

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Trimmer Potentiometers

SMD Sealed Type Multi-turn Type PVG5/PV01 Series

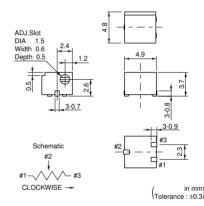
PVG5 Series

■ Features

- 1. High resolution resulting from 11-turns design enables precise adjustment.
- 2. 5mm miniature size lead a high density PCB mounting.
- 3. Compatible with VPS reflow soldering method.
- 4. Compatible with ultrasonic cleaning.
- 5. Clutch mechanism prevents excessive wiper rotation.

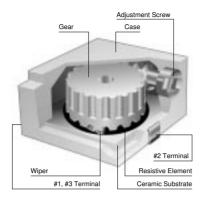
■ Applications

- 1. Measuring instruments 2. sensors
- 3. CPUs
- 4. Industrial machines

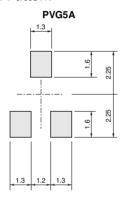


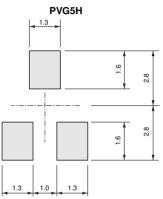
PVG5A

PVG5H



Part Number	Power Rating (W)	Soldering Method	Number of Turns (Effective Rotation Angle)	Total Resistance Value	TCR (ppm/°C)
PVG5□100A01	0.25(70°C)	Reflow	11	10ohm ±10%	±200
PVG5□200A01	0.25(70°C)	Reflow	11	20ohm ±10%	±200
PVG5□500A01	0.25(70°C)	Reflow	11	50ohm ±10%	±200
PVG5□101A01	0.25(70°C)	Reflow	11	100ohm ±10%	±200
PVG5□201A01	0.25(70°C)	Reflow	11	200ohm ±10%	±100
PVG5□501A01	0.25(70°C)	Reflow	11	500ohm ±10%	±100
PVG5□102A01	0.25(70°C)	Reflow	11	1k ohm ±10%	±100
PVG5□202A01	0.25(70°C)	Reflow	11	2k ohm ±10%	±100
PVG5□502A01	0.25(70°C)	Reflow	11	5k ohm ±10%	±100
PVG5□103A01	0.25(70°C)	Reflow	11	10k ohm ±10%	±100
PVG5□203A01	0.25(70°C)	Reflow	11	20k ohm ±10%	±100
PVG5□503A01	0.25(70°C)	Reflow	11	50k ohm ±10%	±100
PVG5□104A01	0.25(70°C)	Reflow	11	100k ohm ±10%	±100
PVG5□204A01	0.25(70°C)	Reflow	11	200k ohm ±10%	±100
PVG5□504A01	0.25(70°C)	Reflow	11	500k ohm ±10%	±100
PVG5□105A01	0.25(70°C)	Reflow	11	1M ohm ±10%	±100
PVG5□205A01	0.25(70°C)	Reflow	11	2M ohm ±10%	±100


The blank column is filled with the code of adjustment direction A (top) or H (side).


■ Construction

■ Standard Land Pattern

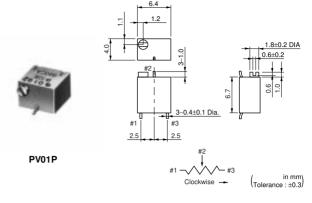
(n mm) Tolerance : ±0.1)

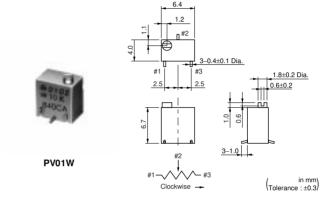
(n mm) Tolerance : ±0.1)

