: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

FEATURES:

- N channel FET switches with no parasitic diode to Vcc
- Isolation underpower-offconditions
- No DC path to Vcc or GND
- 5V tolerant in OFF and ON state
- 5V tolerant I/Os
- B port precharged to user-selectable VBIAS
- Low Ron - 4Ω typical
- Flat Ron characteristics over operating range
- Rail-to-rail switching 0-5V
- Bidirectional dataflow with near-zero delay: no added ground bounce
- Excellent Ron matching between channels
- Vcc operation: 2.3V to 3.6 V
- High bandwidth up to 500 MHz
- LVTTL-compatible control Inputs
- Undershoot Clamp Diodes on all switch and control Inputs
- Low I/O capacitance, 4pF typical
- Available in TSSOP package

APPLICATIONS:

- Hot-swapping
- 10/100 Base-T, Ethernet LAN switch
- Low distortion analog switch
- Replaces mechanical relay
- ATM 25/155 switching

DESCRIPTION:

The QS3VH16800 HotSwitch is a 20-bit high bandwidth bus switch. The QS3VH16800 has very low ON resistance, resulting in under 250ps propagation delay through the switch. The QS3VH16800 precharges the B port to a user selectable bias voltage (VBIAS) to minimize live insertion noise. The switches can be turned ON under the control ofthe LVTTL-compatible Output Enable signal forbidirectional data flow with no added delay orground bounce. It can be used as two 10-bit bus switches or one 20-bitbus switch. In the OFF and ON states, the switches are5V-tolerant. Inthe OFF state, the switches offer very high impedence at the terminals.
The combination of near-zero propagation delay, high OFF impedance, and over-voltage tolerance makes the QS3VH16800 ideal for high performance communications applications.
The QS3VH16800 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

TSSOP TOP VIEW

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VTERM $^{(2)}$	SupplyVoltage to Ground	-0.5 to +4.6	V
VTERM $^{(3)}$	DC Switch Voltage Vs	-0.5 to +5.5	V
VTERM $^{(3)}$	DC Input Voltage VIN	-0.5 to +5.5	V
VAC^{2}	AC Input Voltage (pulse width $\leq 20 \mathrm{~ns}$)	-3	V
Iout	DC Output Current (max. sink current/pin)	120	mA
TSTG	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Vcc terminals.
3. All terminals except Vcc

CAPACITANCE $\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{F}=1 \mathrm{MHz}, \mathrm{V} \mathbb{N}=0 \mathrm{~V}\right.$, Vout $\left.=0 \mathrm{~V}\right)$

Symbol	Parameter ${ }^{(1)}$	Typ.	Max.	Unit
CIN	Control Inputs	3	5	pF
C//O	Quickswitch Channels (Switch OFF) VBIAS = OPEN	4	6	pF
C//O	Quickswitch Channels (Switch ON)	8	12	pF

NOTE:

1. This parameter is guaranteed but not production tested.

PIN DESCRIPTION

Pin Names	I/O	Description
$\overline{\text { O}} \overline{\mathrm{E} x}$	I	Bus Switch Enable
VBIAS	I	Bias Voltage
$A x$	$1 / O$	Bus A
$B x$	$1 / 0$	Bus B

FUNCTION TABLE (EACH 10-BITBUS SWITCH)(1)

$\overline{\mathrm{OEx}}$	Bx	Function
L	Ax	Connect
H	VBIAS	Disconnect $\mathrm{Ax}=\mathrm{Z}$

NOTE:

1. H = HIGH Voltage Level

L = LOW Voltage Level
Z = High-Impedence

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:
Industrial: $\mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{VcC}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$

