imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

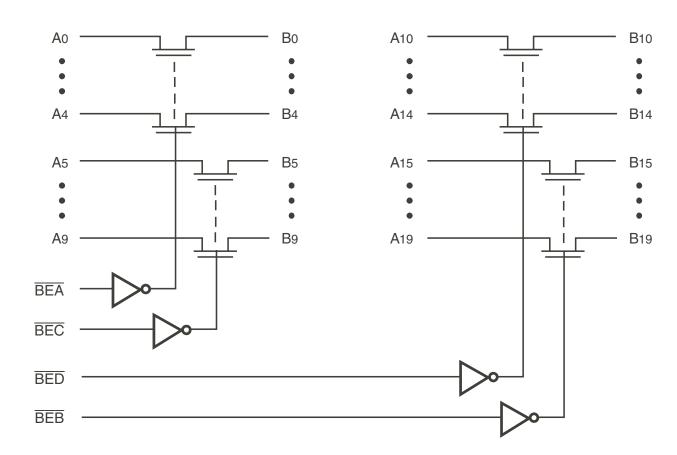
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

QUICKSWITCH[®] PRODUCTS HIGH-SPEED CMOS 20-BIT BUS SWITCH

FEATURES:

- · Enhanced N channel FET with no inherent diode to Vcc
- · Low propagation delay and zero ground bounce
- 25Ω resistors for low noise
- · Undershoot Clamp Diodes on all switch and control Inputs
- Four enables control five bits each
- TTL-compatible input and output levels
- · Available in 48-pin QVSOP package

APPLICATIONS:


- · Hot-swapping, hot-docking
- Voltage translation (5V to 3.3V)
- Power conservation
- Capacitance reduction and isolation
- · Bus isolation
- · Clock gating

DESCRIPTION:

The QS32X2384 provides a set of twenty high-speed CMOS TTLcompatible bus switches. The QS32x2384 also includes internal 25Ω series termination resistors to reduce reflection noise in high-speed applications. The Bus Enable (BE) signals turn the switches on. Four Bus Enable signals are provided, one for each of five bits of the 20-bit bus. The '384 family of QuickSwitch products is ideal for switching wide digital buses, as well as hotplug buffering, and 5V to 3V conversion.

The QS32X2384 is characterized for operation at -40°C to +85°C.

FUNCTIONAL BLOCK DIAGRAM

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

INDUSTRIAL TEMPERATURE RANGE

FEBRUARY 2011

PIN CONFIGURATION

1		\neg r			
BEA	1	•	48		Vcc
В0[2		47		B19
A0	3		46	þ	A19
A1	4		45		A18
B1	5		44		B18
B2[6		43		B17
A2[7		42		A17
Аз	8		41		A16
B3[9		40		B16
B4[10		39		B15
A4[11		38		A15
GND	12		37		BEB
BEC	13		36		Vcc
B5	14		35		B14
A5[15		34		A14
A6	16		33		A13
B6	17		32		B13
B7[18		31		B12
A7	19		30		A12
A8[20		29		A11
B8[21		28		B11
B9[22		27		B10
A9[23		26		A10
GND	24		25	þ	BED

QVSOP TOP VIEW

PIN DESCRIPTION

Pin Names	I/O	Description	
A0 - A19	I/O	Bus A	
B0 - B19	I/O	Bus B	
BEA	I	Enable, 0 - 4	
BEB	I	Enable, 15 - 19	
BEC	I	Enable, 5 - 9	
BED	I	Enable, 10 - 14	

INDUSTRIAL TEMPERATURE RANGE

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Description	Max	Unit
VTERM ⁽²⁾	SupplyVoltage to Ground	–0.5 to +7	V
VTERM ⁽³⁾	DC Switch Voltage Vs	–0.5 to +7	V
VTERM ⁽³⁾	DC Input Voltage VIN	–0.5 to +7	V
VAC	AC Input Voltage (pulse width ≤20ns)	ዻ	V
Ιουτ	DC Output Current (max. sink current/pin)	120	mA
Рмах	Maximum Power Dissipation (TA = 85°C)	0.5	W
Tstg	Storage Temperature	–65 to +150	°C

NOTES:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. Vcc terminals.

3. All terminals except Vcc .

CAPACITANCE (TA = +25°C, F = 1MHz, VIN = 0V, VOUT = 0V)

Pins	Тур.	Max. ⁽¹⁾	Unit
Control Inputs	3	5	рF
Quickswitch Channels (Switch OFF)	5	7	pF

NOTE:

1. This parameter is guaranteed but not production tested.

FUNCTION TABLE(1)

BEA	BEB	B0 - B4	B15 - B19	Function
Н	Н	Z	Z	Disconnect
L	Н	A0 - A4	Z	Connect
Н	L	Z	A15 - A19	Connect
L	L	A0 - A4	A15 - A19	Connect
BEC	BED	B5 - B9	B10 - B14	Function
Н	Н	Z	Z	Disconnect
L	Н	A5 - A9	Z	Connect
Н	L	Z	A10 - A14	Connect
L	L	A5 - A9	A10 - A14	Connect

