

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

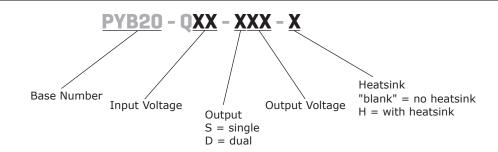
date 06/16/2015

page 1 of 7

SERIES: PYB20 | **DESCRIPTION:** DC-DC CONVERTER

FEATURES

- up to 20 W isolated output
- industry standard pinout
- 4:1 input range (9~36 Vdc, 18~75 Vdc)
- smaller package
- single/dual regulated outputs
- 1,500 Vdc isolation
- continuous short circuit, over current protection, over voltage protection
- temperature range (-40~85°C)
- UL 60950-1 approval
- six-sided metal shielding
- efficiency up to 90%


ROHS		ϵ	c A	N US
------	--	------------	------------	-------------

MODEL		nput oltage	output voltage		itput rrent	output power	ripple and noise²	efficiency
	typ (Vdc)	range (Vdc)	(Vdc)	min (mA)	max (mA)	max (W)	max (mVp-p)	typ (%)
PYB20-Q24-S3	24	9~36	3.3	250	5000	16.5	100	86
PYB20-Q24-S5	24	9~36	5	200	4000	20	100	90
PYB20-Q24-S12	24	9~36	12	84	1667	20	100	89
PYB20-Q24-S15	24	9~36	15	67	1333	20	100	90
PYB20-Q24-S24	24	9~36	24	42	834	20	100	90
PYB20-Q24-D5	24	9~36	±5	±100	±2000	20	100	86
PYB20-Q24-D12	24	9~36	±12	±42	±834	20	100	88
PYB20-Q24-D15	24	9~36	±15	±33	±667	20	100	88
PYB20-Q48-S3 ¹	48	18~75	3.3	250	5000	16.5	100	86
PYB20-Q48-S5 ¹	48	18~75	5	200	4000	20	100	90
PYB20-Q48-S12 ¹	48	18~75	12	84	1667	20	100	89
PYB20-Q48-S15 ¹	48	18~75	15	67	1333	20	100	90
PYB20-Q48-S24 ¹	48	18~75	24	42	834	20	100	90
PYB20-Q48-D5	48	18~75	±5	±100	±2000	20	100	86
PYB20-Q48-D12	48	18~75	±12	±42	±834	20	100	88
PYB20-Q48-D15	48	18~75	±15	±33	±667	20	100	89

Notes: 1. UL approved

OL approved
Ripple and noise are measured at 20 MHz BW by "parallel cable" method with 1 μF ceramic and 10 μF electrolytic capacitors on the output.

PART NUMBER KEY

INPUT

parameter	conditions/description	min	typ	max	units
operating input voltage	24 Vdc input models 48 Vdc input models	9 18	24 48	36 75	Vdc Vdc
start-up voltage	24 Vdc input models 48 Vdc input models			9 17.8	Vdc Vdc
under voltage shutdown¹	24 Vdc input models 48 Vdc input models	7.5 16			Vdc Vdc
surge voltage	for maximum of 1 second 24 Vdc input models 48 Vdc input models	-0.7 -0.7		50 100	Vdc Vdc
start-up time	nominal input, constant load		10		ms
filter	pi filter				
	models ON (CTRL open or connect TTL hig	h level, 2.5~12 Vdc)			
CTRL ²	models OFF (CTRL connect GND or low lev	el, 0~1.2 Vdc)			
	input current (models OFF)		1		mA

Notes:

- 1. Contact CUI if you are planning to use this feature in your application. 2. CTRL pin voltage is referenced to GND.

OUTPUT

parameter	conditions/description	min	typ	max	units
line regulation	full load, input voltage from low to high		±0.2	±0.5	%
load regulation	5% to 100% load		±0.5	±1	%
cross regulation	dual output models: main output 50% load, secondary output from 10% to 100% load			±5	%
voltage accuracy			±1	±3	%
voltage balance ³	dual output, balanced loads		±0.5	±1	%
adjustability ⁴			±10		%
switching frequency	PWM mode		300		kHz
transient recovery time	25% load step change		300	500	μs
transient response deviation	25% load step change		±3	±5	%
temperature coefficient	100% load			±0.02	%/°C

- 3. For dual output models, unbalanced loads should not exceed $\pm 5\%$. If $\pm 5\%$ is exceeded, it may not meet all specifications.
- 4. Output trimming available on single output models only.

PROTECTIONS

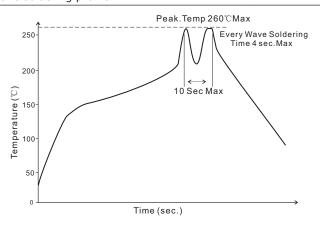
parameter	conditions/description	min	typ	max	units
short circuit protection	hiccup, continuous, automatic recovery				
over current protection			160		%
	3.3 Vdc output models		3.9		Vdc
	5 Vdc output models		6.2		Vdc
over voltage protection	12 Vdc output models		15		Vdc
	15 Vdc output models		18		Vdc
	24 Vdc output models		30		Vdc

SAFETY AND COMPLIANCE

parameter	conditions/description	min	typ	max	units
isolation voltage	input to output for 1 minute at 1 mA max.	1,500			Vdc
isolation resistance	input to output at 500 Vdc	1,000			МΩ
safety approvals ⁵	UL 60950-1, CE				

Note: 5. See specific models noted on page 1, excludes heat sink versions.