Symbol	Parameter	Test Conditions			Min.	Typ. ${ }^{1)}$	Max.	Unit	
VIH	Input HIGH Voltage	Guaranteed Logic HIGH forControl Inputs	$\mathrm{Vcc}=2.3 \mathrm{~V}$ to 2.7V		1.7	-	-	V	
			$\mathrm{Vcc}=2.7 \mathrm{~V}$ to 3.6V		2	-	-		
VIL	InputLOW Voltage	Guaranteed LogicLOW for Control Inputs	$\mathrm{Vcc}=2.3 \mathrm{~V}$ to 2.7V		-	-	0.7	V	
			$\mathrm{Vcc}=2.7 \mathrm{~V}$ to 3.6 V		-	-	0.8		
VBIAS	Bias Voltage	$\mathrm{Vcc}=3.3 \mathrm{~V}$ to 3.6V, $\mathrm{lo}=0$			0	-	5	V	
		$\mathrm{Vcc}=2.3 \mathrm{~V}$ to 2.7V, $\mathrm{Io}=0$			0	-	3.3		
\| 10		BiasCurrent ${ }^{(2)}$	$\mathrm{Vcc}=3.3 \mathrm{~V}, \mathrm{VBIAS}=2.4 \mathrm{~V}$, Vo $=0, \overline{\mathrm{OEx}}=\mathrm{HIGH}$			0.25	-	-	mA
IIN	InputLeakageCurrent(Control Inputs)	$\mathrm{OV} \leq \mathrm{VIN} \leq \mathrm{VcC}$			-	-	± 1	$\mu \mathrm{A}$	
loz	Off-State Current(Hi-Z)	$0 \mathrm{~V} \leq$ Vout $\leq 5 \mathrm{~V}$, Switches OFF			-	-	± 1	$\mu \mathrm{A}$	
IofF	Data Input/OutputPowerOffLeakage	Vin or Vout OV to 5V, Vcc $=0 \mathrm{~V}$			-	-	± 1	$\mu \mathrm{A}$	
Ron	Switch ON Resistance	$\mathrm{Vcc}=2.3 \mathrm{~V}$	$\mathrm{VIN}=0 \mathrm{~V}$	ION $=30 \mathrm{~mA}$	-	6	8	Ω	
		Typ. at $\mathrm{Vcc}=2.5 \mathrm{~V}$	V IN $=1.7 \mathrm{~V}$	$1 \mathrm{ON}=15 \mathrm{~mA}$	-	7	9		
		Vcc $=3 \mathrm{~V}$	VIN $=0 \mathrm{~V}$	$1 \mathrm{ON}=30 \mathrm{~mA}$	-	4	6		
			$\mathrm{VIN}=2.4 \mathrm{~V}$	$\mathrm{ION}=15 \mathrm{~mA}$	-	5	8		

NOTES:

1. Typical values are at $\mathrm{Vcc}=3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. Bias resistance is $5 \mathrm{~K} \Omega$ typical at $\mathrm{Vcc}=3.3 \mathrm{~V}$; VBiAs $=2.4 \mathrm{~V}$ at $25^{\circ} \mathrm{C}$.

TYPICAL ON RESISTANCE vs Vin AT Vcc = 3.3V

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	TestConditions ${ }^{(1)}$	Min.	Typ.	Max.	Unit
ICCQ	Quiescent Power Supply Current	Vcc $=$ Max., VIN $=$ GND or Vcc, $\mathrm{f}=0$	-	1.5	3	mA
$\Delta \mathrm{lcC}$	Power Supply Current ${ }^{(2,3)}$ per Input HIGH	$\mathrm{Vcc}=$ Max., VIN $=3 \mathrm{~V}, \mathrm{f}=0$ per Control Input	-	-	30	$\mu \mathrm{A}$
ICCD	Dynamic Power Supply Current ${ }^{(4)}$	Vcc $=3.3 \mathrm{~V}$, A and B Pins Open, Control Inputs Toggling @ 50\% Duty Cycle	See Typical ICCD vs Enable Frequency graph below			

NOTES:

1. For conditions shown as Min. or Max., use the appropriate values specified under DC Electrical Characteristics.
2. Per input driven at the specified level. A and B pins do not contribute to $\Delta \mathrm{lcc}$.
3. This parameter is guaranteed but not tested.
4. This parameter represents the current required to switch internal capacitance at the specified frequency. The A and B inputs do not contribute to the Dynamic Power Supply Current. This parameter is guaranteed but not production tested.