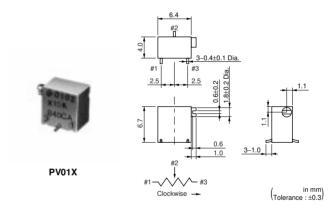
■ Characteristics

Temperature Cycle	ΔTR	±2%
Temperature Oycie	ΔV.S.S.	±1%
Humidity	ΔTR	±2%
Tullialty	IR	10Mohm min.
Vibration	ΔTR	±1%
VIDIATION	ΔV.S.S.	±1%
Shock	ΔTR	±1%
SHOCK	ΔV.S.S.	±1%
	ΔTR	±3% or 3ohm max.,
Temperature Load Life		whichever is greater
	ΔV.S.S.	±1%
Low Tamperature Exposure	ΔTR	±1%
Low ramperature Exposure	ΔV.S.S.	±1%
High Tamperature Exposure	ΔTR	±2%
Ingii ramperature Exposure	ΔV.S.S.	±1%
Rotational Life (100 cycles)	ΔTR	±3% or 3ohm max.,
notational Life (100 cycles)		whichever is greater

 $\begin{array}{ll} \Delta TR & : Total \ Resistance \ Change \\ \Delta V.S.S. & : Voltage \ Setting \ Stability \\ IR & : Insulation \ Resistance \end{array}$

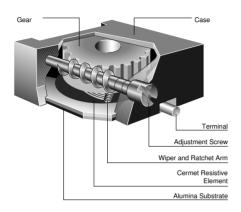

PV01 Series


■ Features

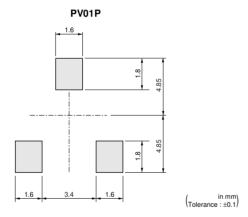

- 1. High resolution, resulting from 12-turns design enables precise adjustment.
- 2. Compatible with VPS reflow soldering method.
- 3. Small size. (6.35x6.35x4.3mm)
- 4. Compatible with ultrasonic cleaning.
- 5. Clutch mechanism prevents excessive wiper rotation.

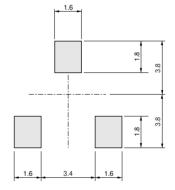
■ Applications

- 1. Measuring instruments
- 2. Facsimile machines
- 3. CPUs
- 4. PPCs
- 5. Printers
- 6. Sensors


Part Number	Power Rating (W)	Soldering Method	Number of Turns (Effective Rotation Angle)	Total Resistance Value	TCR (ppm/°C)
PV01□100A01	0.25(85°C)	Reflow	12	10ohm ±10%	±100
PV01□200A01	0.25(85°C)	Reflow	12	20ohm ±10%	±100
PV01□500A01	0.25(85°C)	Reflow	12	50ohm ±10%	±100
PV01□101A01	0.25(85°C)	Reflow	12	100ohm ±10%	±100
PV01□201A01	0.25(85°C)	Reflow	12	200ohm ±10%	±100
PV01□501A01	0.25(85°C)	Reflow	12	500ohm ±10%	±100
PV01□102A01	0.25(85°C)	Reflow	12	1k ohm ±10%	±100
PV01□202A01	0.25(85°C)	Reflow	12	2k ohm ±10%	±100
PV01□502A01	0.25(85°C)	Reflow	12	5k ohm ±10%	±100
PV01□103A01	0.25(85°C)	Reflow	12	10k ohm ±10%	±100
PV01□203A01	0.25(85°C)	Reflow	12	20k ohm ±10%	±100
PV01□253A01	0.25(85°C)	Reflow	12	25k ohm ±10%	±100
PV01□503A01	0.25(85°C)	Reflow	12	50k ohm ±10%	±100
PV01□104A01	0.25(85°C)	Reflow	12	100k ohm ±10%	±100
PV01□204A01	0.25(85°C)	Reflow	12	200k ohm ±10%	±100
PV01□254A01	0.25(85°C)	Reflow	12	250k ohm ±10%	±100

Continued from the preceding page.


Part Number Power Rating (W) Solder		Soldering Method	Number of Turns (Effective Rotation Angle)	Total Resistance Value	TCR (ppm/°C)
PV01□504A01	0.25(85°C)	Reflow	12	500k ohm ±10%	±100
PV01□105A01	0.25(85°C)	Reflow	12	1M ohm ±10%	±100


The blank column is filled with the code of adjustment direction P (side), $\,W$ (top) or X (rear). Magazine packaging is standard for PV01 series.

