

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

QUICKSWITCH® PRODUCTS HIGH-SPEED CMOS QUICKSWITCH 8-BIT BUS SWITCH

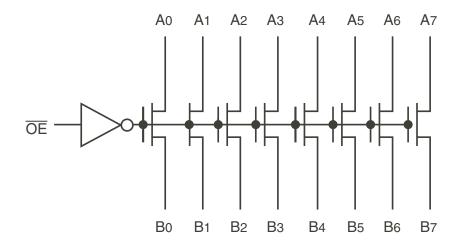
IDTQS3245

FEATURES:

- Enhanced N channel FET with no inherent diode to Vcc
- 5Ω bidirectional switches connect inputs to outputs
- Pin compatible with the 74F245, 74FCT245, and 74FCT245T
- Low power CMOS proprietary technology
- · Zero propagation delay, zero ground bounce
- Undershoot clamp diodes on all switch and control inputs
- TTL-compatible control inputs
- Available in SOIC and QSOP packages

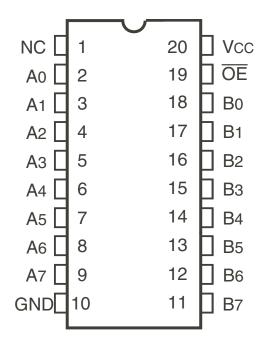
APPLICATIONS:

- Hot-swapping, hot-docking
- Voltage translation (5V to 3.3V)
- · Power conservation
- · Capacitance reduction and isolation
- · Logic replacement (data processing)
- Clock gating
- · Bus switching and isolation


DESCRIPTION:

The QS3245 provides a set of eight high-speed CMOS TTL-compatible bus switches in a pinout compatible with 74FCT245, 74F245, 74ALS/AS/LS245 8-bit transceivers. The low ON resistance of the QS3245 allows inputs to be connected to outputs without adding propagation delay and without generating additional ground bounce noise. The Output Enable (\overline{OE}) signal turns the switches on similar to the \overline{OE} signal of the 74'245.

QuickSwitch devices provide an order of magnitude faster speed than conventional logic devices.


The QS3245 is characterized for operation at -40°C to +85°C.

FUNCTIONAL BLOCK DIAGRAM

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

PIN CONFIGURATION

SOIC/ QSOP TOP VIEW

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VTERM ⁽²⁾	Supply Voltage to Ground	-0.5 to +7	٧
VTERM ⁽³⁾	DC Switch Voltage Vs	-0.5 to +7	V
VTERM ⁽³⁾	DC Input Voltage VIN	-0.5 to +7	V
VAC	/AC AC Input Voltage (pulse width ≤ 20ns)		V
lout	DC Output Current	120	mA
Рмах	Maximum Power Dissipation (TA = 85°C)	0.5	W
Tstg	TSTG Storage Temperature		°C

NOTE:

- 1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. Vcc terminals.
- 3. All terminals except Vcc.

CAPACITANCE

 $(TA = +25^{\circ}C, f = 1.0MHz, VIN = 0V, VOUT = 0V)$

Pins	Тур.	Max. ⁽¹⁾	Unit	
Control Pins	3	5	pF	
Quickswitch Channels (Switch OFF)	5	7	pF	

NOTE:

1. This parameter is measured at characterization but not tested.

PIN DESCRIPTION

Pin Names	Description	
ŌĒ	Output Enable	
Ax	Data I/Os	
Bx	Data I/Os	

FUNCTION TABLE(1)

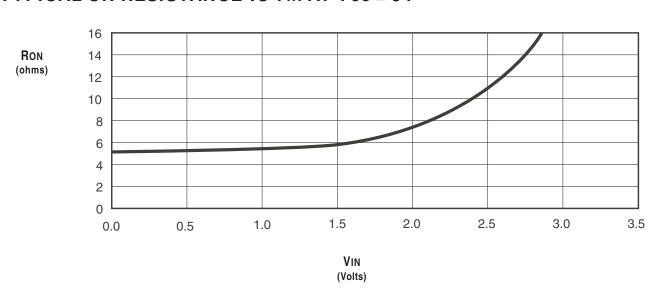
ŌĒ	Outputs	
Н	Disconnected	
L	Ax = Bx	

NOTE:

1. H = HIGH Voltage Level L = LOW Voltage Level

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:


Industrial: TA = -40°C to +85°C, $VCC = 5.0V \pm 5\%$

Symbol	Parameter	Test Conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
VIH	Input HIGH Level	Guaranteed Logic HIGH for Control Pins	2	_	-	V
VIL	Input LOW Level	Guaranteed Logic LOW for Control Pins	_	_	0.8	V
lin	Input LeakageCurrent (Control Inputs)	$0V \le VIN \le VCC$	_	_	±1	μΑ
loz	Off-State Output Current (Hi-Z)	0V ≤ Vouт ≤ Vcc, Switches OFF	_	±0.001	±1	μΑ
Ron	Switch ON Resistance	Vcc = Min., Vin = 0V, Ion = 30mA	_	5	7	Ω
		Vcc = Min., Vin = 2.4V, Ion =15mA	_	10	15	
VP	Pass Voltage ⁽²⁾	$V_{IN} = V_{CC} = 5V$, $I_{OUT} = -5\mu A$	3.7	4	4.2	V

NOTES:

- 1. Typical values are at Vcc = 5.0V, TA = 25°C.
- 2. Pass Voltage is guaranteed but not production tested.

TYPICAL ON RESISTANCE vs Vin AT Vcc = 5V

POWER SUPPLY CHARACTERISTICS

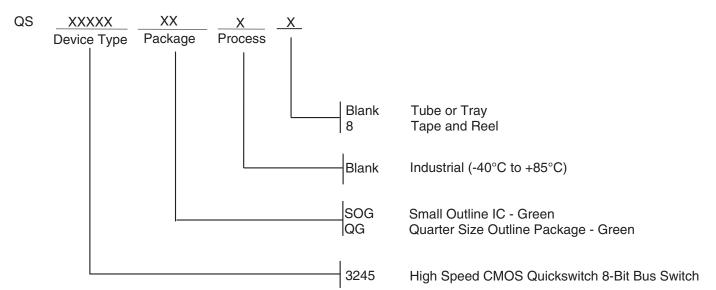
Symbol	Parameter	Test Conditions ⁽¹⁾ Max.		Unit
Iccq	Quiescent Power Supply Current	Vcc = Max., Vin = GND or Vcc, f = 0	3	μΑ
Δlcc	Power Supply Current per Control Input HIGH (2)	Vcc = Max., Vin = 3.4V, f = 0	1.5	mA
ICCD	Dynamic Power Supply Current per MHz ⁽³⁾	Vcc = Max., A and B pins open	0.25	mA/MHz
		Control Inputs Toggling at 50% Duty Cycle		

NOTES:

- 1. For conditions shown as Min. or Max., use the appropriate values specified under DC Electrical Characteristics.
- 2. Per TLL driven input ($V_{IN} = 3.4V$, control inputs only). A and B pins do not contribute to Δlcc .
- 3. This current applies to the control inputs only and represents the current required to switch internal capacitance at the specified frequency. The A and B inputs generate no significant AC or DC currents as they transition. This parameter is guaranteed but not production tested.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

 $T_A = -40$ °C to +85°C, $V_{CC} = 5.0V \pm 5\%$;


CLOAD = 50pF, RLOAD = 500Ω unless otherwise noted.

Symbol	Parameter	Min. ⁽¹⁾	Тур.	Max.	Unit
t PLH	Data Propagation Delay (2,3)	_	_	0.25	ns
tphL	An to/from Bn				
tpzL	Switch Turn-on Delay	0.5	_	5.6	ns
tpzh	OE to Ax/Bx				
tPLZ	Switch Turn-off Delay (2)	0.5	_	4.5	ns
tPHZ	OE to Ax/Bx				

NOTES:

- 1. Minimums are guaranteed but not production tested.
- 2. This parameter is guaranteed but not production tested.
- 3. The bus switch contributes no propagation delay other than the RC delay of the ON resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.25ns for C_L = 50pF. Since this time constant is much smaller than the rise and fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay of the bus switch, when used in a system, is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

ORDERING INFORMATION

Datasheet Document History

02/14/2011 Pg. 5 Updated the ordering information by removing the "IDT" notation, non RoHS part and by adding Tape and Reel information.

Corrected Functional Block Diagram adding missing dot on A1.

()IDT

Pg. 1

11/24/2014

CORPORATE HEADQUARTERS

6024 Silver Creek Valley Road San Jose, CA 95138 **for SALES:** 800-345-7015 or 408-284-8200

fax: 408-284-2775 www.idt.com for Tech Support: logichelp@idt.com