

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

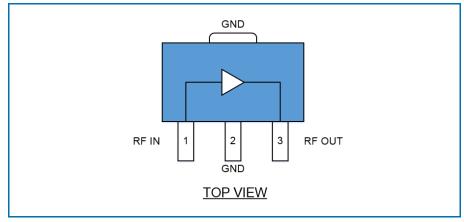
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

DC to 3500 MHz, CASCADABLE SiGe HBT MMIC AMPLIFIER

The QPA6489A is a high performance SiGe HBT MMIC amplifier. A Darlington configuration provides high F_{T} and excellent thermal performance. The heterojunction increases breakdown voltage and minimizes leakage current between junctions. Cancellation of emitter junction non-linearities results in higher suppression of intermodulation products. Only two DC-blocking capacitors, a bias resistor, and an optional RF choke are required for operation.



SOT-89 Package

Features

- DC to 3500MHz Operation
- High Gain: 19.2 dB at 1950MHz
- Cascadable 50Ω
- Operates from Single Supply
- Low Thermal Resistance Package

Functional Block Diagram

Applications

- Power Amplifier Driver
- Cellular, PCS, GSM, UMTS
- IF Amplifier
- Wireless Data, Satellite

Ordering Information

QPA6489ASQ	Sample Bag with 25 pieces
QPA6489ASR	7" Reel with 100 pieces
QPA6489ATR13	13" Reel with 3500 pieces
QPA6489APCK401	850MHz, 8V Operation PCBA with 5-piece Sample Bag

Preliminary

QPA6489A

RFMD + TriQuint = Qorvo

Absolute Maximum Ratings

Parameter	Rating	Units
Device Voltage(V _D)	+7.0	V
Device Current (ID)	150	mA
RF Input Power Note 1	+18	dBm
Storage Temperature	-55 to +150	°C
ESD Rating (HBM)	TBD	V
Moisture Sensitivity Level	MSL2	-

Notes:

- 1. Load Condition 1: $Z_L = 50 \Omega$
- Operation of this device beyond any one of these limits may cause permanent damage. For reliable continuous operation, the device voltage and current must not exceed the maximum operating values specified in this table.
- 3. Bias Conditions should also satisfy the following expression: $I_DV_D <\!\! (T_J T_L)/$ $R_{TH},$ and $T_L =\!\! T_{LEAD}.$

4

Caution! ESD sensitive device.

RFMD Green: RoHS status based on EU Directive 2011/65/EU (at time of this document revision), halogen free per IEC 61249-2-21, < 1000 ppm each of antimony trioxide in polymeric materials and red phosphorus as a flame retardant, and <2% antimony in solder.

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional - operation of the device under Absolute Maximum Rating conditions is not implied.

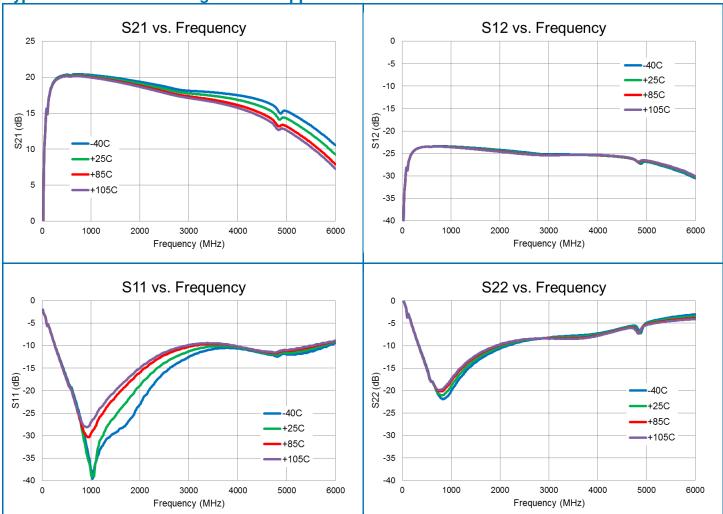
Recommended Operating Conditions

Parameter		Rating			
raiailletei	Min	Тур	Max	Units	
Operating Temperature Range	-40		+85	°C	
Junction Temperature (TJ)			+125	°C	
Device Operating Voltage	+4.7	+5.1	+5.5	V	

Electrical Specifications – General

Parameter	Specification		Units	Conditions		
Faranietei	Min	Тур	Max	Onits	Conditions	
		20.3		dB	850MHz	
Small Signal Gain, S21		19.2		dB	1950MHz	
		18.5		dB	2400MHz	
		+20.1		dBm	850MHz	
Output Power at 1 dB Compression		+19.4		dBm	1950MHz	
		+18.4		dBm	2400MHz	
		+36.0		dBm	500MHz	
Output Third Order Intercept Point		+36.0		dBm	850MHz	
Output Tillia Order Intercept Folint		+31.9		dBm	1950MHz	
		+30.4		dBm	2400MHz	
		30.7		dB	850MHz	
Input Return Loss, S11		19.4		dB	1950MHz	
		14.7		dB	2400MHz	
		20.9		dB	850MHz	
Output Return Loss, S22		10.4		dB	1950MHz	
		9.0		dB	2400MHz	

