imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

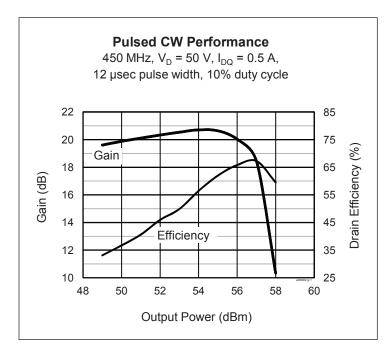
With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

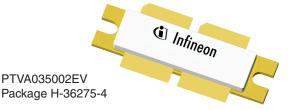
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

PTVA035002EV




green Product

Thermally-Enhanced High Power RF LDMOS FET 500 W, 50 V, 390 – 450 MHz

Description

The PTVA035002EV LDMOS FET is designed for use in power amplifier applications in the 390 MHz to 450 MHz frequency band. Features include high gain and thermally-enhanced package with bolt-down flange. Manufactured with Infineon's advanced LDMOS process, this device provides excellent thermal performance and superior reliability.

Features

- Unmatched input and output
- High gain and efficiency
- Integrated ESD protection
- Low thermal resistance
- Pb-free and RoHS-compliant
- Capable of withstanding a 13:1 load mismatch at 57 dBm under pulsed conditions: 12 µsec pulse width, 10% duty cycle

RF Characteristics

Pulsed CW Class AB Characteristics (not subject to production test, verified by design/characterization in Infineon test fixture) $V_{DD} = 50 \text{ V}$, $I_{DQ} = 0.5 \text{ A}$, $P_{OUT} = 500 \text{ W}$, f = 450 MHz, 12 µsec pulse width, 10% duty cycle

Characteristic	Symbol	Min	Тур	Max	Unit
Gain	G _{ps}	_	18	_	dB
Drain Efficiency	η_{D}	_	64		%

All published data at T_{CASE} = 25°C unless otherwise indicated

ESD: Electrostatic discharge sensitive device—observe handling precautions!	
---	--

RF Characteristics

Pulsed CW Characteristics (tested in Infineon test fixture)

V_{DD} = 50 V, V_{GS} = 2.9 V, I_{DQ} = 0.0 A, P_{OUT} = 500 W, f = 450 MHz, 12 µsec pulse width, 10% duty cycle

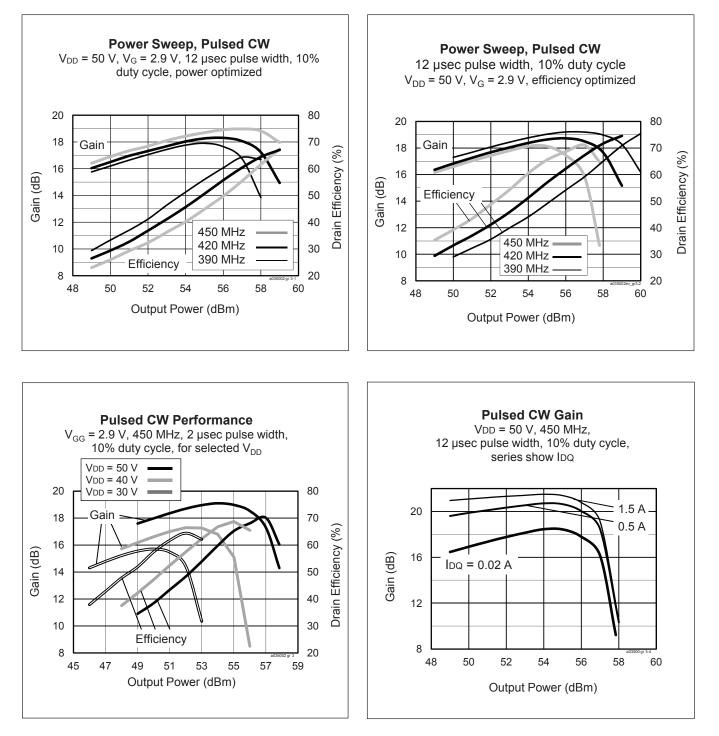
Characteristic	Symbol	Min	Тур	Max	Unit
Gain	G _{ps}	14.75	15.5	—	dB
Drain Efficiency	η_D	63	66		%

