

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

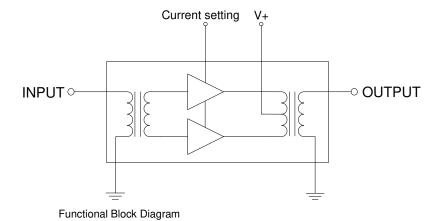
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



RFMD + TriQuint = Qorvo

QPA3240

GaAs/GaN Power Doubler Hybrid 45MHz to 1218MHz

The QPA3240 is a Hybrid Power Doubler amplifier module. The part employs GaAs pHEMT die and GaN HEMT die, has extremely high output capability, and is operated from 45MHz to 1218MHz. It provides excellent linearity and superior return loss performance with low noise and optimal reliability. DC current of the device can be externally adjusted for optimum distortion performance versus power consumption over a wide range of output level.

Ordering Information

QPA3240 Box with 50 pieces

Package: SOT-115J

Features

- Excellent Linearity
- Superior Return Loss Performance
- Optimal Reliability
- Low Noise
- Unconditionally Stable Under All Terminations
- 24.5dB Min. Gain at 1218MHz
- 480mA Max.
- Extra Pin For Current Adjustment

Applications

- 45MHz to 1218MHz CATV Amplifier Systems
- DOCSIS 3.1 Compliant

QPA3240

RFMD + TriQuint = Qorvo

Absolute Maximum Ratings

Parameter	Rating	Unit
RF Input Voltage (single tone)	75	dBmV
DC Supply Over-Voltage (5 minutes)	30	V
Storage Temperature	-40 to +100	°C
Operating Mounting Base Temperature	-30 to +100	°C

Caution! ESD sensitive device.

RFMD Green: RoHS status based on EU Directive 2011/65/EU (at time of this document revision), halogen free per EN 14582: 2007, < 1000ppm each of antimony trioxide in polymeric materials and red phosphorus as a flame retardant, and <2% antimony in solder.

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

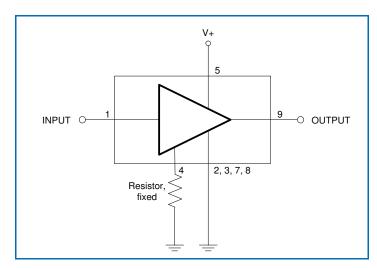
Electrical Specifications

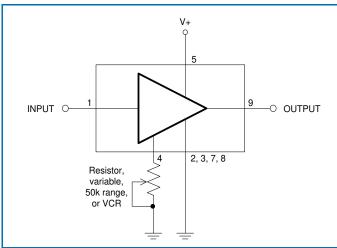
Davamatav	Specification		11	Condition		
Parameter	Min	Тур	Max	Unit	Condition	
General Performance. Test conditions unless otherwise noted: V+ = 24V; TMB = 30°C; ZS = ZL = 75Ω, IDC set >370mA						
Operating Frequency Range	45		1218	MHz		
Power Gain	23.3	23.8	24.3	dB	f = 45MHz	
	24.5	24.8	26.0	dB	f = 1218MHz	
Slope[1]	0.5	1.0	2.0	dB	f = 45MHz to 1218MHz	
Flatness of Frequency Response			0.8	dB	f = 45MHz to 1218MHz	
Input Return Loss	20			dB	f = 45MHz to 320MHz	
	19			dB	f = 320MHz to 640MHz	
	18			dB	f = 640MHz to 870MHz	
	18			dB	f = 870MHz to 1000MHz	
	17			dB	f = 1000MHz to 1218MHz	
Output Return Loss	20			dB	f = 45MHz to 320MHz	
	19			dB	f = 320MHz to 640MHz	
	18			dB	f = 640MHz to 870MHz	
	18			dB	f = 870MHz to 1000MHz	
	17			dB	f = 1000MHz to 1218MHz	
Noise Figure		3.0	4.0	dB	f = 50MHz to 1218MHz	
Total Current Consumption (DC)		470.0	480.0	mA		

