For best output voltage swing accuracy, use of a 10 k Ω resistor (1 % tolerance) connected between this terminal and GND is recommended.

If an external 10 k Ω \pm 1 % resistor is not used, this pin can be connected to GND or V_{DD} directly (0 Ω). In any of these cases, the output will function normally but at reduced accuracy over voltage and temperature of the following parameters: output levels (V_{OL}), differential output voltage swing, and rise and fall time accuracy.

7.3 Equalizer

PTN3361C supports 3 level equalization setting by the guinary input pin EQ3.

Table 5. Equalizer settings

Inputs	Quinary notation	Equalizer mode
EQ3		
short to GND	03	0 dB
10 kΩ resistor to GND	1 ₃	2 dB
open-circuit	23	3.5 dB

7.4 Backdrive current protection

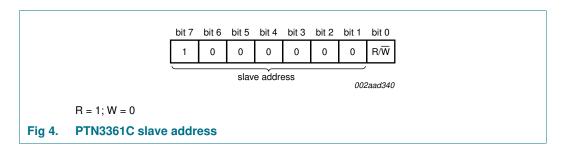
PTN3361C is designed for backdrive prevention on all sink-side TMDS outputs, sink-side DDC I/Os and the HPD_SINK input. This supports user scenarios where the display is connected and powered, but PTN3361C is unpowered. In these cases, PTN3361C will sink no more than a negligible amount of leakage current, and will block the display (sink) termination network from driving the power supply of PTN3361C or that of the inactive DVI or HDMI source.

7.5 Active DDC buffer with rise time accelerator

PTN3361C DDC channel, besides providing 3.3 V to 5 V level shifting, includes active buffering and rise time acceleration which allows up to 18 meters bus extension for reliable DDC applications. While retaining all the operating modes and features of the I²C-bus system during the level shifts, it permits extension of the I²C-bus by providing bidirectional buffering for both the data (SDA) and the clock (SCL) line as well as the rise time accelerator on the sink-side port (SCL_SINK and SDA_SINK) enabling the bus to drive a load up to 1400 pF or distance of 18 m on the sink-side port, and 400 pF on the source-side port (SCL_SOURCE and SCA_SOURCE). Using PTN3361C for DVI or HDMI level shifting enables the system designer to isolate bus capacitance to meet/exceed HDMI DDC specification. The SDA and SCL pins are overvoltage tolerant and are high-impedance when PTN3361C is unpowered or when DDC EN is LOW.

PTN3361C has rise time accelerators on the sink-side port (SCL_SINK and SDA_SINK) only. During positive bus transitions on the sink-side port, a current source is switched on to quickly slew the SCL_SINK and SDA_SINK lines HIGH once the 5 V DDC bus $V_{\rm IL}$ threshold level of around 1.5 V is exceeded, and turns off as the 5 V DDC bus $V_{\rm IH}$ threshold voltage of approximately 3.5 V is approached.

HDMI/DVI level shifter supporting 1.65 Gbit/s operation


7.6 I²C-bus based HDMI dongle detection

PTN3361C includes an on-board I²C-bus slave ROM which provides a means to detect the presence of an HDMI dongle by the system through the DDC channel, accessible via ports SDA_SOURCE and SCL_SOURCE. This allows system vendors to detect HDMI dongle presence through the already available DDC/I²C-bus port using a predetermined bus sequence. Please see Section 8 for more information.

For the I²C-bus HDMI Dongle Detect function to be active, input pin DDET (dongle detect) should be tied HIGH. When DDET is LOW, PTN3361C will not respond to an I²C-bus command. When used in an HDMI dongle, the DDET function **must** be enabled for correct operation in accordance with DisplayPort interoperability guidelines. When used in a DVI dongle, the DDET function **must** be disabled.

The HDMI dongle detection is accomplished by accessing PTN3361C on-board I²C-bus slave ROM using a simple sequential I²C-bus Read operation as described below.

