: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Description

The term firefighter switch indicates a device where the DC side of a photovoltaic system in proximity of the modules (or directly below the cable outlet) can be de-energised. It is intended to reduce or eliminate all difficulties or risks connected with fire fighting, high water or technical aid. De-energisation of the strings will occur immediately after shutdown of the supply voltage. An automatic restart ensures smooth and undisturbed operation of the photovoltaic system even in the event of voltage interruption unless there is a manual switching operation. The restart also allows reliable and safe operation of more than one, even hardly accessible firefighter switches.

US patent number: US 8,742,828 B2
US patent number: US 8,766,760 B2 (Fail-Safe-Element)

Features

- Double pole DC Disconnect (firefighter switch version) for disonnecting a PV string
- Disconnection e.g. after actuation of an emergency switch or firefighter safety switch (not part of the product) as well as by voltage interruption
- Automatic restart after voltage interruptions unless there is an intentional switching operation
- Lock-out feature in OFF condition
- Integral fail-safe function
- standard with auxiliary contact
- Meets the requirements of VDE-AR-E 2100-712

Typical applications

The firefighter switch has been designed for use in photovoltaic system and allows supporting measures during firefighting or technical aid by reliable disconnection of DC strings in the house. Customerfriendly rail mounting and compact size require only very little space and allow installation in a distribution box.

Relevant standards

Standard	Rated voltage	Current rating range
IEC/EN 60947-3	DC $1,000 \mathrm{~V}$	Up to 35 A

Ordering information

All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes. Errors and notice is reserved. Pr
omissions excepted.

Technical data

Technical data DC Disconnection for type PVSEC-...

Rated operational voltage $\left(\mathrm{U}_{\mathrm{e}}\right)$	DC 1,000 V
Rated current $\left(\mathrm{I}_{\mathrm{e}}\right)$	up to 35 A (higher ratings upon request)
Number of poles	2-pole
Internal resistance	typically $6 \mathrm{~m} \Omega$
Total power loss	9 W (at 35 A)
Method of operation	S - type
Operation mode	permanent
Rated insulation voltage $\left(\mathrm{U}_{\mathrm{i}}\right)$	DC 1500 V

Rated impulse withstand voltage $\left(\mathrm{U}_{\mathrm{imp}}\right)$	8 kV
Pollution degree	2
Overvoltage category	III
General data	
Fail-safe-element	integral
Screw terminal \quadthread tightening torque	M 4

Max. cable cross sections rigid (single or multi-wired) $0.5-16 \mathrm{~mm}^{2}$ flexible with wire end ferrule or with plastic sleeve flexible with TWIN-wire end ferrule cable cross section AWG $0.5-10 \mathrm{~mm}^{2}$ $0.5-6 \mathrm{~mm}^{2}$ 20-6 multi-conductor cables excluded

Technical data for remote control and zero voltage release module for type PVSEC-...

Rated operational voltage	DC 24 V
Rated insulation voltage	DC 32 V
Voltage range	DC $20 \ldots .26,4 \mathrm{~V}$
Closed current	typically 70 mA
Auxiliary circuit	DC $24 \mathrm{~V} ; 0.3 \mathrm{~A}$
Terminal design	spring-loaded terminals
ON duty	$50 \% / 60$ sec.