■ Construction

■ Standard Land Dimension

PV01W/PV01X

(n mm Tolerance : ±0.1

■ Characteristics

Town eveture Civele	ΔTR	±1%
Temperature Cycle	ΔV.S.S.	±1%
11	ΔTR	±2%
Humidity	IR	100Mohm min.
Vibration (00C)	ΔTR	±1%
Vibration (20G)	ΔV.S.S.	±1%
Charle (100C)	ΔTR	±1%
Shock (100G)	ΔV.S.S.	±1%
Tamanawatuwa Laad Life	ΔTR	±2%
Temperature Load Life	ΔV.S.S.	±1%
l T 5 5	ΔTR	±1%
Low Tamperature Exposure	ΔV.S.S.	±1%
High Tananawatuwa Euroacuwa	ΔTR	±2%
High Tamperature Exposure	ΔV.S.S.	±1%
Rotational Life (200 cycles)	ΔTR	±2%

 $\begin{array}{ll} \Delta TR & : Total \ Resistance \ Change \\ \Delta V.S.S. & : Voltage \ Setting \ Stability \\ IR & : Insulation \ Resistance \end{array}$

PVG5/PV01 Series Notice

■ Notice (Operating and Storage Conditions)

- 1. Store that the temperature is -10 to +40deg. C and the relative humidity is 30-85%RH.
- 2. Do not store in or near corrosive gases.
- 3. Use within six months after delivery.
- 4. Open the package just before using.
- 5. Do not store under direct sunlight.
- 6. The trimmer potentiometer should not be used under the following environmental conditions: If you use the trimmer potentiometer in an environment other these listed below, please consult with Murata factory representative prior to

■ Notice (Rating)

- 1. When using with partial load (rheostat), minimize the power depend on the resistance value.
- The maximum input voltage to a trimmer potentiometer should not exceed (P•R)^1/2 or the maximum operating voltage, whichever is smaller.
- The maximum input current to a trimmer potentiometer should not exceed (P/R)¹/2 or the allowable wiper current, whichever is smaller.

using.

- (1) Corrosive gaseous atmosphere.
 - (Ex. Chlorine gas, Hydrogen sulfide gas, Ammonia gas, Sulfuric acid gas, Nitric oxie gas, etc.)
- (2) In liquid.
 - (Ex. Oil, Medical liquid, Organic solvent, etc.)
- (3) Dusty/dirty atmosphere.
- (4) Direct sunlight.
- (5) Static voltage nor electric/magnetic fields.
- (6) Direct sea breeze.
- (7) Other variations of the above.

■ Notice (Soldering and Mounting)

- 1. Soldering
- (1) Standard soldering condition
 - (a) Reflow and flow soldering :
 Refer to the standard temperature profile.
 - (b) Soldering iron:
 - >Temperature of tip 260 deg.C max.
 - >Soldering time 3sec. max.
 >Diameter 2mm dia. max.

>Wattage of iron 30W max.

Before using other soldering conditions than those listed above, please consult with Murata factory representative prior to using. If the soldering conditions are not suitable, e. g., excessive time and/or excessive temperature, the trimmer capacitor may deviate from the specified characteristics.

- (2) Can not be soldered using the flow soldering method. If you use the flow soldering method, the trimmer potentiometer may not function.
- (3) The soldering iron should not come in contact with the case of the trimmer potentiometer. If such contact does occur, the trimmer potentiometer may be damaged.
- (4) Insufficient amounts of solder can lead to insufficient soldering strength on PCB. Excessive amounts of solder may cause the bridging between the terminals.
- 2. Mounting
- (1) Use our standard land dimension. Excessive land area causes displacement due to effect of the

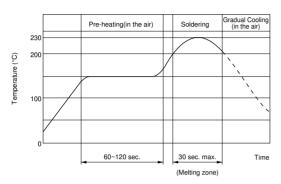
- surface tension of the solder. Insufficient land area leads to insufficient soldering strength of the chip.
- (2) Do not apply excessive force (preferable 9.8N (Ref.; 1kgf) max.), when the trimmer potentiometer is mounted to the PCB.
- (3) Do not warp and/or bend PC board to prevent trimmer potentiometer from breakage.
- (4) In chip placers, the recommended size of the cylindrical pick-up nozzle should be outer dimension 4.0mm dia. and inner dimension 2.0mm dia..
- 3. Cleaning
- Isopropyl-alcohol and Ethyl-alcohol are applicable solvent for cleaning. If you use any other types of solvents, please consult with Murata factory representative prior to using.
- (2) The total cleaning time by cold dipping, vaper and ultrasonic washing (conditions as below) method shall be less than 3 minutes.
- (3) For ultra-sonic cleaning, the available condition is as follows.