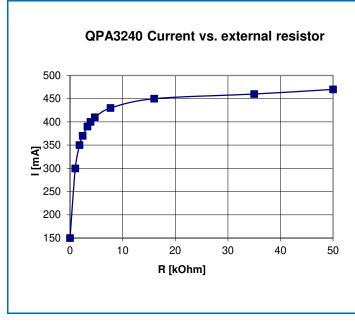
QPA3240

REMD	_	riQui	Int - 1	Jorvo

Parameter	Specification		Unit	Condition			
rarameter	Min	Тур	Max	Offic	Condition		
Distortion Data 40MHz to 550MHz. Test conditions: V+ = 24V; TMB = 30°C; ZS = ZL = 75Ω, IDC=IDC typical							
СТВ		-73	-68	dBc			
XMOD		-68	-63	dBc	VO = 62 dBmV at 1000MHz, 18dB extrapolated tilt, 79 analog channels plus 75		
CSO		-76	-70	dBc	digital channels (-6dB offset)[2][5]		
CIN	55	57		dB			
Distortion Data 40MHz to 550MH	Distortion Data 40MHz to 550MHz. Test conditions: V+ = 24V; TMB = 30°C; ZS = ZL = 75Ω, IDC=IDC typical						
СТВ		-80		dBc			
XMOD		-77		dBc	VO = 62 dBmV at 1218MHz, 22dB extrapolated tilt, 79 analog channels plus 111		
CSO		-80		dBc	digital channels (-6dB offset)[3][5]		
CIN		58		dB			
Distortion Data 40MHz to 550MHz. Test conditions: V+ = 24V; TMB = 30°C; ZS = ZL = 75Ω, IDC=400mA							
СТВ		-72		dBc			
XMOD		-67		dBc	VO = 62 dBmV at 1218MHz, 22dB extrapolated tilt, 79 analog channels plus 111		
CSO		-70		dBc	digital channels (-6dB offset)[3][6]		
CIN		50		dB			

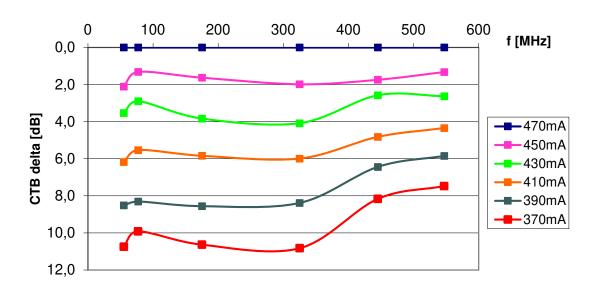

- 1. The slope is defined as the difference between the gain at the start frequency and the gain at the stop frequency.
- 2. 79 analog channels, NTSC frequency raster: 55.25MHz to 547.25MHz, +44dBmV to +53.4dBmV tilted output level, plus 75 digital channels, -6dB offset relative to the equivalent analog carrier.
- 3. 79 analog channels, NTSC frequency raster: 55.25MHz to 547.25MHz, +40dBmV to +49.4dBmV tilted output level, plus 111 digital channels, -6dB offset relative to the equivalent analog carrier.
- 4. Composite Triple Beat (CTB) The CTB parameter is defined by the NCTA. Composite Second Order (CSO) The CSO parameter (both sum and difference products) is defined by the NCTA. Cross Modulation (XMOD) Cross modulation (XMOD) is measured at baseband (selective voltmeter method), referenced to 100% modulation of the carrier being tested. Carrier to Intermodulation Noise (CIN) The CIN parameter is defined by ANSI/SCTE 17 (Test Procedure for carrier to noise).
- 5. Test condition: Pin 4 not connected
- 6. Test condition: Pin 4 connected to GND via 3.9k resistor

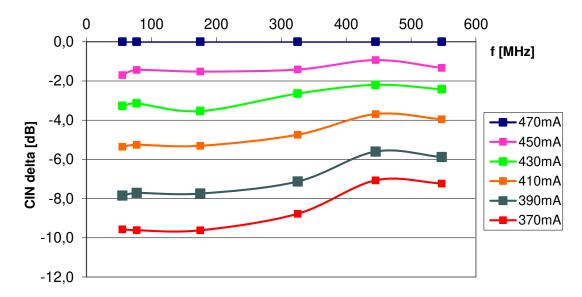



Current Adjustment Using Hybrid Pin 4

The QPA3240 can be operated over a wide range of current to provide maximum required performance with minimum current consumption. A single external resistor connected between pin 4 and GND allows variation of current between 470mA and 150mA (typ.). Within the recommended range of current between 470mA and 370mA gain (S21) change is less than 0.2dB and noise figure change is less than 0.1dB. If pin 4 is not connected the devices operates at maximum current, see table below.