Test Conditions unless otherwise specified: $+V_D = +5.1 \text{ V}$, $V_S = 8 \text{ V}$, $I_D = 75 \text{ mA Typ.}$, OIP3 Tone Spacing=1 MHz, P_{OUT} per tone = 0 dBm, $R_{BIAS} = 39\Omega$, $T_L = 25^{\circ}\text{C}$, $Z_S = Z_L = 50 \Omega$

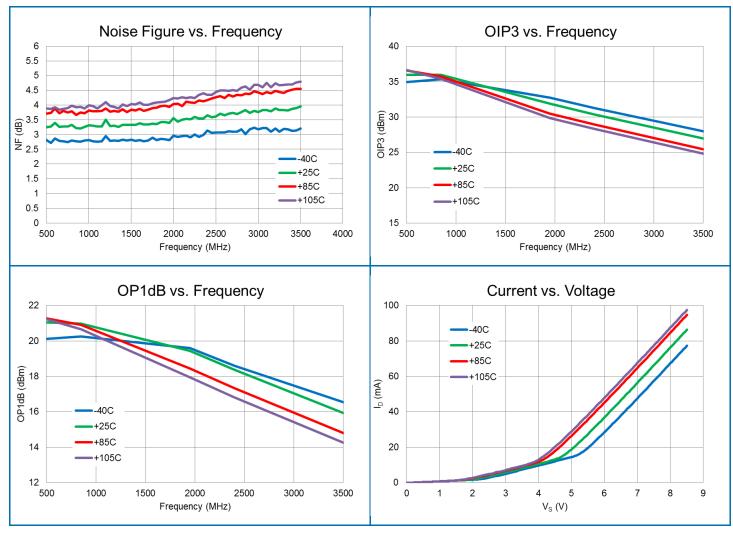


Electrical Specifications – General (Continued)

Parameter	Specification		Units	Conditions	
raiametei	Min	Тур	Max	Office	Conditions
		23.5		dB	850MHz
Reverse Isolation, S12		24.3		dB	1950MHz
		24.8		dB	2400MHz
		3.2		dB	850MHz
Noise Figure		3.4		dB	1950MHz
		3.7		dB	2400MHz
Thermal Resistance		97		°C/W	
Device Operating Current		75		mΑ	

Test Conditions unless otherwise specified: $+V_D = +5.1 \text{ V}$, $V_S = 8 \text{ V}$, $I_D = 75 \text{ mA Typ.}$, OIP3 Tone Spacing=1 MHz, P_{OUT} per tone = 0 dBm, $R_{BIAS} = 39\Omega$, $T_L = 25^{\circ}\text{C}$, $Z_S = Z_L = 50\,\Omega$

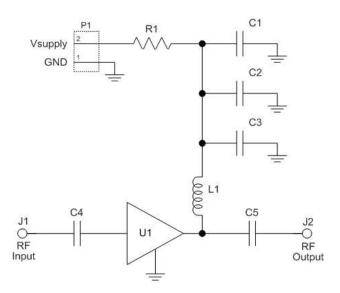
Typical Performance Using 850MHz Application Circuit



rfmd >>> QOCYO

QPA6489A

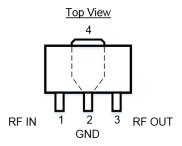
RFMD + TriQuint = Qorvo


Typical Performance Using 850MHz Application Circuit

RFMD + TriQuint = Qorvo

Evaluation Board and Schematic

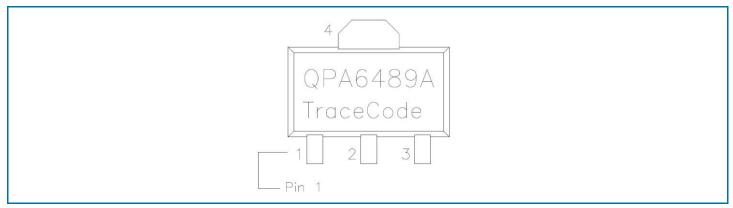
Evaluation Board Bill of Materials For 850MHz Application Circuit