>Power : 600W (67liter) max.

>Frequency : 28kHz

>Temperature : Ambient temperature
Due to the ultra-sonic cleaning equipment
peculiar self resonance point and the cleaning
compatibility usually depends on the jig
construction and/or the cleaning condition such
as the depth of immersion, please check the

PVG5/PV01 Series Notice


Continued from the preceding page.

cleaning equipment to determine the suitable conditions.

If the trimmer potentiometer is cleaned by other

■ Reflow Soldering Standard Profile

For reflow soldering

conditions, the trimmer potentiometer may be damaged.

■ Notice (Handling)

- 1. Use suitable screwdrivers that fit comfortably in driver slot. We recommend the below screwdrivers.
 - * Recommended screwdriver for manual adjustment <PVG5 series>

VESSEL MFG.: NO. 9000-1.3x30 (Murata P/N: KMDR130)

<PV01 series>

VESSEL MFG.: NO. 9000-1.8x30 (Murata P/N: KMDR110) We can supply above screwdrivers.

If you place order, please nominate Murata P/N.

■ Notice (Other)

- 1. Please make sure that your product has been evaluated and confirmed against your specifications when our product is mounted to your product.
- 2. Murata connot guarantee trimmer potentiometer integrity when used under conditions other than those specified in this document.

- 2. Don't apply more than 9.8N (Ref.; 1kgf) of twist and stress after mounted onto PCB to prevent contact intermittence. If excessive force is applied, the trimmer potentiometer may not function.
- 3. When adjusting with a screwdriver, do not apply excessive force (preferable 4.9N (Ref; 500gf) max.)
- 4. When using a lock paint to fix slot position, please use adhesive resin without chlorine or sulfur (Three-bond "1401series").

SMD Sealed Type/Lead Sealed Type Specifications and Test Methods

The following describes trimmer potentiometer testing conducted by Murata Manufacturing Co., Ltd. in accordance with MIL-R-22097 (Military specification for variable resistors, non-wirewound) and MIL-STD-202 (Test methods for electronic and electrical component parts).