DC Characteristics (each side)

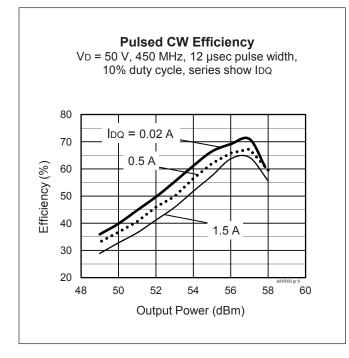
Characteristic Conditions		Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	$V_{GS} = 0 V, I_{DS} = 10 mA$	V _{(BR)DSS}	105	_	_	V
Drain Leakage Current	$V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V}$	I _{DSS}	_	_	1.0	μA
	V_{DS} = 105 V, V_{GS} = 0 V	I _{DSS}	_		10.0	μA
On-State Resistance	V_{GS} = 10 V, V_{DS} = 0.1 V	R _{DS(on)}	_	0.1	_	Ω
Operating Gate Voltage	$V_{DS} = 50 \text{ V}, \text{ I}_{DQ} = 600 \text{ mA} \text{ V}_{GS} - 200 \text{ mA}$		3.70	_	V	
Gate Leakage Current	$V_{GS} = 10 \text{ V}, V_{DS} = 0 \text{ V}$	I _{GSS}	_		1.0	μA

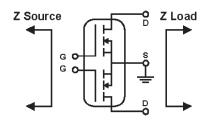
Maximum Ratings

Parameter	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	105	V
Gate-Source Voltage	V _{GS}	-6 to +12	V
Junction Temperature	TJ	200	°C
Storage Temperature Range	T _{STG}	-65 to +150	°C
Thermal Resistance (T _{CASE} = 70°C, 300 W CW)	$R_{ ext{ heta}JC}$	0.20	°C/W

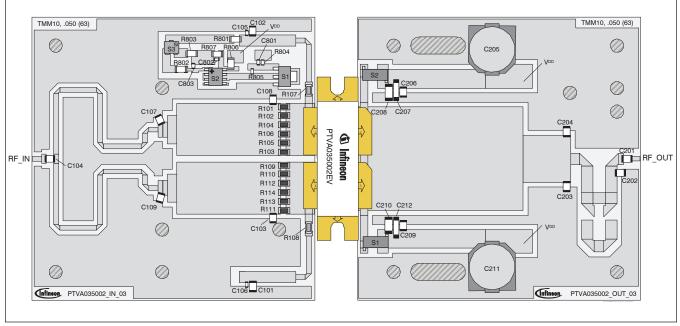

Ordering Information

Type and Version	Order Code	Package Description	Shipping
PTVA035002EV V1	PTVA035002EVV1XWSA1	H-36275-4, bolt-down	Tray


Typical Performance (data taken in production test fixture)


PTVA035002EV

Typical Performance (cont.)


Broadband Circuit Impedance

Frequency	Z Sou	rce Ω	Z Loa	dΩ
MHz	R	jХ	R	jХ
390	1.28	-0.12	1.80	-2.22
405	1.35	0.18	1.86	-1.91
420	1.43	0.48	1.92	-1.62
435	1.54	0.76	1.98	-1.35
450	1.67	1.04	2.02	-1.11

