

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

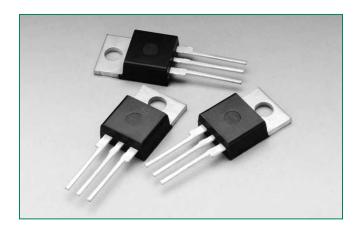
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

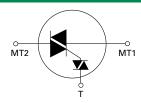
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



Teccor® brand Thyristors 8 Amp Alternistor Quadrac for LED dimmer applications

Q6008LTH1LED Series


Agency Approval

Agency	Agency File Number	
71 °	L Package : E71639	

Main Features

Symbol	Value	Unit
I _{T(RMS)}	8	А
V _{DRM} /V _{RRM}	600	V
DIAC V _{BO}	33 to 43	V

Schematic Symbol

Additional Information

Resources

Description

The Quadrac is an internally triggered Triac designed for AC switching and phase control applications. It is a Triac and DIAC in a single package, which saves user expense by eliminating the need for separate Triac and DIAC components.

Q6008LTH1LED series is designed to meet low load current characteristics typical in LED lighting applications.

By keeping holding current at 6mA maximum, this Quadrac series is characterized and specified to perform best with LED loads. The Q6008LTH1LED series is best suited for LED dimming controls to obtain the lowest levels of light output with a minimum probability of flickering.

Q6008LTH1LED series is offered in the industry standard TO-220AB package with an isolated mounting tab that makes it best suited for adding an external heat sink.

Features

- As low as 6mA max holding current
- UL recognized TO-220AB package
- 110°C rated junction temperature
- di/dt performance of 70A/µs
- QUADRAC version includes intergrated DIAC
- RoHS compliant

Benefits

- Provides full control of light out put at the extreme low end of load conditions.
- 2500V _{AC} min isolation between mounting tab and active terminals
- Improves margin of safe operation with less heat sinking required
- Enable survivability of typically LED load operating characteristics
- Simplicity of circuit design & layout

Applications

Excellent for AC switching and phase control applications such as lighting and motor speed controls. Typical applications are AC solid-state switches, light dimmers with LED loads, small low current motor in power tools, and low current motors in home/brown goods appliances.

Internally constructed isolated package is offered for ease of heat sinking with highest isolation voltage.

Abso	lute N	/laximu	m Rati	ngs

Symbol	Param	Value	Unit		
I _{T(RMS)}	RMS forward current	Tc = 80°C	8	А	
	Peak non-repetitive surge current	single half cycle; f = 50Hz; T _J (initial) = 25°C	80		
TSM	reak norriepetitive surge current	single half cycle; f = 60Hz; T _J (initial) = 25°C	85	А	
l²t	I²t value for fusing	$t_p = 8.3 ms$	30	A ² s	
di/dt	Critical rate-of-rise of on-state current	f = 60Hz; T _J =110°C	70	A/µs	
I _{GM}	Peak gate current $T_{_{\rm J}} = 110 ^{\circ}{\rm C}$		1.5	А	
T _{stq}	Storage temperature range	-40 to 150	°C		
T _J	Operating junction temperature range	-40 to 110	°C		

Electrical Characteristics (T_J = 25°C, unless otherwise specified) – Alternistor Quadrac

Symbol	Test Conditions		Value	Unit
I _H	$I_{T} = 15 \text{mA (initial)}$	MAX.	6	mA
dv/dt	$V_D = V_{DRM}$; gate open; $T_J = 110$ °C	MIN.	50	V/µs
dv/dt(c)	$di/dt(c) = 0.54 \times I_{T(rms)} / ms; T_{J} = 110^{\circ}C$	MIN.	10	V/µs
t _{gt}	(note 1)	TYP.	3	μs

⁽¹⁾ Reference test circuit in figure 7 and waveform in figure 8; $C_{_T}$ = 0.1 μ F with 0.1 μ s rise time.

Trigger DIAC Specifications

Symbol	Test Conditions		Value	Unit
ΔV_{BO}	Breakover Voltage Symmetry	MAX.	3	V
\/	Dreakayar Valtaga faryard and rayara	MIN.	33	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
V_{BO}	Breakover Voltage, forward and reverse	MAX.	43	V
[ΔV±]	Dynamic Breakback Voltage, forward and reverse (note 1)	MIN.	5	V
I _{BO}	Peak Breakover Current	MAX.	25	uA
$C_{\scriptscriptstyle T}$	Trigger Firing Capacitance	MAX.	0.1	μF

⁽¹⁾ Reference test circuit in figure 7 and waveform in figure 8.