7.6.1 Slave address

HDMI/DVI level shifter supporting 1.65 Gbit/s operation

7.6.2 Read operation

The slave device address of PTN3361C is 80h. PTN3361C will respond to a Read command to slave address 81h (PTN3361C will respond with an ACK to a Write command to address 80h). Following the Read command, PTN3361C will respond with the contents of its internal ROM, as a sequence of 16 bytes, for as long as the master continues to issue clock edges with an acknowledge after each byte. The 16-byte sequence represents the 'DP-HDMI ADAPTOR<EOT>' symbol converted to ASCII and is documented in Table 6.

PTN3361C auto-increments its internal ROM address pointer (0h through Fh) as long as it continues to receive clock edges from the master with an acknowledge after each byte. If the master continues to issue clock edges past the 16th byte, PTN3361C will respond with a data byte of FFh. If the master does not acknowledge a received byte, PTN3361C internal address pointer will be reset to 0 and a new Read sequence should be started by the master. Access to the 16-byte is by sequential read only as described above; there is no random-access possible to any specific byte in the ROM.

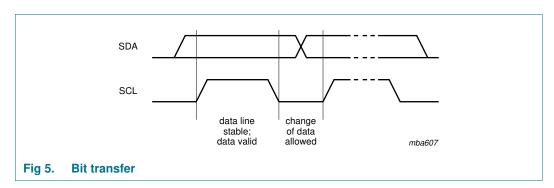
Table 6. DisplayPort - HDMI Adaptor Detection ROM content

Internal pointer offset (hex)	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
Data (hex)	44	50	2D	48	44	4D	49	20	41	44	41	50	54	4F	52	04

Table 7. HDMI dongle detect transaction sequence outline

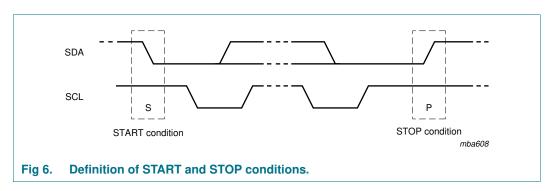
Phase	I ² C transaction	Transmitting				ı	Bit				Sta	Status		
			7	6	5	4	3	2	1	R/W	Master	Slave		
1	START	master									optional	-		
2	Write command	master	1	0	0	0	0	0	0	0	optional	-		
3	Acknowledge	slave									-	mandatory		
4	Word address offset	master		wo	ord ad	dress	offset	data l	oyte		optional	-		
5	Acknowledge	slave									-	mandatory		
6	STOP	master									optional	-		
7	START	master									mandatory	-		
8	Read command	master	1	0	0	0	0	0	0	1	mandatory	-		
9	Acknowledge	slave									-	mandatory		
10	Read data	slave			dat	a byte	at off	set 0			-	mandatory		
11	Acknowledge	master									mandatory	-		
12	Read data	slave			dat	a byte	at off	set 1			-	mandatory		
13	:	:									-	-		
:	:	:									-	-		
40	Read data	slave			data	a byte	at offs	set 15			-	mandatory		
41	Not Acknowledge	master									mandatory	-		
42	STOP	master									mandatory	-		

Remark: If the slave does not acknowledge the above transaction sequence, the entire sequence should be retried by the source.


HDMI/DVI level shifter supporting 1.65 Gbit/s operation

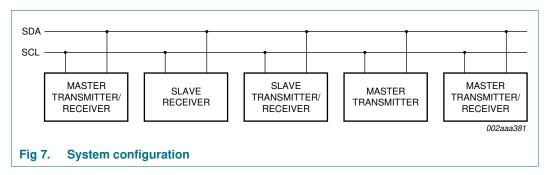
7.7 Characteristics of the I²C-bus

The I²C-bus is for 2-way, 2-line communication between different ICs or modules. The two lines are a serial data line (SDA) and a serial clock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor when connected to the output stages of a device. Data transfer may be initiated only when the bus is not busy.


