

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

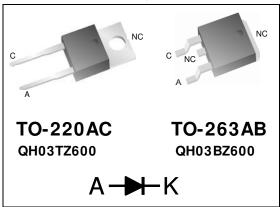
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China


QH03TZ600, QH03BZ600 Qspeed[™] Family

600 V, 3 A H-Series PFC Diode

Product Summary

I _{F(AVG)}	3	Α
V_{RRM}	600	٧
Q _{RR} (Typ at 125 °C)	14.8	nC
I _{RRM} (Typ at 125 °C)	1.35	Α
Softness t _B /t _A (Typ at 125 °C)	1.1	

Pin Assignment

RoHS Compliant

Package uses Lead-free plating and Green mold compound. Halogen free per IEC 61249-2-21.

General Description

This device has the lowest Q_{RR} of any 600 V silicon diode. Its recovery characteristics increase efficiency, reduce EMI and eliminate snubbers.

Applications

- Power Factor Correction (PFC) boost diode
- · Motor drive circuits
- DC-AC Inverters

Features

- Low Q_{RR}, low I_{RRM}, low t_{RR}
- High dI_F/dt capable (1000 A / μs)
- Soft recovery

Benefits

- Increases efficiency
 - Eliminates need for snubber circuits
 - Reduces EMI filter component size & count
- · Enables extremely fast switching

Absolute Maximum Ratings

Absolute maximum ratings are the values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Symbol	Parameter	Conditions	Rating	Units
V_{RRM}	Peak repetitive reverse voltage	T _J = 25 °C	600	V
I _{F(AVG)}	Average forward current	T _J = 150 °C, T _C = 120 °C	3	Α
I _{FSM}	Non-repetitive peak surge current	60 Hz, $\frac{1}{2}$ cycle, $T_C = 25 ^{\circ}\text{C}$	35	Α
I _{FSM}	Non-repetitive peak surge current	$1/2$ cycle of t = 28 μ s Sinusoid, T_C = 25 °C	350	Α
T _J	Operating junction temperature range		-55 to 150	°C
T _{STG}	Storage temperature		-55 to 150	°C
	Lead soldering temperature	Leads at 1.6 mm from case, 10 sec	300	°C
V _{ISOL}	Isolation voltage (leads-to-tab)	AC, TO-220	2500	٧
V_{ISOL}	Isolation voltage (leads-to-tab)	AC, TO-263	1500	٧
P_D	Power dissipation	T _C = 25 °C	30.4	W

www.power.com November 2015

Thermal Resistance

Symbol	Resistance from:	Conditions	Rating	Units
$R_{\theta JA}$	Junction to ambient	TO-220 (only)	62	°C/W
$R_{\theta JC}$	Junction to case		4.1	°C/W

Electrical Specifications at T_{.1} = 25 °C (unless otherwise specified)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
DC Chara	DC Characteristics						
1	Deveree everent	$V_R = 600 \text{ V}, T_J = 25 ^{\circ}$	С	-	-	250	μА
I _R	Reverse current	$V_R = 600 \text{ V}, T_J = 125$	°C	-	0.22	-	mA
	$I_F = 3 \text{ A}, T_J = 25 \text{ °C}$		1	2.52	3.0	V	
V _F	Forward voltage	I _F = 3 A, T _J = 150 °C		-	2.1	-	V
CJ	Junction capacitance	$V_R = 10 \text{ V}, 1 \text{ MHz}$		-	11	-	pF
Dynamic	Dynamic Characteristics						
	Davis and the same time a	$dI/dt = 200 A/\mu s$	$T_J = 25 ^{\circ}C$	-	9.8	-	ns
t _{RR}	Reverse recovery time	$V_R = 400 \text{ V}, I_F = 3 \text{ A}$	T _J = 125 °C	-	16.1	-	ns
0	Reverse recovery	$dI/dt = 200 A/\mu s$	$T_J = 25 ^{\circ}C$	-	5.8	10	nC
Q _{RR}	charge	$V_R = 400 \text{ V}, I_F = 3 \text{ A}$	T _J = 125 °C	-	14.8	-	nC
	Maximum reverse	$dI/dt = 200 A/\mu s$	$T_J = 25 ^{\circ}C$	-	0.93	1.4	Α
RRM	recovery current	$V_R = 400 \text{ V}, I_F = 3 \text{ A}$	T _J = 125 °C	-	1.35	-	Α
S Softness	Softness factor = $\frac{t_B}{}$	dI/dt = 200 A/μs	$T_J = 25 ^{\circ}C$	-	0.92	-	
	Somess factor = $\frac{B}{t_A}$	$V_R = 400 \text{ V}, I_F = 3 \text{ A}$	T _J = 125 °C	-	1.1	-	