NOTE:

1. H = HIGH Voltage Level

L = LOW Voltage Level

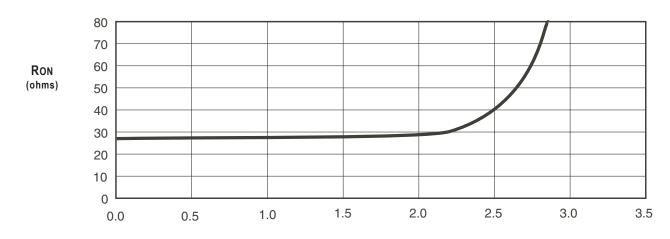
X = Don't care

Z = High-Impedence

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified: Industrial: TA = -40 °C to +85 °C, Vcc = $5.0V \pm 5\%$

Symbol	Parameter	Test Conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
Vih	Input HIGH Voltage	Guaranteed Logic HIGH for Control Pins	2	—	—	V
VIL	Input LOW Voltage	Guaranteed Logic LOW for Control Pins	—	—	0.8	V
lin	Input Leakage Current (Control Inputs)	$0V \le VIN \le VCC$	—	±0.01	±1	μA
loz	Off-State Current (Hi-Z)	$0V \le VOUT \le VCC$, Switches OFF	—	±0.01	±1	μA
Ron	Switch ON Resistance ⁽²⁾	Vcc = Min., VIN = 0V, ION = 30mA	20	28	40	Ω
		Vcc = Min., VIN = 2.4V, ION = 15mA	20	35	48	
Vp	Pass Voltage ⁽³⁾	Vcc = 5V, Iout = -5µA	3.7	4	4.2	V


NOTES:

1. Typical values are at Vcc = 5.0V and TA = 25° C.

2. Max value of Ron is guaranteed but not production tested.

3. Pass voltage is guaranteed but not production tested.

TYPICAL ON RESISTANCE vs Vin AT Vcc = 5V

VIN (Volts)

INDUSTRIAL TEMPERATURE RANGE

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Conditions ⁽¹⁾	Max.	Unit
lccq	Quiescent Power Supply Current	Vcc = Max., VIN = GND or Vcc, f = 0	3	mA
Δ ICC	Power Supply Current per Input HIGH ⁽²⁾	Vcc = Max., VIN = 3.4V, f = 0	2.5	mA
ICCD	Dynamic Power Supply Current per MHz ⁽³⁾	Vcc = Max., A and B Pins Open	0.25	mA/MHz
		Control Input Toggling @ 50% Duty Cycle		

NOTES:

1. For conditions shown as Min. or Max., use the appropriate values specified under DC Electrical Characteristics.

2. Per TTL driven input (VIN = 3.4V, control inputs only). A and B pins do not contribute to ∆lcc.

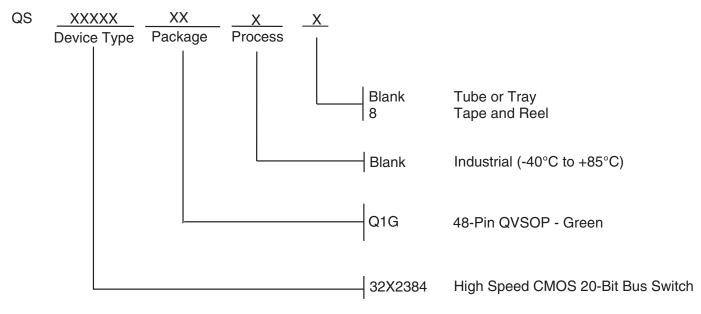
3. This current applies to the control inputs only and represents the current required to switch internal capacitance at the specified frequency. The A and B inputs generate no significant AC or DC currents as they transition. This parameter is guaranteed but not production tested.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

 $T_A = -40^{\circ}C$ to $+85^{\circ}C$

Symbol	Parameter	Min. ⁽¹⁾	Тур.	Max.	Unit
t PLH	Data Propagation Delay ^(2,4)		_	1.25 ⁽³⁾	ns
t PHL	Ax to Bx, Bx to Ax				
tPZL	Switch Turn-On Delay	1.5	—	7.5	ns
tPZH	BEx to Ax, Bx				
tPLZ	Switch Turn-Off Delay ⁽²⁾	1.5	—	5.5	ns
tPHZ	BEx to Ax, Bx				

NOTES:


1. Minimums are guaranteed but not production tested.

2. This parameter is guaranteed but not production tested.

3. The time constant for the switch alone is of the order of 1.25ns at C_L = 50pF.

4. The bus switch contributes no propagation delay other than the RC delay of the ON resistance of the switch and the load capacitance. Since this time constant is much smaller than the rise and fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay of the bus switch, when used in a system, is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

ORDERING INFORMATION

Datasheet Document History

02/16/2011 Pg. 5

Updated the ordering information by removing the "IDT" notation, non RoHS part and by adding Tape and Reel information.

CORPORATE HEADQUARTERS 6024 Silver Creek Valley Road San Jose, CA 95138 for SALES: 800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com for Tech Support: logichelp@idt.com