SAFETY AND COMPLIANCE (CONTINUED)


parameter	conditions/description	min	typ	max	units
conducted emissions	CISPR22/EN55022, class A, class B (ext	ernal circuit required, see	Figure 1-b)		
radiated emissions	CISPR22/EN55022, class A, class B (ext	ernal circuit required, see	Figure 1-b)		
ESD	IEC/EN61000-4-2, class B, contact ± 4k	IEC/EN61000-4-2, class B, contact ± 4kV			
radiated immunity	IEC/EN61000-4-3, class A, 10V/m	IEC/EN61000-4-3, class A, 10V/m			
EFT/burst	IEC/EN61000-4-4, class B, ± 2kV (exter	IEC/EN61000-4-4, class B, ± 2kV (external circuit required, see Figure 1-a)			
surge	IEC/EN61000-4-5, class B, ± 2kV (exter	nal circuit required, see F	igure 1-a)		
conducted immunity	IEC/EN61000-4-6, class A, 3 Vr.m.s				
voltage dips & interruptions	IEC/EN61000-4-29, class B, 0%-70%				
MTBF	as per MIL-HDBK-217F @ 25°C	1,000,000			hours
RoHS	2011/65/EU				

ENVIRONMENTAL

parameter	conditions/description	min	typ	max	units
operating temperature	see derating curves	-40		85	°C
storage temperature		-55		125	°C
storage humidity	non-condensing	5		95	%
case temperature	at full load, Ta=71°C			105	°C
vibration	10~55 Hz for 30 min. along X, Y and Z axis		10		G

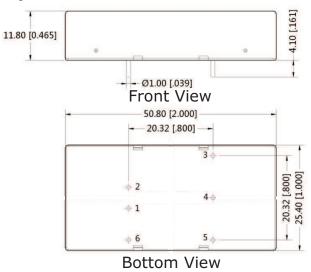
SOLDERABILITY

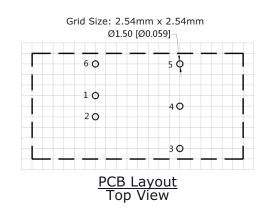
parameter	conditions/description	min	typ	max	units
hand soldering	1.5 mm from case for 10 seconds			300	°C
wave soldering	see wave soldering profile			260	°C

MECHANICAL

parameter	conditions/description	min	typ	max	units
dimensions	board mount: $50.8 \times 25.4 \times 11.8$ board mount with heatsink: $50.8 \times 25.4 \times 16.3$				mm mm
case material	aluminum alloy				
weight	board mount board mount with heatsink		28 36		g g

MECHANICAL DRAWING

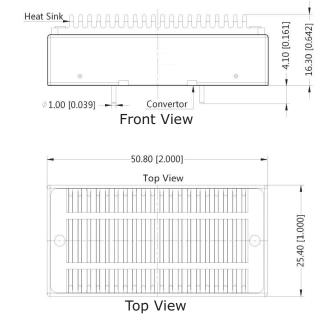

BOARD MOUNT

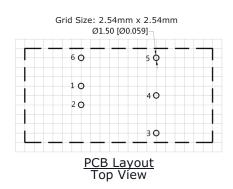

units: mm[inch]

tolerance: $\pm 0.3[\pm 0.012]$

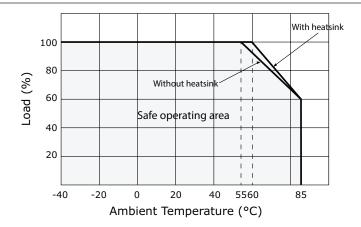
pin diameter tolerance: $\pm 0.10[\pm 0.004]$ pin height tolerance: $\pm 0.50[\pm 0.020]$

PIN	PIN CONNECTIONS				
PIN	Single Output	Dual Output			
1	GND	GND			
2	Vin	Vin			
3	+Vo	+Vo			
4	Trim	0V			
5	0V	-Vo			
6	CTRL	CTRL			


BOARD MOUNT WITH HEATSINK


units: mm[inch]

tolerance: $\pm 0.3[\pm 0.012]$


pin diameter tolerance: $\pm 0.10[\pm 0.004]$ pin height tolerance: $\pm 0.50[\pm 0.020]$

PIN CONNECTIONS					
Single Dual Output Outpu					
GND	GND				
Vin	Vin				
+Vo	+Vo				
Trim	0V				
0V	-Vo				
CTRL	CTRL				
	Single Output GND Vin +Vo Trim 0V				