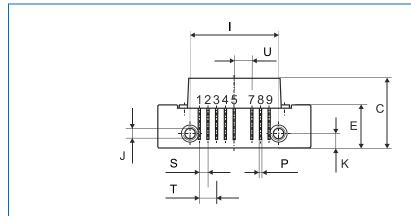
Examples of connecting pin 4:

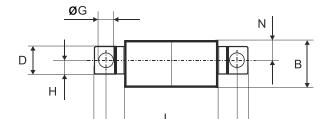

Device current [mA], typical	External resistor [Ω]
470	>50k (open)
450	16k
430	7k5
400	3k9
370	2k4
340	1k5
150	0 (short)
	$V+ = 24V; T_{MB} = 30^{\circ}C;$ $Z_{S} = Z_{L} = 75\Omega$

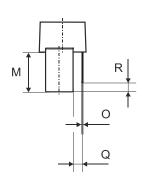

Change of Distortion Performance Over Current

Test Condition: V+=24V, $T_{MB}=30^{\circ}C$; $Z_{S}=Z_{L}=75\Omega$, $V_{O}=62.0dBmV$ at 1000MHz, 18dB extrapolated tilt, 79 analog channels plus 75 digital channels (-6dB offset)

CTB change over device current, typical values




CIN change over device current, typical values


RFMD + TriQuint = Qorvo

Package Drawing (Dimensions in millimeters)

F

0 5 10mm

Notes:

Pinning:

Pin	Name
1	Input
2-3	GND
4	CURRENT SETTING
5	V+
6	
7-8	GND
9	Output

	Nomina	141111	Wax
Α	44,6 ^{± 0,2}	44,4	44,8
В	13,6 ^{± 0,2}	13,4	13,8
С	20,4 ^{± 0,5}	19,9	20,9
D	8 ^{± 0,15}	7,85	8,15
Е	12,6 ^{± 0,15}	12,45	12,75
F	38,1 ^{± 0,2}	37,9	38,3
G	4 +0,2 /-0,05	3,95	4,2
Н	4 ^{± 0,2}	3,8	4,2
1	25,4 ^{± 0,2}	25,2	25,6
J	UNC 6-32	-	-
K	4,2 ^{± 0,2}	4,0	4,4
L	27,2 ^{± 0,2}	27,0	27,4
М	11,6 ^{± 0,5}	11,1	12,1
N	5,8 ^{± 0,4}	5,4	6,2
0	0,25 ^{± 0,02}	0,23	0,27
Р	0,45 ^{± 0,03}	0,42	0,48
Q	2,54 ^{± 0,3}	2,24	2,84
R	2,54 ^{± 0,5}	2,04	3,04
S	2,54 ^{± 0,25}	2,29	2,79
Т	5,08 ^{± 0,25}	4,83	5,33
U	5,08 ^{± 0,25}	4,83	5,33

Nominal

QPA3240

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations:

Web: www.rfmd.com Tel: 1-844-890-8163

Email: customer.support@qorvo.com

For information about the merger of RFMD and TriQuint as Qorvo:

Web: www.qorvo.com

Important Notice

The information contained herein is believed to be reliable. RFMD makes no warranties regarding the information contained herein. RFMD assumes no responsibility or liability whatsoever for any of the information contained herein. RFMD assumes no responsibility or liability whatsoever for the use of the information contained herein. The information contained herein is provided "AS IS, WHERE IS" and with all faults, and the entire risk associated with such information is entirely with the user. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for RFMD products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information.

RFMD products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.