<u>Note to component engineers</u>: H-Series diodes employ Schottky technologies in their design and construction. Therefore, Component Engineers should plan their test setups to be similar to those for traditional Schottky test setups. (For additional details, see Application Note AN-300.)

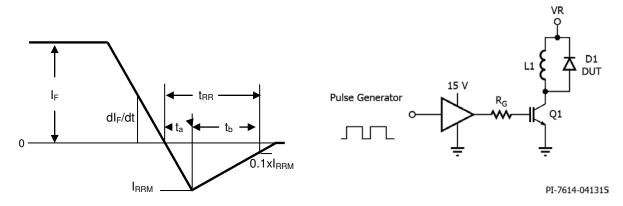
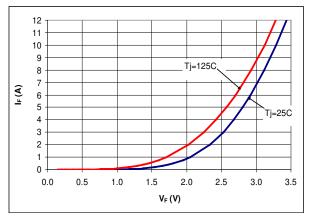
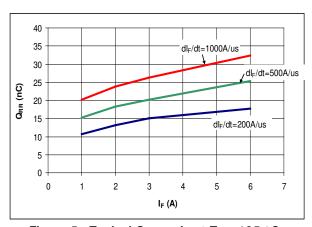



Figure 1. Reverse Recovery Definitions.

Figure 2. Reverse Recovery Test Circuit.


Electrical Specifications at $T_J = 25$ °C (unless otherwise specified)

35 30 25 20 15 10 0 20 40 60 80 100 120 140 160 180 V_R(V)

Figure 3. Typical I_F vs. V_F.

Figure 4. Typical C_J vs V_R .

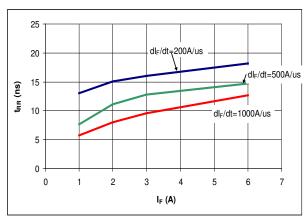
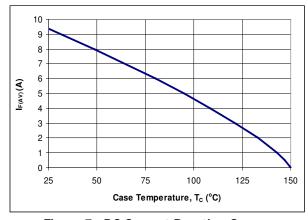



Figure 5. Typical Q_{RR} vs. I_F at T_J = 125 °C.

Figure 6. Typical t_{RR} vs. I_F at T_J = 125 °C.

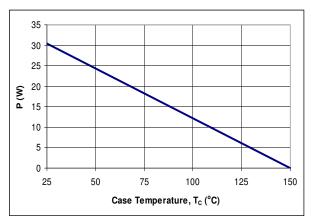


Figure 7. DC Current Derating Curve.

Figure 8. Power Derating Curve.

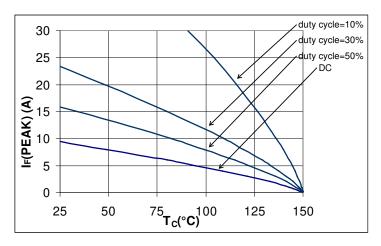


Figure 9. $I_F(PEAK)$ vs. T_C , f = 70 kHz.