TYPICAL Iccd vs ENABLE FREQUENCY CURVE AT Vcc = 3.3V

ENABLE FREQUENCY (MHz)

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions	$\mathrm{Vcc}=2.5 \pm 0.2 \mathrm{~V}^{(1)}$		$\mathrm{Vcc}=3.3 \pm 0.3 \mathrm{~V}^{(1)}$		Unit
			Min. ${ }^{(4)}$	Max.	Min. ${ }^{(4)}$	Max.	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	DataPropagationDelay ${ }^{(2,3)}$ Ax to Bx or Bx to Ax		-	0.2	-	0.2	ns
$\begin{aligned} & \text { tPZL } \\ & \text { tPZH } \end{aligned}$	Switch Turn-On Delay $\overline{\mathrm{OEx}}$ to $\mathrm{Ax} / \mathrm{Bx}$	$\begin{aligned} & \text { VBIAS }=3 \mathrm{~V} \\ & \text { VBIAS }=G N D \end{aligned}$	1.5	8.5	1.5	8	ns
$\begin{aligned} & \text { tPLZ } \\ & \text { tPHZ } \end{aligned}$	Switch Turn-OffDelay $\overline{\mathrm{OEx}}$ to $\mathrm{Ax} / \mathrm{Bx}$	$\begin{aligned} & \text { VBIAS }=3 \mathrm{~V} \\ & \text { VBIAS }=G N D \end{aligned}$	1.5	7.5	1.5	7.5	ns
foex	Operating Frequency-Enable ${ }^{(2,5)}$ $(\overline{\mathrm{OEx}})$	VBIAS $=$ OPEN	-	10	-	20	MHz

NOTES:

1. See Test Conditions under TEST CIRCUITS AND WAVEFORMS.
2. This parameter is guaranteed but not production tested.
3. The bus switch contributes no propagation delay other than the RC delay of the ON resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.2 ns at $\mathrm{CL}^{2}=50 \mathrm{pF}$. Since this time constant is much smaller than the rise and fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay of the bus switch, when used in a system, is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side
4. Minimums are guaranteed but not production tested.
5. Maximum toggle frequency for $\overline{\mathrm{OEx}}$ control input (pass voltage $>\mathrm{Vcc}, \mathrm{VIN}=5 \mathrm{~V}$, RLOAD $\geq 1 \mathrm{M} \Omega$, no Cload).

SOME APPLICATIONS FOR HOTSWITCH PRODUCTS

Rail-to-Rail Switching

Fast Ethernet Data Switching (LAN Switch)

Hot Swapping

TEST CIRCUITS AND WAVEFORMS

TEST CONDITIONS

Symbol	$\mathrm{Vcc}^{(1)}=\mathbf{3 . 3 V} \pm 0.3 \mathrm{~V}$	$\mathrm{Vcc}^{(2)}=\mathbf{2 . 5 V} \pm 0.2 \mathrm{~V}$	Unit
VLOAD	6	$2 \times \mathrm{Vcc}$	V
VIH	3	Vcc	V
$\mathrm{V} T$	1.5	$\mathrm{Vcc} / 2$	V
VLZ	300	150	mV
VHz	300	150	mV
CL	50	30	pF

Test Circuits for All Outputs

DEFINITIONS:

CL = Load capacitance: includes jig and probe capacitance.
RT = Termination resistance: should be equal to Zout of the Pulse Generator.

NOTES:

1. Pulse Generator for All Pulses: Rate $\leq 10 \mathrm{MHz}$; $\mathrm{tr} \leq 2.5 \mathrm{~ns}$; $\mathrm{tr} \leq 2.5 \mathrm{~ns}$.
2. Pulse Generator for All Pulses: Rate $\leq 10 \mathrm{MHz}$; $\mathrm{tF} \leq 2 \mathrm{~ns}$; $\mathrm{tR} \leq 2 \mathrm{~ns}$.

SWITCH POSITION

Test	Switch
tPLZ/PzL	VLOAD
tPhZIPZH	GND
tPD	Open

Propagation Delay

NOTE:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.

Enable and Disable Times

ORDERING INFORMATION

Tube or Tray
Tape and Reel

Thin Shrink Small Outline Package-TSSOP Green

3VH16800 2.5V/3.3V 20-Bit High Bandwidth Bus Switch with Precharged Outputs

Datasheet Document History

Updated the Ordering Information by removing non green package version, the "IDT" notation and Adding Tape and Reel information.

CORPORATE HEADQUARTERS
6024 Silver Creek Valley Road
San Jose, CA 95138
for SALES:
800-345-7015 or 408-284-8200
fax: 408-284-2775
www.idt.com
for Tech Support:
logichelp@idt.com