No.	Item	Test Methods								
		Measure total resistance between the resistance element and terminals (#1 and #3) with the contact arm positioned against a stop. The positioning of the contact arm and terminal shall be the same for subsequent total resistance measurements on the same device. Use the test voltage specified in Table-1 for total resistance measurements. This voltage shall be used for all subsequent total resistance measurements.								
		Total resistance, Nominal (ohm)	Maximui Voltag							
1	Total Resistance	10≦R≦100	1.0							
		100 <r≦1k< td=""><td>3.0</td><td></td><td></td><td></td><td></td><td></td><td></td></r≦1k<>	3.0							
		1k <r≦10k< td=""><td>10.</td><td>0</td><td></td><td></td><td></td><td></td><td></td></r≦10k<>	10.	0						
		10k <r≦100k< td=""><td>30.</td><td></td><td></td><td></td><td></td><td></td><td></td></r≦100k<>	30.							
		100k <r< td=""><td>100</td><td></td><td></td><td></td><td></td><td></td><td></td></r<>	100							
		Table-1 Total resis	tance test v	oltage						
2	Residual Resistance	Position the contact arm at the extreme counterclockwise limit of mechanical travel and measure the resistance between the contact arm and the corresponding end terminal. Then, position the contact arm at the extreme clockwise limit of mechanical travel and measure the resistance between the contact arm and the corresponding end terminal. During this test, take suitable precautions to ensure that the rated current of the resistance element is not exceeded.						e clock- g end ter-		
		adjustment rotor (screvangle(number of turns) tact resistance variatio where the contact arm adjustment rotor (screv2 minutes maximum. Trating.	w) shall be r I for a total on In is observed moves from w) shall be s The test curr	otated in bo of 6 cycles. ed at least to the termin such that the	oth direction Only the las wice in the s ation, on or e adjustmen	s through at 3 cycles same loca off, the re at rotor (so	90% of s shall coation, excessistance crew) cor	hown in Figure-1, or its equivale the actual effective-electrical rot unt in determining whether or n clusive of the roll-on or roll-off po e element. The rate of rotation o mpletes 1 cycle for 5 seconds m able-2 unless otherwise limited	tational ot a con- pints f the ninimum to	
	Contact Resistance	Standard total resis	tance 7	Test curren	t			#1 Rx #3	Oscilloscope	
3	Variation	R≦100		20mA				#2		
		100 <r<500< td=""><td></td><td>10mA</td><td></td><td>Constant Cu Exceed Rati</td><td></td><td>ping [Proofreaded] 9/ AC</td><td>$\lceil \rceil \rfloor$</td></r<500<>		10mA		Constant Cu Exceed Rati		ping [Proofreaded] 9/ AC	$\lceil \rceil \rfloor$	
		500≦R<1k		4mA		Rx : Trimmer Potentiometer Oscilloscope bandwidth :100Hz to 50kHz				
		1k≦R<2k 2k≦R<50k		2mA 1mA	_					
		50k≦R<200k		200μΑ	_					
		200k≦R<1M		100μΑ			Fig	jure-1 CRV measuring circuit		
		1M≦R<2M		50μA						
		2M≦R		30μΑ						
		Table-2 Test	current for	CRV						
4	Temperature Coefficient of	The trimmer potentiom Temperature coefficier	nt of resistar < 10 ⁶ (ppm/ ^c e temperature in c	nce shall be CO) ure in degre degrees ce	e applied to to the applied to the a			ature (see Table-3) for 30-45 mi ıla.	nutes.	
4	Resistance	R ₂ : Resistan								
		Sequence	1*	2	3	4*	5	6		
		Temperature(°C)	+25 -	.15	operating	+25	+65	Max. operating		
		Note) * : Reference ter	nperature	ter	nperature			temperature		
		Table-3 Test temperatures								
		adequate DC test pote terminal #1 and the ter and applied to the follo	ntial shall be minal #3, ar wing formul	e applied bond the volta	etween the t	erminal #	1 and th	al rotational angle (number of tu e terminal #3. The voltage betw nd the terminal #2, shall be mea	een the	
5	Voltage Setting Stability	Voltage setting stability e: Before test	$r = \left(\frac{e}{E} - \frac{e}{E}\right)$	×100 (%)			#1 0		#3	
		(The voltage between e': After test				,		#2		
		(The voltage between	en the termi	nal #1 and	tne terminal	#2)		Figure-2		

Continued on the following page.

SMD Sealed Type/Lead Sealed Type Specifications and Test Methods

Continued from the preceding page.