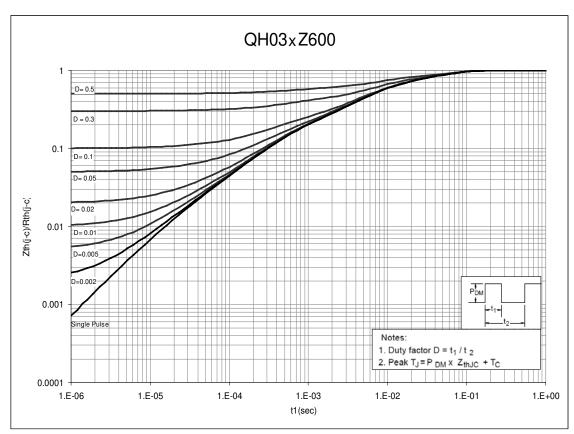
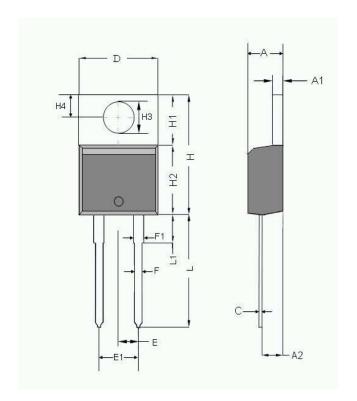
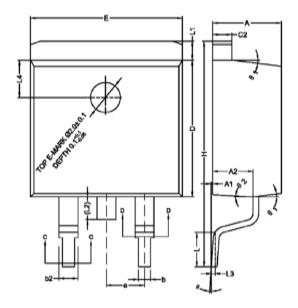



Figure 10. Normalized Maximum Transient Thermal Impedance.

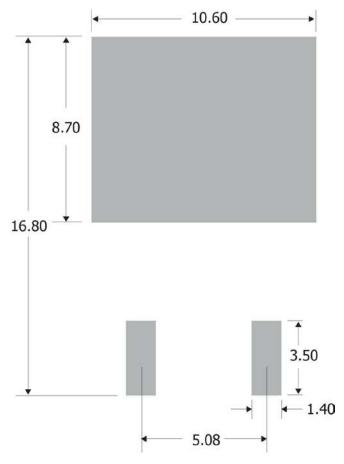
Dimensional Outline Drawing


TO-220AC

	Millimeters		
Dim	MIN	MAX	
Α	4.32	4.70	
A 1	1.14	1.40	
A2	2.03	2.79	
С	0.34	0.610	
D	9.65	10.67	
Е	2.49	2.59	
E1	4.98	5.18	
F	0.508	1.016	
F1	1.14	1.78	
Н	14.71	16.51	
H1	5.84	6.795	
H2	8.40	9.00	
Н3	3.53	3.96	
H4	2.54	3.05	
L	12.70	14.22	
L1	-	6.35	

Dimensional Outline Drawing

TO-263AB



	Millimeters		
Dim	MIN MAX		
Α	4.40	4.70	
A 1	0.00	0.25	
A2	2.59	2.79	
b	0.77	0.90	
b2	1.23	1.36	
c2	1.22	1.32	
D	9.05	9.25	
E	10.06	10.26	
е	2.54 BSC	2.54 BSC	
Н	14.70	15.50	
L	2.00	2.60	
L1	1.17	1.40	
L2	-	1.75	
L3	0.25 BSC	0.25 BSC	
L4	2.00 BSC	2.00 BSC	
Θ	0°	8°	
01	5°	9°	
Θ2	1° 5°		

Mechanical Mounting Method	Maximum Torque / Pressure specification
Screw through hole in package tab	1 Newton Meter (nm) or 8.8 inch-pounds (lb-in)
Clamp against package body	12.3 kilogram-force per square centimeter (kgf/cm ²) or 175 lbf/in ²

Footprint and Solder Pad Dimensions

Pad Dimensions in mm: TO-263AB

Soldering time and temperature: This product has been designed for use with high-temperature, lead-free solder. The component leads can be subjected to a maximum temperature of 300 °C, for up to 10 seconds. See Application Note AN-303, for more details.

Ordering Information

Part Number	Package	Packing
QH03TZ600	TO-220AB	50 units/tube
QH03BZ600	TO-263AB	800 units/reel

The information contained in this document is subject to change without notice.