Static Characteristics

Symbol	ool Test Conditions			Value	Unit
V _{TM}	$I_{T} = 1.41 \times I_{T_{(rms)}} A; t_{p} = 380 \mu s$		MAX.	1.6	V
1 /1	V 0/	T _J = 25°C		10	
I _{DRM} / I _{RRM} V _{DRM} / V _{RRM}	V _{DRM} / V _{RRM}	T _J = 110°C	MAX.	500	μΑ

Thermal Resistances

Symbol	Parameter	Value	Unit
$R_{\theta(J-C)}$	Junction to case (AC)	2.8	°C/W
$R_{\theta(J-A)}$	Junction to ambient	50	°C/W

Figure 1: Normalized DC Holding Current vs. Junction Temperature

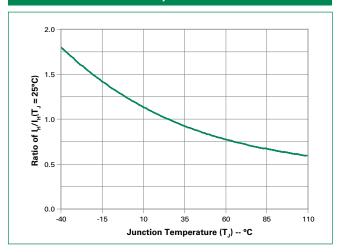


Figure 3: Power Dissipation vs. RMS On-State Current (Typical)

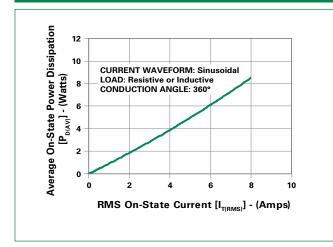


Figure 2: On-State Current vs. On-State Voltage (Typical)

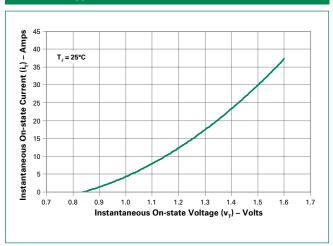


Figure 4: Maximum Allowable Case Temperature vs. RMS On-State Current

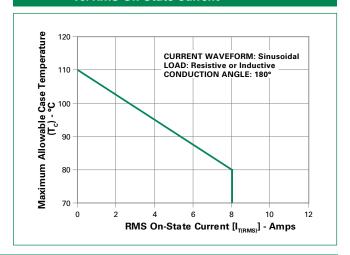
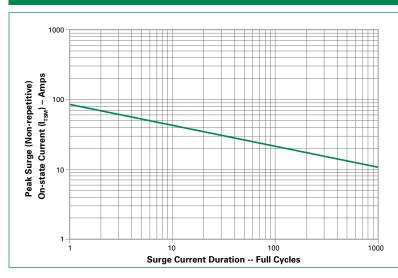



Figure 5: Surge Peak On-State Current vs. Number of Cycles

Supply Frequency: 60Hz Sinusoidal

Load: Resistive

RMS On-State Current: $[I_{T(RMS)}]$: Maximum Rated Value at Specific Case Temperature

Notes:

- 1. Gate control may be lost during and immediately following surge current interval.
- Overload may not be repeated until junction temperature has returned to steady-state rated value.

Figure 6: DIAC V_{BO} Change vs. Junction Temperature

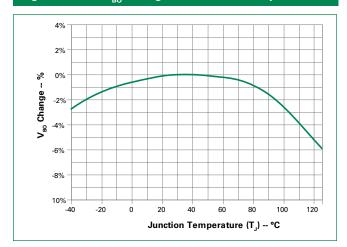


Figure 7: Test Circuit

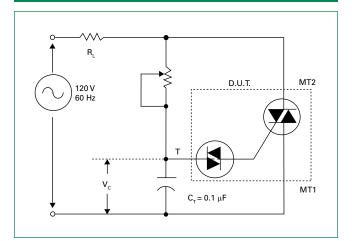
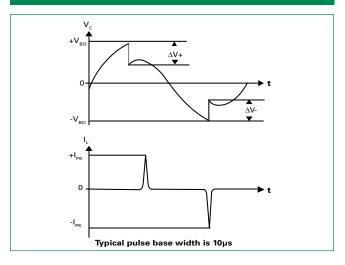
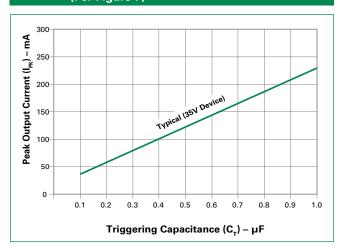
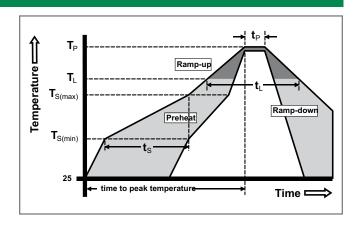