7.7.1 Bit transfer

One data bit is transferred during each clock phase. The data on the SDA line must remain stable during the HIGH period of the clock pulse as changes in the data line at this time will be interpreted as control signals (see Figure 5).

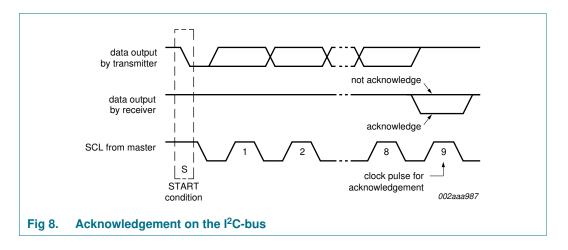
7.7.2 START and STOP conditions


Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line, while the clock is HIGH is defined as the START condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the STOP condition (P). See Figure 6.

7.7.3 System configuration

An I²C-bus device generating a message is a 'transmitter', a device receiving is the 'receiver'. The device that controls the message is the 'master' and the devices which are controlled by the master are the 'slaves'. See <u>Figure 7</u>.

HDMI/DVI level shifter supporting 1.65 Gbit/s operation



7.7.4 Acknowledge

The number of data bytes transferred between the START and the STOP conditions from transmitter to receiver is not limited. Each byte of eight bits is followed by one acknowledge bit. The acknowledge bit is a HIGH level put on the bus by the transmitter, whereas the master generates an extra acknowledge related clock pulse.

A slave receiver which is addressed must generate an acknowledge after the reception of each byte. Also, a master must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges has to pull down the SDA line during the acknowledge clock pulse so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse, set-up and hold times must be taken into account.

A master receiver must signal an end of data to the transmitter by not generating as acknowledge on the last byte that has been clocked out of the slave. In this event, the transmitter must leave the data line HIGH to enable the master to generate a STOP condition.

HDMI/DVI level shifter supporting 1.65 Gbit/s operation

8. Application design-in information

8.1 Dongle or cable adaptor detect discovery mechanism

PTN3361C supports the source-side dongle detect discovery mechanism described in VESA DisplayPort Interoperability Guideline Version 1.1.

When a source-side cable adaptor is plugged into a multi-mode source device that supports multiple standards such as DisplayPort, DVI and HDMI, a discovery mechanism is needed for the multi-mode source to configure itself for outputting DisplayPort, DVI or HDMI compliant signals through the dongle or cable adaptor. The discovery mechanism ensures that a multi-mode source device only sends either DVI or HDMI signals when a valid DVI or HDMI cable adaptor is present.

The VESA Interoperability Guideline recommends that a multi-mode source to power up with both DDC and AUX CH disabled. After initialization, the source device can use a variety of mechanisms to decide whether a dongle or cable adaptor is present by detecting pin 13 on the DisplayPort connector. Depending on the voltage level detected at pin 13, the source configures itself either:

- as a DVI or HDMI source (see below paragraph for detection between DVI and HDMI), and enables DDC, while keeping AUX CH disabled, **or**
- as a DisplayPort source and enables AUX CH, while keeping DDC disabled.

The monitoring of the voltage level on pin 13 by a multi-mode source device is optional. A multi-mode source may also e.g. attempt an AUX CH read transaction and, if the transaction fails, a DDC transaction to discover the presence/absence of a cable adaptor.

Furthermore, a source that supports both DVI and HDMI can discover whether a DVI or HDMI dongle or cable adaptor is present by using a variety of discovery procedures. One possible method is to check the voltage level of pin 14 of the DisplayPort connector. Pin 14 also carries CEC signal used for HDMI. Please note that other HDMI devices on the CEC line may be momentarily pulling down pin 14 as a part of CEC protocol.