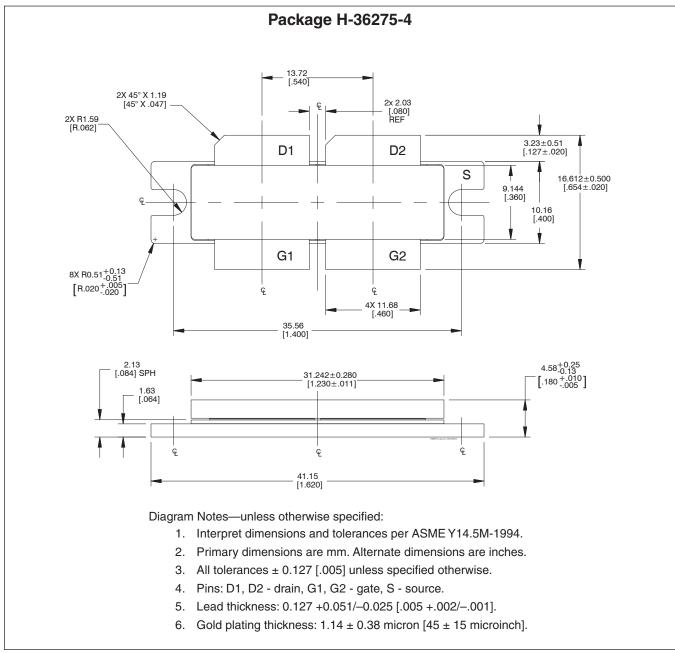
Reference Circuit, 390 – 450 MHz

Reference circuit assembly diagram (not to scale)*

Find Gerber files for this test fixture on the Infineon Web site at www.infineon.com/rfpower

Reference Circuit (cont.)

Reference Circuit Assembly


DUT	PTVA035002EV
Test Fixture Part No.	LTN/PTVA035002EV
РСВ	Rogers TMM10, 1.27 mm [0.050"] thick, 2 oz. copper, $\varepsilon_r = 9.2$

Components Information

Component	Description	Suggested Manufacturer	P/N
Input			
C101, C102, C104	Capacitor, 300 pF	ATC	ATC100B301KW200X
C103, C108	Capacitor, 20 pF	ATC	ATC100B200KW500X
C105, C106, C801, C802, C803	Capacitor, 1000 pF	Panasonic Electronic Components	ECJ-1VB1H102K
C107, C109	Capacitor, 6.2 pF	ATC	ATC100B6R2CT500X
R101, R102, R103, R104, R105, R106, R109, R110, R111, R112, R113, R114	Resistor, 5.6 Ω	Panasonic Electronic Components	ERJ-8GEYJ5R6V
R107, R108	Resistor, 1000 Ω	Panasonic Electronic Components	ERJ-8GEYJ102V
R801	Resistor, 100 Ω	Panasonic Electronic Components	ERJ-8GEYJ101V
R802	Resistor, 2000 Ω	Panasonic Electronic Components	ERJ-8GEYJ202V
R803	Resistor, 3600 Ω	Panasonic Electronic Components	ERJ-8GEYJ362V
R804	Resistor, 1300 Ω	Panasonic Electronic Components	ERJ-3GEYJ132V
R805	Resistor, 1200 Ω	Panasonic Electronic Components	ERJ-3GEYJ122V
R806	Resistor, 2400 Ω	Panasonic Electronic Components	ERJ-8GEYJ242V
R807	Resistor, 6200 Ω	Panasonic Electronic Components	ERJ-8GEYJ622V
S1	Transistor	Infineon Technologies	BCP56
S2	Voltage regulator	Texas Instruments	LM7805
S3	Potentiometer	Bourns Inc.	3224W-1-202E
Output			
C201, C206, C209	Capacitor, 300 pF	ATC	ATC100B301KW200X
C202	Capacitor, 3 pF	ATC	ATC100B3R0CW500X
C203, C204	Capacitor, 4.3 pF	ATC	ATC100B4R3CW500X
C205, C211	Capacitor, 100 µF	United Chemi-Con	EMVE101ARA101MKE0S
C207, C212	Capacitor, 10 µF	TDK Corporation	C5750X7S2A106M230KB
C208, C210	Capacitor, 2.2 µF	TDK Corporation	C4532X7R2A225K230KA
S1, S2	Inductor, 17.5 nH	Coilcraft	B06TGLB

Package Outline Specifications

Find the latest and most complete information about products and packaging at the Infineon Internet page http://www.infineon.com/rfpower

PTVA035002EV V1

Revision His	story: 2013-07-10	Data Sheet		
Previous Vers	sion: 2012-02-24, Data Sheet			
Page	Subjects (major changes since last revision)			
2	Updated DC Characteristics and Maximum Ratings tables, Corrected order code			
5, 6, 7, 8	Removed circuit schematics, corrected circuit diagram & component information			

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to:

highpowerRF@infineon.com

To request other information, contact us at: +1 877 465 3667 (1-877-GO-LDMOS) USA or +1 408 776 0600 International

	$< \square$
	\sim \mid

Edition 2013-07-10 Published by Infineon Technologies AG 85579 Neubiberg, Germany © 2010 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com/rfpower).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.