Figure 8: Test Circuit Waveform


Figure 9: Peak Output Current vs Triggering Capacitance (Per Figure 7)

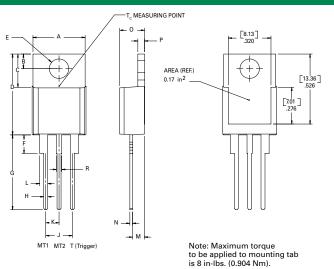
Soldering Parameters

Reflow Condition		Pb – Free assembly	
	-Temperature Min (T _{s(min)})	150°C	
Pre Heat	-Temperature Max (T _{s(max)})	200°C	
	-Time (min to max) (t _s)	60 – 180 secs	
Average ramp up rate (Liquidus Temp) (T _L) to peak		5°C/second max	
$T_{S(max)}$ to T_{L}	- Ramp-up Rate	5°C/second max	
Reflow	-Temperature (T _L) (Liquidus)	217°C	
nellow	-Temperature (t _L)	60 – 150 seconds	
PeakTemp	erature (T _P)	260°C +0/-5	
Time within 5°C of actual peak Temperature (t _p)		20 - 40 seconds	
Ramp-down Rate		5°C/second max	
Time 25°C to peak Temperature (T _P)		8 minutes Max.	
Do not exc	ceed	280°C	

Physical Specifications

Terminal Finish	1005 Matte Tin-plated
Body Material	UL Recognized epoxy meeting flammability classification 94v-0
Lead Material	Copper Alloy

Design Considerations


Careful selection of the correct device for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Good design practice should limit the maximum continuous current through the main terminals to 75% of the device rating. Other ways to ensure long life for a power discrete semiconductor are proper heat sinking and selection of voltage ratings for worst case conditions. Overheating, overvoltage (including dv/dt), and surge currents are the main killers of semiconductors. Correct mounting, soldering, and forming of the leads also help protect against component damage.

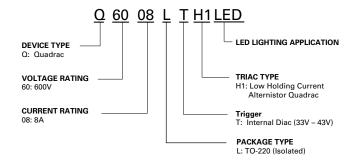
Environmental Specifications

Test	Specifications and Conditions
High Temperature Voltage Blocking	MIL-STD-750: Method 1040, Condition A Rated V _{DRM} (VAC-peak), 110°C, 1008 hours
Temperature Cycling	MIL-STD-750: Method 1051 -40°C to 150°C, 15-minute dwell, 100 cycles
Biased Temperature & Humidity	EIA/JEDEC: JESD22-A101 320VDC, 85°C, 85%RH, 1008 hours
High Temp Storage	MIL-STD-750: Method 1031 150°C, 1008 hours
Low-Temp Storage	-40°C, 1008 hours
Resistance to Solder Heat	MIL-STD-750: Method 2031 260°C, 10 seconds
Solderability	ANSI/J-STD-002, Category 3, Test A
Lead Bend	MIL-STD-750: Method 2036, Condition E

Dimensions — TO-220AB (L-Package) — Isolated Mounting Tab

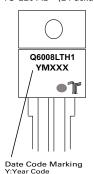
Dimension	Incl	hes	Millin	neters
Dimension	Min	Max	Min	Max
А	0.380	0.420	9.65	10.67
В	0.105	0.115	2.67	2.92
С	0.230	0.250	5.84	6.35
D	0.590	0.620	14.99	15.75
Е	0.142	0.147	3.61	3.73
F	0.110	0.130	2.79	3.30
G	0.540	0.575	13.72	14.61
Н	0.025	0.035	0.64	0.89
J	0.195	0.205	4.95	5.21
K	0.095	0.105	2.41	2.67
L	0.060	0.075	1.52	1.91
М	0.085	0.095	2.16	2.41
N	0.018	0.024	0.46	0.61
0	0.178	0.188	4.52	4.78
Р	0.045	0.060	1.14	1.52
R	0.038	0.048	0.97	1.22

Product Selector


Part Number	Туре	Package
Q6008LTH1LED	Alternistor Quadrac	TO-220L

Note: xx = Voltage

Packing Options


Part Number	Marking	Weight	Packing Mode	Base Quantity
Q6008LTH1LEDTP	Q6008LTH1	2.2 g	Tube	500 (50 per tube)

Part Numbering System

Part Marking System

TO-220 AB - (L Package)

Date Code Marking Y:Year Code M: Month Code XXX: Lot Trace Code