The VESA Interoperability Guideline recommends that a multi-mode source should distinguish a source-side HDMI cable adaptor from a DVI cable adaptor by checking the DDC buffer ID as described in Section 7.6 "I²C-bus based HDMI dongle detection". While it is optional for a multi-mode source to use the I²C-bus based HDMI dongle detection mechanism, it is mandatory for HDMI dongle or cable adaptor to respond to the I²C-bus read command described in Section 7.7. PTN3361C provides an integrated I²C-bus slave ROM to support this mandatory HDMI dongle detect mechanism for HDMI dongles.

For a DisplayPort-to-HDMI source-side dongle or cable adaptor, DDET must be tied HIGH to enable the I²C-bus based HDMI dongle detection response function of PTN3361C. For a DisplayPort-to-DVI sink-side dongle or cable adaptor, DDET must be tied LOW to disable the function.

HDMI/DVI level shifter supporting 1.65 Gbit/s operation

9. Limiting values

Table 8. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions		Min	Max	Unit
V_{DD}	supply voltage			-0.3	+4.6	٧
VI	input voltage	3.3 V CMOS inputs		-0.3	$V_{DD} + 0.5$	V
		5.0 V CMOS inputs		-0.3	6.0	٧
T _{stg}	storage temperature			-65	+150	°C
V _{ESD}	electrostatic discharge	НВМ	<u>[1]</u>	-	6000	٧
	voltage	CDM	[2]	-	1000	٧

^[1] Human Body Model: ANSI/EOS/ESD-S5.1-1994, standard for ESD sensitivity testing, Human Body Model - Component level; Electrostatic Discharge Association, Rome, NY, USA.

10. Recommended operating conditions

Table 9. Recommended operating conditions

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V_{DD}	supply voltage			3.0	3.3	3.6	V
VI	input voltage	3.3 V CMOS inputs		0	-	3.6	V
		5.0 V CMOS inputs		0	-	5.5	V
$V_{I(AV)}$	average input voltage	IN_Dn+, IN_Dn- inputs	<u>[1]</u>	-	0	-	V
R _{ref(ext)}	external reference resistance	connected between pin REXT (pin 6) and GND	[2]	-	10 ± 1 %	-	kΩ
T _{amb}	ambient temperature	operating in free air		-40	-	+85	°C

^[1] Input signals to these pins must be AC-coupled.

10.1 Current consumption

Table 10. Current consumption

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I_{DD}	supply current	OE_N = 0; Active mode	-	70	100	mA
		OE_N = 1 and DDC_EN = 0; Standby mode	-	-	5	mA

^[2] Charged Device Model: ANSI/EOS/ESD-S5.3-1-1999, standard for ESD sensitivity testing, Charged Device Model - Component level; Electrostatic Discharge Association, Rome, NY, USA.

^[2] Operation without external reference resistor is possible but will result in reduced output voltage swing accuracy. For details, see Section 7.2.

PTN3361C NXP Semiconductors

HDMI/DVI level shifter supporting 1.65 Gbit/s operation

11. Characteristics

11.1 Differential inputs

Differential input characteristics for IN_Dx signals

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
UI	unit interval ^[1]		[2]	600	-	4000	ps
V _{RX_DIFFp-p}	differential input peak-to-peak voltage		[3]	0.175	-	1.200	V
t _{RX_EYE}	receiver eye time	minimum eye width at IN_Dx input pair		0.8	-	-	UI
$V_{i(cm)M(AC)} \\$	peak common-mode input voltage (AC)	includes all frequencies above 30 kHz	[4]	-	-	100	mV
Z _{RX_DC}	DC input impedance			40	50	60	Ω
V _{RX(bias)}	bias receiver voltage			1.0	1.2	1.4	V
$Z_{I(se)}$	single-ended input impedance	inputs in high-impedance state	[5]	100	-	-	kΩ

^[1] UI (unit interval) = t_{bit} (bit time).

11.2 Differential outputs

The level shifter's differential outputs are designed to meet HDMI version 1.4a and DVI version 1.0 specifications.