DERATING CURVES

EMC RECOMMENDED CIRCUIT

Figure 1

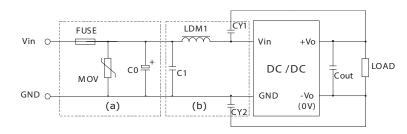


Table 1

Recomm	Recommended external circuit components		
Vin (Vdc)	24	48	
FUSE	Choose according to input current		
MOV	S14K35	S14K60	
LDM1	4.7µH	4.7μH	
C0	330µF/50V	330µF/100V	
C1	1μF/50V	1μF/100V	
CY1	1nF/2kV	1nF/2kV	
CY2	1nF/2kV	1nF/2kV	

Note:

1. See Table 2 for Cout values.

APPLICATION NOTES

Recommended circuit

This series has been tested according to the following recommended testing circuit before leaving the factory. This series should be tested under load (see Figure 2). If you want to further decrease the input/output ripple, you can increase the capacitance accordingly or choose capacitors with low ESR (see Table 2). However, the capacitance of the output filter capacitor must be appropriate. If the capacitance is too high, a startup problem might arise. For every channel of the output, to ensure safe and reliable operation, the maximum capacitance must be less than the maximum capacitive load (see Table 3).

Single Output +Vo Cin ⊑ DC DC Cout⊑ **GND** ∽

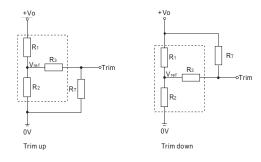
Figure 2 **Dual Output** +Vo Vin ∽ Cout⊑ Cin ⊑ DC DC 0V Cout **GND** ∽

Table 2

Single Vout Cout **Dual Vout** Cout1 (Vdc) (Vdc) (µF) (µF) (µF) (µF) 3.3 100 470 5 100 470 ±5 100 220 12 100 220 100 100 ±12 15 100 220 ±15 100 100 24 100 100 --

1. For each output. Note:

Table 3


Single Vout (Vdc)	Max. Capacitive Load (μF)	Dual Vout (Vdc)	Max. Capacitive Load¹ (μF)
3.3	10200		
5	4020	5	4800
12	1035	12	800
15	705	15	500
24	470		

Note: 1. For each output.

Output voltage trimming

Leave open if not used.

Figure 3 Application Circuit for Trim pin (part in broken line is the interior of models)

Formula for Trim Resistor

$$\begin{array}{ccc} \text{up:} & R_T = \begin{array}{c} aR_2 \\ R_2 \text{-}a \end{array} & -R_3 & a = \begin{array}{c} V\text{ref} \\ \text{Vo'} \text{-}V\text{ref} \end{array} \cdot R_1 \\ \\ \text{down:} & R_T = \begin{array}{c} aR_1 \\ R_1 \text{-}a \end{array} & -R_3 & a = \begin{array}{c} V\text{o'} \text{-}V\text{ref} \\ \text{Vref} \end{array} \cdot R_2 \end{array}$$

Note: Value for R1, R2, R3, and Vref refer to Table 4

R₊: Trim Resistor

a: User-defined parameter, no actual meanings

Vo': The trim up/down voltage

Vout (Vdc)	R1 (kΩ)	R2 (kΩ)	R3 (kΩ)	Vref (V)
3.3	4.801	2.863	15	1.24
5	2.883	2.864	10	2.5
12	10.971	2.864	17.8	2.5
15	14.497	2.864	17.8	2.5
24	24.872	2.863	20	2.5

Table 4

(Vdc)	(kΩ)	κ2 (kΩ)	κ3 (kΩ)	(V)
3.3	4.801	2.863	15	1.24
5	2.883	2.864	10	2.5
12	10.971	2.864	17.8	2.5
15	14.497	2.864	17.8	2.5
24	24.872	2.863	20	2.5

Note:

- 1. Minimum load shouldn't be less than 5%, otherwise ripple may increase dramatically. Operation under minimum load will not damage the converter, however, they may not meet all specifications listed.
 - 2. Maximum capacitive load is tested at input voltage range and full load.
 - 3. All specifications are measured at Ta=25°C, humidity<75%, nominal input voltage and rated output load unless otherwise specified.

REVISION HISTORY

rev.	description	date
1.0	initial release	06/26/2013
1.01	updated spec	08/15/2013
1.02	added CE safety approval	10/29/2013
1.03	updated spec	08/18/2014
1.04	added UL approval to some models	06/16/2015

The revision history provided is for informational purposes only and is believed to be accurate.

Headquarters 20050 SW 112th Ave. Tualatin, OR 97062 **800.275.4899**

Fax 503.612.2383 **cui**.com techsupport@cui.com

CUI offers a two (2) year limited warranty. Complete warranty information is listed on our website.

CUI reserves the right to make changes to the product at any time without notice. Information provided by CUI is believed to be accurate and reliable. However, no responsibility is assumed by CUI for its use, nor for any infringements of patents or other rights of third parties which may result from its use.

CUI products are not authorized or warranted for use as critical components in equipment that requires an extremely high level of reliability. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.