No.	Item	Test Methods			
		The trimmer potentiometer shall be subjected to Table-4 temperature for 5 cycles. The trimmer potentiometer shall be removed from the chamber, and maintained at a temperature of 25±5°C for 1~2 hours.			
6	Temperature Cycle	Sequence 1 2 3 4 Temp. (°C) PV□□ series PV22 series PVF2 series -25±3 -55±3 +25±2 +150±3 +60±3 +60±3 +25±2 +150±3 +60±3 +60±3 +25±2 +25±2 +150±3 +60±3 Time (min.) 30 5 max. 30 5 max.			
7	Humidity	1) PVC6, PV12, PV32, PV34 PVM4A Bloseries The trimmer potentiometer shall be placed in a chamber at a temperature of 40±2°C and a humidity of 90~95% without loading for 250±8 hours. The trimmer potentiometer shall be removed from the chamber, and maintained at a temperature of 25±5°C for 5±1/6 hours. 2) PVF2series The trimmer potentiometer shall be placed in a chamber at 60±2°C and 90~95% without loading for 1000±12 hours. The trimmer potentiometer shall be removed from the chamber, and maintained at a temperature of 25±5°C for 5±1/6 hours 2) PVG3, PVG5, PV01, PV22, PV33, PV36, PV37series The trimmer potentiometer shall be subjected Figure-3 the programmed humidity environment for 10 cycle. The trimmer potentiometer shall be removed from the chamber, and maintained at a temperature of 25±5°C for 5±1/2 hours. MIL.STD-202 METHOD 106 MIL.STD-202 METHOD 1			
8	Vibration	1) PV series The trimmer potentiometer shall be vibrated throughout the frequency range at the 20G level. A complete frequency range, 10Hz to 2000Hz and back, shall be made within 15 minutes for a total of 4 sweeps in each of the three axis direction for a total of 12 sweeps. 2) PVF2 series The trimmer potentiometer shall be subjected to vibration at 0.3 inch amplitude. The frequency shall be varied uniformly between the approximate limits of 10 Hz and 55Hz. This motion shall be applied for preiod of 2 hours in each of 3 mutually perpendicular direction (total of 6 hours).			
9	Shock	1) PV series The trimmer potentiometer shall be shocked at the 100G (50G for PV22 and PV23series) level and shall be subjected to 4 shocks in each of the three axis direction for a total of 12 shocks. 2) PVM4A B01series The trimmer potentiometer shall be shocked at the 100G level and shall be subjected to 3 shocks in each of the six axis direction for a total of 18 shocks.			
10	Temperature Road Life	Full rated continuous working voltage not exceeding the maximum rated voltage shall be applied intermittently between the terminal #1 and the terminal #3 of the trimmer potentiometer, 1.5 hours on and 0.5 hours off, for a total of 1000±12 hours, at a temperature of 70±2°C (85±2°C for PV01 and PV37series, 50±2°C for PVF2series). The trimmer potentiometer shall be removed from the chamber, and maintained at a temperature of 25±5°C for 1 to 2 hours.			
11	High Temperature Exposure (Except for PVF2)	The trimmer potentiometer shall be placed in a camber at a temperature of 125±3°C (150±3°C for PV12series) 250±8 hours without loading. The trimmer potentiometer shall be removed from the camber, and maintained at a temperature of 25±5°C for 1 to 2 hours.			
12	Low Temperature Exposure (Except for PVF2 and PVM4A B01)	The trimmer potentiometer shall be placed in a camber at a temperature of -55±3°C for 1 hours without loading. Full rated continuous working voltage not exceeding the maximum rated voltage shall be applied for 45 minutes. The trimmer potentiometer shall be removed from the chamber, and maintained at a temperature of 25±5°C for approximately 24 hours.			

SMD Sealed Type/Lead Sealed Type Specifications and Test Methods

Continued from the preceding page.

No.	Item	Test Methods		
13	Low Temperature Operation (Only for PVF2 and PVM4A B01)	The trimmer potentiometer shall be placed in a camber at a temperature of -25±3°C (-55±3°C for PVM4A D1501series) 48±4 hours without loading. The trimmer potentiometer shall be removed from the chamber, and maintained at a temperature of 25±5°C for 5±1/6 hours		
1)PV□ series Full rated continuous working voltage not exceeding the maximum rated voltage shall be applied shown in the figure. The adjustment rotor (screw) shall be continuously cycled through not less		Full rated continuous working voltage not exceeding the maximum rated voltage shall be applied with the circuit shown in the figure. The adjustment rotor (screw) shall be continuously cycled through not less than 90% of effective-electrical rotational angle (number of turns), at the rate of 1 cycle for 5 seconds minimum to 2.5 a minutes maximum for total of 200 cycles. End Terminal Resistor 1 End Terminal End Terminal End Terminal End Terminal End Terminal End Terminal		
		2) PVG3, PVG5series The adjustment rotor (screw) shall be continuously cycled though not less than 90% of effective- electrical rotational angle (number of turns), at the rate of 1 cycle for 5 seconds minimum to 2.5 minutes maximum for a total of 50 (100 for PVG5) cycles, without loading.		
		3) PVF2, PVM4A D1 B01series The wiper shall be rotated over 90% of the effective rotational angle without loading at a speed of 10 cycles per minute, for 100 cycles continuously.		