QH03TZ600, QH03BZ600

Revision	Notes	Date
1.0	Released by Qspeed	01/10
1.1	Converted to Power Integrations Document	01/11
1.2	Added QH03BZ600	02/13
1.3	Updated with new Brand Style. Added footprint and solder pad dimension for TO-263AB package.	11/15

For the latest updates, visit our website: www.power.com

Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY. FITNESS FOR A PARTICULAR PURPOSE. AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

The products and applications illustrated herein (including transformer construction and circuits' external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.power.com. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.power.com/ip.htm.

Life Support Policy

POWER INTEGRATIONS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF POWER INTEGRATIONS. As used herein:

- 1. A Life support device or system is one which, (i) is intended for surgical implant into the body, or (ii) supports or sustains life, and (iii) whose failure to perform, when properly used in accordance with instructions for use, can be reasonably expected to result in significant injury or death to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

The PI Logo, TOPSwitch, LinkSwitch, LYTSwitch, InnoSwitch, DPA-Switch, PeakSwitch, CAPZero, SENZero, LinkZero, HiperPFS, HiperTFS, HiperLCS, Ospeed, EcoSmart, Clampless, E-Shield, Filterfuse, FluxLink, StackFET, Pl Expert and Pl FACTS are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. © Copyright 2015 Power Integrations, Inc.

Power Integrations Worldwide Sales Support Locations

WORLD HEADQUARTERS

5245 Hellyer Avenue

San Jose, CA 95138, USA. Main: +1-408-414-9200 Customer Service: Phone: +1-408-414-9665 Fax: +1-408-414-9765 e-mail: usasales@power.com

CHINA (SHANGHAI)

Rm 2410, Charity Plaza, No. 88, North Caoxi Road, Shanghai, PRC 200030 Phone: +86-21-6354-6323 Fax: +86-21-6354-6325 e-mail: chinasales@power.com

CHINA (SHENZHEN)

17/F, Hivac Building, No. 2, Keji Nan 8th Road, Nanshan District, Shenzhen, China, 518057 Phone: +86-755-8672-8689 Fax: +86-755-8672-8690 e-mail: chinasales@power.com

GERMANY

Lindwurmstrasse 114 80337, Munich Germany Phone: +49-895-527-39110 Fax: +49-895-527-39200

e-mail:

eurosales@power.com

#1, 14th Main Road Vasanthanagar Bangalore-560052 India Phone: +91-80-4113-8020

Fax: +91-80-4113-8023

e-mail:

indiasales@power.com

ITALY

Via Milanese 20, 3rd. Fl. 20099 Sesto San Giovanni (MI) Italy

Phone: +39-024-550-8701 Fax: +39-028-928-6009

e-mail:

eurosales@power.com

JAPAN

Kosei Dai-3 Building 2-12-11, Shin-Yokohama, Kohoku-ku Yokohama-shi, Kanagawa 222-0033 Japan Phone: +81-45-471-1021 Fax: +81-45-471-3717 e-mail: japansales@power.com

RM 602, 6FL

Korea City Air Terminal B/D, 159-6 Samsung-Dong, Kangnam-Gu, Seoul, 135-728 Korea Phone: +82-2-2016-6610 Fax: +82-2-2016-6630

e-mail: koreasales@power.com

SINGAPORE

51 Newton Road, #19-01/05 Goldhill Plaza Singapore, 308900 Phone: +65-6358-2160 Fax: +65-6358-2015 e-mail:

TAI WAN

5F, No. 318, Nei Hu Rd., Sec. 1 Nei Hu District Taipei 11493, Taiwan R.O.C. Phone: +886-2-2659-4570 Fax: +886-2-2659-4550 e-mail: taiwansales@power.com

Cambridge Semiconductor, a Power Integrations company Westbrook Centre, Block 5, 2nd Floor Milton Road Cambridge CB4 1YG Phone: +44 (0) 1223-446483 e-mail: eurosales@power.com

singaporesales@power.com