Technical data	
Dielectric strength (IEC 60947-1) DC 24 V input test voltage A (+/-) to aux. contact $(11,12,14)$ open aux. contact test voltage A	test voltage AC 1,000 V / DC 1415 V test voltage AC 500 V
General data	
Max. cable cross section single wired H05(07) V-U multi-wired H07 V-R flexible H05(07) V-K flexible with wire end ferrule wire end ferrule with moulded collar stripping length	V-U $0.25-1.5 \mathrm{~mm}^{2}$ $0.25-1.5 \mathrm{~mm}^{2}$ $0.25-1.5 \mathrm{~mm}^{2}$ ferrule $0.25-1.5 \mathrm{~mm}^{2}$ moulded collar $0.25-0.75 \mathrm{~mm}^{2}$ $8.0+1.0 \mathrm{~mm}$
Technical data for complete system type PVSEC-...	
Utilisation category DC-21 B	DC-21 B
Insulation resistance $\quad>100 \mathrm{M} \Omega(\mathrm{DC}$	> $100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V})$
Trip time to ON condition	typically 4 sec .
Trip time to OFF condition \quad typically <1 s	typically <1 sec.
Protection class operation area IP30 terminal area IP20	$\begin{aligned} & \text { IP30 } \\ & \text { IP20 } \end{aligned}$
Typical life to IEC 60947-3, test seq. II 120 cycles per hour test current $1 \times I_{e} 35 \mathrm{~A}$ test voltage $1 \times U_{e}$ DC 1.000 V time constant 1 ms cycles 300 electrically / 1,700 mechanically	
Rated short-time withstand current $\left(\mathrm{I}_{\mathrm{cw}}\right)$$\quad 400 \mathrm{~A}$	400 A
Rated short-circuit making capacity $\left(\mathrm{l}_{\mathrm{cm}}\right)$$\quad 400 \mathrm{~A}$	400 A
General data	
Lock-out feature \quad padlock $\varnothing 3-4$ Bracket diameter	padlock Ø 3-4.3 mm
$\begin{aligned} & \text { Design to } \\ & \text { DIN } 43880(1 \times \mathrm{w} \times \mathrm{h}) \end{aligned}$	$143 \times 90 \times 84.5 \mathrm{~mm}$
Mounting method rail mounting to	rail mounting to EN 50022-35x 7.5
Vibration resistance (sinusoidal) test to IEC 60068-2-6, test Fc, 10 frequency cycles/axis $\pm 0.23 \mathrm{~mm}(10-57 \mathrm{~Hz}) \text { and } 3 \mathrm{~g}(57-2,000 \mathrm{~Hz})$	
```Shock test to IEC 60068-2-27, test Ea 10 g (11 ms)```	
```Corrosion test to IEC 60068-2-11, test Ka 96 hrs. in 5% salt mist```	
Humidity test to IEC 60068-2-78, test Cab 96 hrs. in 95 \% RH, temperature $40^{\circ} \mathrm{C}$	
Temperature range operation: $-30^{\circ} \mathrm{C}$ up to $+60^{\circ} \mathrm{C}$ storage: $-40^{\circ} \mathrm{C}$ up to $+60^{\circ} \mathrm{C}$	
Mass approx. 560 g ,	approx. 560 g , IEC version (2-pole)

User instructions

- Humidity in the installation area (e.g. caused by condensation) must be avoided.
- The visual status indication of the PVSEC-... must not be blocked.
- It must be ensured in the application that each control unit is supplied with at least 1 A . For suitable switch mode power supplies please see E-T-A product series „SMP ..."
- Safety functions
- After ten cycles within one minute type PVSEC-... will be blocked for two minutes. If another ten cycles occur immediately after, type PVSEC-... will be blocked entirely and can only be re-activated by the manufacturer.
- In the event of overvoltage or undervoltage, start-up of the PVSEC-... will be prevented. This condition will be visually indicated by a flashing auxiliary contact provided the latter is energised. However, if a certain voltage level for the supply of the internal relay is not reached (e.g. in the event of zero voltage), flashing is no longer possible.
- Maintenance
- Electro-technical functional testing to ensure system availability has to be run regularly, at least every three months, unless other regional or user-specific additional tests are requested.
- Opening the devices will void all warranty claims.

Condition	Signalling with energised auxiliary contact
ON condition	terminals 14 and 11 are closed, e.g. indicated by red LED
OFF condition	terminals 11 and 12 are closed, e.g. indicated by green LED
undervoltage	terminal 11 is partly interrupted, e.g. indicated by flashing LED
overvoltage	terminal 11 is partly interrupted, e.g. indicated by flashing LED

Connection versions

E-T®Å Firefighter Switch PVSEC-...

Dimensions

Schematic diagram

Lock-out feature

System design with PVSEC-...

Application example PVSEC-...

*For suitable switch mode power supplies please see E-T-A product series „SMP ..."