Table 12. Differential output characteristics for OUT_Dx signals

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V _{OH(se)}	single-ended HIGH-level output voltage		[1]	V _{TT} – 0.01	V _{TT}	V _{TT} + 0.01	V
V _{OL(se)}	single-ended LOW-level output voltage		[2]	V _{TT} – 0.60	V _{TT} – 0.50	V _{TT} – 0.40	V
$\Delta V_{O(se)}$	single-ended output voltage variation	logic 1 and logic 0 state applied respectively to differential inputs IN_Dn; R _{ref(ext)} connected; see Table 9	[3]	400	500	600	mV
l _{OZ}	OFF-state output current	single-ended		-	-	10	μΑ
t _r	rise time	20 % to 80 %		75	-	240	ps
t _f	fall time	80 % to 20 %		75	-	240	ps
t _{sk}	skew time	intra-pair	<u>[4]</u>	-	-	10	ps
		inter-pair	[5]	-	-	250	ps
t _{jit(add)}	added jitter time	jitter contribution	[6]	-	10	-	ps

^[1] V_{TT} is the DC termination voltage in the HDMI or DVI sink. V_{TT} is nominally 3.3 V.

[3] Swing down from TMDS termination voltage (3.3 V \pm 10 %).

All information provided in this document is subject to legal disclaimers.

© NXP Semiconductors N.V. 2015. All rights reserved.

^[2] UI is determined by the display mode. Nominal bit rate ranges from 250 Mbit/s to 1.65 Gbit/s per lane.

 $V_{RX_DIFFp-p} = 2 \times |V_{RX_D+} - V_{RX_D-}|$. Applies to IN_Dx signals.

 $^{[4] \}quad V_{i(cm)M(AC)} = |V_{RX_D+} + V_{RX_D-}| \, / \, 2 - V_{RX(cm)}.$ $V_{RX(cm)}$ = DC (avg) of $|V_{RX_D+} + V_{RX_D-}| / 2$.

^[5] Differential inputs will switch to a high-impedance state when OE_N is HIGH.

^[2] The open-drain output pulls down from V_{TT} .

HDMI/DVI level shifter supporting 1.65 Gbit/s operation

- [4] This differential skew budget is in addition to the skew presented between IN_D+ and IN_D- paired input pins.
- [5] This lane-to-lane skew budget is in addition to skew between differential input pairs.
- [6] Jitter budget for differential signals as they pass through the level shifter.

11.3 HPD_SINK input, HPD_SOURCE output

Table 13. HPD characteristics

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V_{IH}	HIGH-level input voltage	HPD_SINK	<u>[1]</u>	2.0	5.0	5.3	V
V_{IL}	LOW-level input voltage	HPD_SINK		0	-	0.8	V
I _{LI}	input leakage current	HPD_SINK		-	-	15	μΑ
V _{OH}	HIGH-level output voltage	HPD_SOURCE		2.5	-	V_{DD}	V
V_{OL}	LOW-level output voltage	HPD_SOURCE		0	-	0.2	V
t _{PD}	propagation delay	from HPD_SINK to HPD_SOURCE; 50 % to 50 %	[2]	-	-	200	ns
t _t	transition time	HPD_SOURCE rise/fall; 10 % to 90 %	[3]	1	-	20	ns
R _{pd}	pull-down resistance	HPD_SINK input pull-down resistor	[4]	100	200	300	kΩ

- [1] Low-speed input changes state on cable plug/unplug.
- [2] Time from HPD_SINK changing state to HPD_SOURCE changing state. Includes HPD_SOURCE rise/fall time.
- [3] Time required to transition from V_{OH} to V_{OL} or from V_{OL} to V_{OH} .
- [4] Guarantees HPD_SINK is LOW when no display is plugged in.

11.4 OE_N, DDC_EN and DDET inputs

Table 14. OE N, DDC EN input characteristics

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V_{IH}	HIGH-level input voltage			2.0	-		٧
V _{IL}	LOW-level input voltage				-	0.8	٧
ILI	input leakage current	OE_N pin	[1]	-	-	10	μΑ

[1] Measured with input at V_{IH} maximum and V_{IL} minimum.