Description	Reference Designator	Manufacturer	Manufacturer's P/N
Gain Block	U1	QORVO	QPA6489A
PCB	NA	Viasystems	QPAXX89A
CAP, 1uF, 10%, 25V, X7R, 1206	C1	Murata Electronics	GRM31MR71E105KA01L
CAP, 1000pF, 10%, 50V, X7R, 0402	C2	Murata Electronics	GRM155R71H102KA01D
CAP, 68pF, 5%, 50V, C0G, 0402	C3	Murata Electronics	GRM1555C1H680JA01D
CAP, 100pF, 5%, 50V, C0G, 0402	C4, C5	Murata Electronics	GRM1555C1H101JA01D
RES, 39 OHM, 1%, 1/2W, 1210	R1	Panasonic Industrial Devices	ERJ-P14F39R0U
IND, 33nH, 5%, M/L, 0603	L1	Murata Electronics	LL1608-FSL33NJ
CONN, SMA, EL, FLT, 0.068" SPE-000318	J1. J2	Amphenol RF Asia Corp	901-10426
CONN, HDR, ST, 1x2, 0.100", HI-TEMP, T/H	P1	Samtec Inc.	HTSW-102-07-G-S

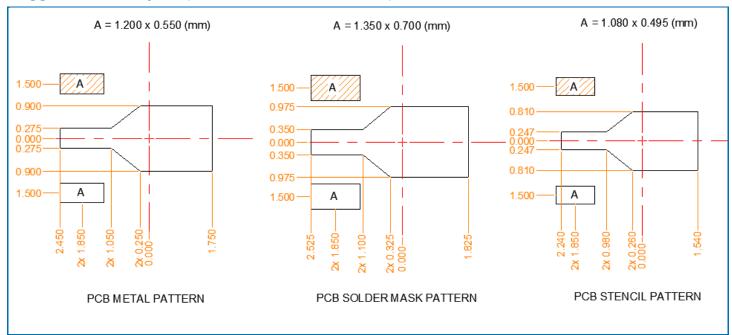
Component Values For Specific Frequency and Voltage in Application Circuit

Reference	Frequency (MHz)							
Designator	500	850	1950	2400	3500			
C ₄ , C ₅	220pF	100pF	68pF	56pF	39pF			
C ₃	100pF	68pF	22pF	22pF	15pF			
L ₁	68nH	33nH	22nH	18nH	15nH			
Required Bias Resistance for I _D =75mA Bias Resistance = R _{BIAS} + R _{LDC} = (V _S -V _D) / I _D								
Supply Volt	age (Vs)	6 V	8 V	10 V	12 V			
Bias Resistanc	e (R _{1 =} R _{Bias})	12 Ω 39 Ω		62 Ω	91 Ω			
*Note: Bias resistor improves current stability over temperature								

Pin Configuration and Description

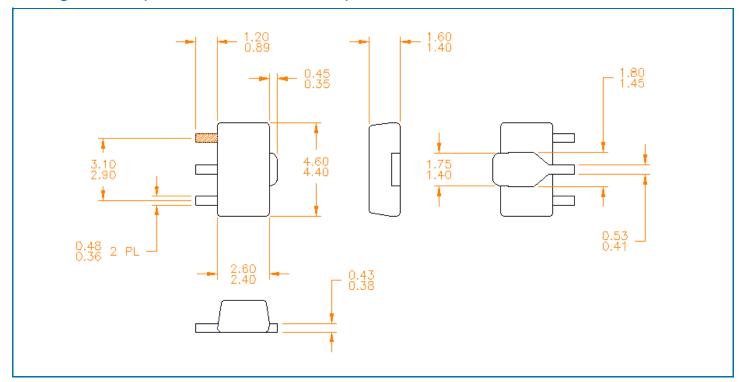


Pin	Label	Description
1	RF IN	RF input pin. This pin requires the use of an external DC blocking capacitor as shown in the application schematics
2	GND	Connect to ground per application circuit drawing.
3	RF OUT	RF output and bias pin. Bias will be supplied to this pin through an external RF choke. A DC blocking capacitor is necessary on the RF output as shown in the application circuit
4	GND	Exposed area on the bottom side of the package needs to be soldered to the ground plane of the board for thermal and RF performance. Vias should be located under the EPAD as shown in the recommended land pattern.



RFMD + TriQuint = Qorvo

Package Marking


Suggested Pad Layout (Dimensions in millimeters)

RFMD + TriQuint = Qorvo

Package Outline (Dimensions in millimeters)

QPA6489A

Preliminary

QPA6489A

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations:

Web: www.rfmd.com Tel: 1-844-890-8163

Email: customer.support@qorvo.com

For information about the merger of RFMD and TriQuint as Qorvo:

Web: www.qorvo.com

Important Notice

The information contained herein is believed to be reliable. RFMD and or Qorvo makes no warranties regarding the information contained herein. RFMD and or Qorvo assumes no responsibility or liability whatsoever for any of the information contained herein. RFMD and or Qorvo assumes no responsibility or liability whatsoever for the use of the information contained herein. The information contained herein is provided "AS IS, WHERE IS" and with all faults, and the entire risk associated with such information is entirely with the user. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for RFMD and or Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information.

RFMD and or Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.