HDMI/DVI level shifter supporting 1.65 Gbit/s operation

11.5 DDC characteristics

Table 15. DDC characteristics

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
Input and	output SCL_SOURCE and SDA_SOUR	CE, V _{CC1} = 3.0 V to 3.6 V[1]					
V _{IH}	HIGH-level input voltage			0.7V _{CC1}	-	3.6	٧
V _{IL}	LOW-level input voltage			-0.5	-	+0.3V _{CC1}	٧
V _{ILc}	contention LOW-level input voltage	guaranteed by design		-0.5	-	0.4	٧
ILI	input leakage current	$V_1 = 3.6 \text{ V}$		-	-	10	μΑ
I _{IL}	LOW-level input current	$V_1 = 0.2 \text{ V}$		-	-	10	μΑ
V _{OL}	LOW-level output voltage	$I_{OL} = 6 \text{ mA}$	[2]	0.47	0.52	0.6	٧
V _{OL} -V _{ILc}	difference between LOW-level output and LOW-level input voltage contention	guaranteed by design		-	-	70	mV
C _{io}	input/output capacitance	$V_I = 3 \text{ V or } 0 \text{ V}; V_{DD} = 3.3 \text{ V}$		-	6	7	рF
		$V_{I} = 3 \text{ V or } 0 \text{ V}; V_{DD} = 0 \text{ V}$		-	6	7	рF
Input and	output SDA_SINK and SCL_SINK, V _{CC}	₂ = 4.5 V to 5.5 V[3]		'			
V _{IH}	HIGH-level input voltage			0.7V _{CC2}	-	5.5	V
V _{IL}	LOW-level input voltage			-0.5	-	+1.2	V
ILI	input leakage current	V _I = 5.5 V		-	-	10	μΑ
I _{IL}	LOW-level input current	$V_{I} = 0.2 \text{ V}$		-	-	10	μΑ
V _{OL}	LOW-level output voltage	$I_{OL} = 6 \text{ mA}$		-	0.1	0.2	٧
C _{io}	input/output capacitance	$V_I = 3 \text{ V or } 0 \text{ V}; V_{DD} = 3.3 \text{ V}$		-	-	7	рF
		$V_{I} = 3 \text{ V or } 0 \text{ V}; V_{DD} = 0 \text{ V}$		-	6	7	рF
I _{trt(pu)}	transient boosted pull-up current	$V_{CC2} = 4.5 \text{ V};$ slew rate = 1.25 V/µs		-	6	-	mA

^[1] V_{CC1} is the pull-up voltage for DDC source.

^[2] $\,$ I $_{OL}$ between 100 μA and 6 mA guaranteed by design (3 mA typical application)

^[3] V_{CC2} is the pull-up voltage for DDC sink.

HDMI/DVI level shifter supporting 1.65 Gbit/s operation

12. Package outline

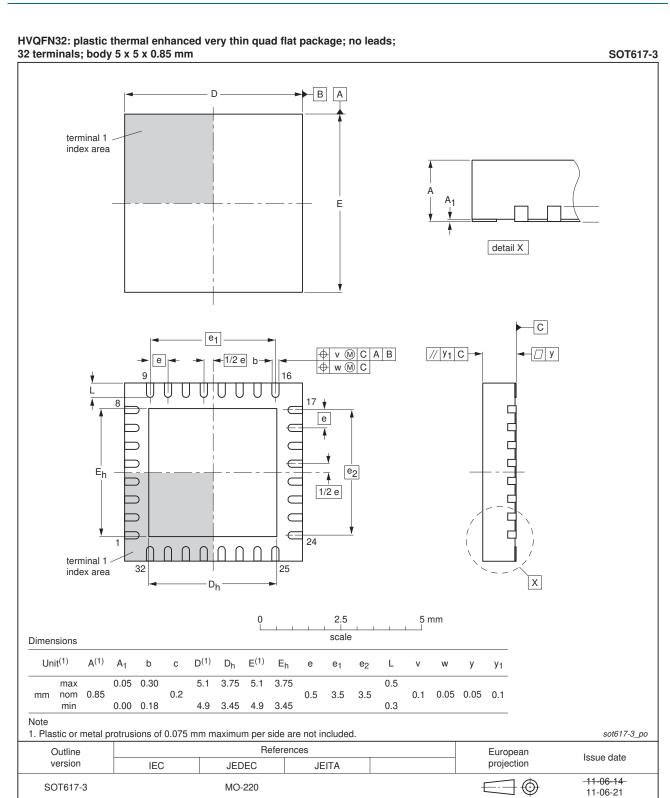


Fig 9. Package outline SOT617-3 (HVQFN32)

PTN3361C

HDMI/DVI level shifter supporting 1.65 Gbit/s operation

13. Soldering of SMD packages

This text provides a very brief insight into a complex technology. A more in-depth account of soldering ICs can be found in Application Note *AN10365 "Surface mount reflow soldering description"*.

13.1 Introduction to soldering

Soldering is one of the most common methods through which packages are attached to Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both the mechanical and the electrical connection. There is no single soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high densities that come with increased miniaturization.

13.2 Wave and reflow soldering

Wave soldering is a joining technology in which the joints are made by solder coming from a standing wave of liquid solder. The wave soldering process is suitable for the following:

- · Through-hole components
- · Leaded or leadless SMDs, which are glued to the surface of the printed circuit board

Not all SMDs can be wave soldered. Packages with solder balls, and some leadless packages which have solder lands underneath the body, cannot be wave soldered. Also, leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered, due to an increased probability of bridging.

The reflow soldering process involves applying solder paste to a board, followed by component placement and exposure to a temperature profile. Leaded packages, packages with solder balls, and leadless packages are all reflow solderable.

Key characteristics in both wave and reflow soldering are:

- · Board specifications, including the board finish, solder masks and vias
- · Package footprints, including solder thieves and orientation
- · The moisture sensitivity level of the packages
- · Package placement
- · Inspection and repair
- · Lead-free soldering versus SnPb soldering

13.3 Wave soldering

Key characteristics in wave soldering are:

- Process issues, such as application of adhesive and flux, clinching of leads, board transport, the solder wave parameters, and the time during which components are exposed to the wave
- · Solder bath specifications, including temperature and impurities

PTN3361C

HDMI/DVI level shifter supporting 1.65 Gbit/s operation

13.4 Reflow soldering

Key characteristics in reflow soldering are:

- Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to higher minimum peak temperatures (see <u>Figure 10</u>) than a SnPb process, thus reducing the process window
- Solder paste printing issues including smearing, release, and adjusting the process window for a mix of large and small components on one board
- Reflow temperature profile; this profile includes preheat, reflow (in which the board is heated to the peak temperature) and cooling down. It is imperative that the peak temperature is high enough for the solder to make reliable solder joints (a solder paste characteristic). In addition, the peak temperature must be low enough that the packages and/or boards are not damaged. The peak temperature of the package depends on package thickness and volume and is classified in accordance with Table 16 and 17

Table 16. SnPb eutectic process (from J-STD-020D)

Package thickness (mm)	Package reflow temperature (°C)					
	Volume (mm ³)					
	< 350 ≥ 350					
< 2.5	235	220				
≥ 2.5	220	220				

Table 17. Lead-free process (from J-STD-020D)

Package thickness (mm)	Package reflow temperature (°C)						
	Volume (mm³)						
	< 350	> 2000					
< 1.6	260	260	260				
1.6 to 2.5	260	250	245				
> 2.5	250	245	245				

Moisture sensitivity precautions, as indicated on the packing, must be respected at all times.

Studies have shown that small packages reach higher temperatures during reflow soldering, see Figure 10.